
murach’s
SQL SerSQL SerSQL SerSQL SerSQL Serververververver

20082008200820082008
for developers
(Chapter 3)

Thanks for reviewing this chapter from Murach’s SQL Server 2008 for Developers.
To see the expanded table of contents for this book, you can go to the Murach web
site. From there, you can read more about this book, you can find out about any
additional downloads that are available, and you can review other Murach books for
professional developers.

TRAINING & REFERENCE

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2008 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/sql8/index.htm
mailto:murachbooks@murach.com
http://www.murach.com

Chapter 3 How to retrieve data from a single table 81

Section 2

The essential SQL skills
This section teaches you the essential SQL coding skills for working with the
data in a SQL Server database. The first four chapters in this section show you
how to retrieve data from a database using the SELECT statement. In chapter 3,
you’ll learn how to code the basic clauses of the SELECT statement to retrieve
data from a single table. In chapter 4, you’ll learn how to get data from two or
more tables. In chapter 5, you’ll learn how to summarize the data that you
retrieve. And in chapter 6, you’ll learn how to code subqueries, which are
SELECT statements coded within other statements.

Next, chapter 7 shows you how to use the INSERT, UPDATE, and
DELETE statements to add, update, and delete rows in a table. Finally, chapter
8 shows you how to work with the various types of data that SQL Server
supports and how to use some of the SQL Server functions for working with
data in your SQL statements. When you complete these chapters, you’ll have
the skills you need to code most any SELECT, INSERT, UPDATE, or DELETE
statement.

Chapter 3 How to retrieve data from a single table 83

How to retrieve data from a
single table
In this chapter, you’ll learn how to code SELECT statements that retrieve data
from a single table. You should realize, though, that the skills covered here are
the essential ones that apply to any SELECT statement you code…no matter
how many tables it operates on, no matter how complex the retrieval. So you’ll
want to be sure you have a good understanding of the material in this chapter
before you go on to the chapters that follow.

3

An introduction to the SELECT statement 84
The basic syntax of the SELECT statement ... 84
SELECT statement examples ... 86

How to code the SELECT clause .. 88
How to code column specifications .. 88
How to name the columns in a result set .. 90
How to code string expressions .. 92
How to code arithmetic expressions ... 94
How to use functions .. 96
How to use the DISTINCT keyword to eliminate duplicate rows 98
How to use the TOP clause to return a subset of selected rows 100

How to code the WHERE clause 102
How to use comparison operators .. 102
How to use the AND, OR, and NOT logical operators 104
How to use the IN operator .. 106
How to use the BETWEEN operator .. 108
How to use the LIKE operator .. 110
How to use the IS NULL clause ... 112

How to code the ORDER BY clause 114
How to sort a result set by a column name ... 114
How to sort a result set by an alias, an expression, or a column number ... 116

Perspective .. 118

84 Section 2 The essential SQL skills

An introduction to the SELECT
statement

To help you learn to code SELECT statements, this chapter starts by pre-
senting its basic syntax. Next, it presents several examples that will give you an
idea of what you can do with this statement. Then, the rest of this chapter will