CHAPTER 6
Security

199

200

SECURITY IS DEFINITELY A HOT TOPIC both inside and outside the computer
world. It can be difficult to distinguish legitimate threats from basic para-
noia, but as anyone who has connected to a high-speed connection and
monitored the logs knows, these days there are armies of servers out there
trying to attack you.

Even though other operating systems and products seem to get the majority
of the press for their security breaches, Ubuntu users aren’t completely in
the clear. Even though Ubuntu has good security out of the box, the moment
you set up new services you risk opening holes to attack. This chapter dis-
cusses some common security practices and simple steps you can take to
keep your Ubuntu server secure. Just in case you still get attacked, I also
include a section at the end on how to respond to a security breach.

General Security Principles

There is a saying in security circles: “Security is a process, not a product.”
What that means is that despite what your vendor might tell you, you can’t
solve all your security problems with some appliance or software. Instead,
you find real security when you follow sound security principles and
develop sound security procedures. While I cover some specific tools and
options you can use to increase your system’s security later in the chapter,
there’s no way I can discuss how to lock down every major service under
Ubuntu. These principles, though, are something that you can apply no
matter what software you might run:

Keep it simple.

Another saying you will hear in security circles is “Complexity is the
enemy of security.” The more complex a system, the more difficult it
is to understand every part of it and the greater the likelihood that the
security of some aspect of the system was overlooked. Whenever you
design a system, try to keep the number of interoperating pieces as
small as you can. Not only will it help with security, it will help with
troubleshooting and overall administration as well.

Follow the principle of least privilege.
The principle of least privilege is the idea that programs and people
should operate with the lowest possible level of power. This is the

Sudo 201

concept behind the separation of root and the regular users. Since
most daily tasks don’t require full system privileges, give users fewer
privileges. Programs like Apache and Postfix follow this principle;
they use the root privileges only when they are absolutely necessary,
and then the bulk of the work is done via child processes owned by a
different user. When these practices are in place, and you do get
attacked, the amount of damage an attacker can do is limited.

Provide layers of protection.

Some refer to this as “defense in depth.” The best security occurs in
layers. Slapping a firewall in front of your servers won’t automatically
make them secure, but it will help increase their security. Instead, you
want multiple layers of defense, such as a firewall between you and
the outside world, a local software firewall, strong passwords, and
sudo roles.

Avoid security by obscurity.

On the surface it might seem as if moving the SSH server from port
22 to port 257 would add extra security. After all, no one will think to
look for it there. Unfortunately, steps like this slow down, but don’t
stop, an attacker. The real danger of these sorts of security methods is
that they create a false sense of security. This isn’t to say that moving
ports around and using other means of obscurity are completely bad,
just that they should be recognized for what they are—things that
only slow down attackers and that must be combined with other
security procedures.

Keep on top of security patches.

You can have all sorts of security procedures in place and still be
attacked if a vulnerability is found in a service and you fail to patch it.
It’s important to monitor security updates and use Ubuntu’s package
management to keep your systems up to date.

AppArmor

The UNIX permissions model has long been used to lock down access to
users and programs. Even though it works well, there are still areas where
extra access control can come in handy. For instance, many services still run
as the root user, and therefore if they are exploited, the attacker potentially
can run commands throughout the rest of the system as the root user.
There are a number of ways to combat this problem, including sandboxes,
chroot jails, and so on, but Ubuntu has included a system called AppArmor,
installed by default, that adds access control to specific system services.

AppArmor is based on the security principle of least privilege; that is, it
attempts to restrict programs to the minimal set of permissions they need
to function. It works through a series of rules assigned to particular pro-
grams. These rules define, for instance, which files or directories a pro-
gram is allowed to read and write to or only read from. When an
application that is being managed by AppArmor violates these access con-
trols, AppArmor steps in and prevents it and logs the event. A number of
services include AppArmor profiles that are enforced by default, and more

AppArmor 207

are being added in each Ubuntu release. In addition to the default profiles,
the universe repository has an apparmor-profiles package you can install
to add more profiles for other services. Once you learn the syntax for
AppArmor rules, you can even add your own profiles.

Probably the simplest way to see how AppArmor works is to use an example
program. The BIND DNS server is one program that is automatically man-
aged by AppArmor under Ubuntu, so first I install the BIND package with
sudo apt-get install bind9. Once the package is installed, I can use the aa-
status program to see that AppArmor is already managing it:

$ sudo aa-status

apparmor module 1is Toaded.

5 profiles are Toaded.

5 profiles are in enforce mode.
/sbin/dhclient3
/usr/1ib/NetworkManager/nm-dhcp-client.action
/usr/1ib/connman/scripts/dhclient-script
/usr/sbin/named
/usr/sbin/tcpdump

0 profiles are in complain mode.

2 processes have profiles defined.

1 processes are in enforce mode :
/usr/sbin/named (5020)

0@ processes are in complain mode.

1 processes are unconfined but have a profile defined.
/sbin/dhclient3 (607)

Here you can see that the /usr/sbin/named profile is loaded and in enforce
mode, and that my currently running /usr/sbin/named process (PID
5020) is being managed by AppArmor.

AppArmor Profiles

The AppArmor profiles are stored within /etc/apparmor.d/ and are named
after the binary they manage. For instance, the profile for /usr/sbin/named
is located at /etc/apparmor.d/usr.sbin.named. If you look at the contents
of the file, you can get an idea of how AppArmor profiles work and what
sort of protection they provide:

vim:syntax=apparmor
Last Modified: Fri Jun 1 16:43:22 2007
#include <tunables/global>

208

Chapter 6

Security

/usr/sbin/named {
#include <abstractions/base>
#include <abstractions/nameservice>

capability net_bind_service,
capability setgid,
capability setuid,
capability sys_chroot,

/etc/bind should be read-only for bind

/var/Tib/bind is for dynamically updated zone (and journal) files.
/var/cache/bind is for slave/stub data, since we're not the origin
#of it.

See /usr/share/doc/bind9/README.Debian.gz

/etc/bind/xx r,

/var/1ib/bind/+x* rw,

/var/Tib/bind/ rw,

/var/cache/bind/xx rw,

/var/cache/bind/ rw,

some people 1like to put Togs in /var/log/named/
/var/log/named/+* rw,

dnscvsutil package
/var/1ib/dnscvsutil/compiled/++ rw,

/proc/net/if_inet6 r,
/usr/sbin/named mr,
/var/run/bind/run/named.pid w,
support for resolvconf
/var/run/bind/named.options r,

For instance, take a look at the following excerpt from that file:

/etc/bind/xx r,
/var/1lib/bind/== rw,
/var/1ib/bind/ rw,
/var/cache/bind/=x rw,
/var/cache/bind/ rw,

The syntax is pretty straightforward for these files. First there is a file or
directory path, followed by the permissions that are allowed. Globs are also
allowed, so, for instance, /etc/bind/«+ applies to all of the files below the
/etc/bind directory recursively. A single « would apply only to files within
the current directory. In the case of that rule you can see that /usr/sbin/

AppArmor 209

named is allowed only to read files in that directory and not write there.
This makes sense, since that directory contains only BIND configuration
files—the named program should never need to write there. The second line
in the excerpt allows named to read and write to files or directories under
/var/lib/bind/. This also makes sense because BIND might (among other
things) store slave zone files here, and since those files are written to every
time the zone changes, named needs permission to write there.

Enforce and Complain Modes

You might have noticed that the aa-status output mentions two modes:
enforce and complain modes. In enforce mode, AppArmor actively blocks
any attempts by a program to violate its profile. In complain mode, AppAr-
mor simply logs the attempt but allows it to happen. The aa-enforce and
aa-complain programs allow you to change a profile to be in enforce or
complain mode, respectively. So if my /usr/sbin/named program did need
to write to a file in /etc/bind or some other directory that wasn’t allowed, I
could either modify the AppArmor profile to allow it or I could set it to
complain mode:

$ sudo aa-complain /usr/sbin/named
Setting /usr/sbin/named to complain mode

If later on I decided that I wanted the rule to be enforced again, I would
use the aa-enforce command in the same way:

$ sudo aa-enforce /usr/sbin/named
Setting /usr/sbin/named to enforce mode

If T had decided to modify the default rule set at /etc/apparmor.d/usr
.sbin.named, I would need to be sure to reload AppArmor so it would see
the changes. You can run AppArmor’s init script and pass it the reload
option to accomplish this:

$ sudo /etc/init.d/apparmor reload
Be careful when you modify AppArmor rules. When you first start to

modify rules, you might want to set that particular rule into complain
mode and then monitor /var/log/syslog for any violations. For instance, if

210

Chapter 6

Security

/usr/sbin/named were in enforce mode and I had commented out the line
in the /usr/sbin/named profile that granted read access to /etc/bind/**,
then reloaded AppArmor and restarted BIND, not only would BIND not
start (since it couldn’t read its config files), I would get a nice log entry in
/var/log/syslog from the kernel to report the denied attempt:

Jan 7 19:03:02 kickseed kernel: [2311.120236]
audit(1231383782.081:3): type=1503 operation="inode_permission"
requested_mask="::r" denied_mask="::r" name="/etc/bind/named.conf"
pid=5225 profile="/usr/sbin/named" namespace="default"

Ubuntu AppArmor Conventions

The following list details the common directories and files AppArmor
uses, including where it stores configuration files and where it logs:

/etc/apparmor/
This directory contains the main configuration files for the AppArmor
program, but note that it does not contain AppArmor rules.

/etc/apparmor.d/

You will find all of the AppArmor rules under this directory along
with subdirectories that contain different sets of include files to which
certain rule sets refer.

/etc/init.d/apparmor
This is the AppArmor init script. By default AppArmor is enabled.

/var/log/apparmor/
AppArmor stores its logs under this directory.

/var/log/syslog
When an AppArmor rule is violated in either enforce or complain
mode, the kernel generates a log entry under the standard system log.

SSH Security

If you are going to run services on your servers, these days it’s a safe bet
that one of them will be SSH. SSH provides a secure, encrypted channel
between your desktop and a server so that you can run commands and

SSH Security 21

manage the machine without having to physically be there with a keyboard
and mouse. Even though SSH was designed with security at the forefront,
poor management of the service can open you up to attack. In fact, one of
the most common ways that Linux servers are attacked at the moment is
via SSH brute-force attacks. I cover how to manage those attacks, but first I
discuss a few other methods to enhance the security of SSH.

sshd_config

The /etc/ssh/sshd_config file is where you will find all of the settings for
the SSH server. The default Ubuntu sshd_config file is pretty secure out of
the box, as it allows only SSH protocol 2, uses privilege separation, and
allows authentication keys to be used. The only questionable setting is
PermitRootLogin yes. This option allows the root user to log in via SSH. In
a way this setting is useless on a default Ubuntu install, since the root
account is disabled, but if you decide to enable the root account, you
might want to set this option to no and run sudo service ssh reload to save
the settings. This way you force users to log in with their regular accounts
and sudo up to root, and you also prevent a user from being able to guess
the root password and gain access.

Key-Based Authentication

If there is a weak link in SSH security, password authentication would
probably be it. I know plenty of people who have been hacked simply
because of a weak user password. There are many brute-force SSH scripts
active in the wild that constantly scan for new machines and run through a
dictionary full of passwords until one works. I know of a honeypot server
intentionally set with weak passwords that was hacked and used as part of
a botnet within hours of showing up online.

The good news is that you don’t need password authentication to log in to
an SSH server. SSH supports key-based authentication. In this approach
the user generates a public and private key. The public key is then placed in
a special file on the remote server. When the user logs in, these keys are
used to authenticate the user instead of a password. It’s certainly more
convenient to be able to log in to a machine without typing a password
every time, although if you want an extra layer of security, you can set a
passphrase on your keys as well.

212

Chapter 6

Security

It is relatively simple to set up key-based authentication. In the following
example we have a user named ubuntu on desktopl who wants to set up
key authentication on serverl. The first step is to use the ssh-keygen pro-
gram to create an RSA public and private key on desktop1. At each prompt
you can press Enter to accept the defaults.

ubuntu@desktopl:~$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):
Created directory '/home/ubuntu/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/ubuntu/.ssh/id_rsa.
Your public key has been saved in /home/ubuntu/.ssh/id_rsa.pub.
The key fingerprint is:
91:ae:0c:ff:16:22:67:98:19:34:71:5b:71:e3:d2:2c ubuntu@ubuntu

The script creates the keys in the .ssh directory under your home directory,
in this case /home/ubuntu/.ssh. The private key and public key are named
id_rsa and id_rsa.pub respectively. It’s very important (especially if you
chose an empty passphrase) to keep the private key (id_rsa) safe! If anyone
else gets access to this file, he or she can copy it and will be able to log in to
any machines you have set up with this key.

Once you have created the keys, the next step is to copy the id_rsa.pub key
to the server and then append it to the ~/.ssh/authorized_keys file. There
are a number of ways you can do this. You could SSH into the remote
machine, open ~/.ssh/authorized_keys with a text editor, and paste in the
contents of id_rsa.pub, for instance. Here are two other ways to do this.
The first way is simple to understand but takes multiple steps. The second
method does the entire operation in one command. In method one I use
the scp command to copy the id_rsa.pub file to the home directory on the
remote server, then I append it to the ~/.ssh/authorized_keys file:

ubuntu@desktopl:~$ scp ~/.ssh/id_rsa.pub

ubuntu@serverl:/home/ubuntu/id_rsa-desktopl.pub

ubuntu@desktopl:~$ ssh ubuntu@serverl

ubuntu@serverl:~$ mkdir ~/.ssh

ubuntu@serverl:~$ chmod 700 ~/.ssh

ubuntu@serverl:~$ cat ~/id_rsa-desktopl.pub >>
~/.ssh/authorized_keys

SSH Security 213

It turns out that you can skip all of the preceding steps with an included
script named ssh-copy-id, which safely copies your local public key to
the remote host:

ubuntu@desktopl:~$ ssh-copy-id ubuntu@serverl

Once you have keys set up on a machine, you should be able to log in with-
out a password prompt, unless you set a passphrase for your key, in which
case you will need to type it. After your keys work, you might want to dis-
able SSH password authentication altogether. Just make sure that your
SSH keys work first or you could lock yourself out! To disable password
authentication, edit /etc/ssh/sshd_config and locate the line that says

#PasswordAuthentication yes
Uncomment that line and set it to no:
PasswordAuthentication no

Finally, run sudo service sshd reload to load the new change.

SSH Brute-Force Attacks

As mentioned earlier in this chapter, SSH brute-force attacks have become
a very common threat to Linux servers. Even if your password is hard to
guess, unless you impose strong password restrictions on the server, there’s
no way of knowing that every other user has a strong password. The best
way to combat SSH brute-force attacks is to simply disable password
authentication and use SSH keys. Unfortunately, that isn’t an option for
every administrator. If you must use password authentication, there is
another way to protect against these attacks: a package named denyhosts.

The way that denyhosts works is to monitor for failed SSH logins. When a
host attempts to log in either as a user that doesn’t exist or too many times,
that host is added to /etc/hosts.deny and blocked from future SSH access.
Also, if a host tries to log in as a valid user but fails too many times, the
host is blocked.

214

Chapter 6

Security

A number of administrators use this tool or tools like it to protect against
brute-force attacks and like the results, but I find it hard to recommend. I
mention it so that you know it is available, since you might disagree with
my opinion. In case you do decide to deploy it, here are some things to
watch out for:

Any program that automatically modifies firewall (or TCP wrappers)
rules is dangerous. If an attacker can detect that such a tool exists, he
or she can remotely modify your firewall rules. What happens if the
attacker can appear to come from a different host, such as your desk-
top, and lock you out?

Set your thresholds carefully. Even with reasonably large thresholds,
such as ten failed attempts for a valid user, you might still lock out
valid users who forgot their password. I've even seen this happen with
a user who set up keys and had a cron script log in and perform vari-
ous tasks. When the server got overloaded and the SSH connections
timed out, the failed SSH connections crossed the threshold and
locked out the script.

Set whitelists for trusted hosts. Be sure to add any hosts or networks
that you can’t risk being blocked into /etc/hosts.allow. Be sure to keep
your whitelists up-to-date with new hosts or networks. Just keep in
mind that if attackers do manage to hack into another machine on
any of these networks, they will be able to attack these machines.

Botnets know about denyhosts and can work around it. It’s true that
denyhosts makes a brute-force attack more difficult, but a large-
enough botnet can work around this problem by having a particular
host attack only a few times, or shift to a different host once the first is
locked out.

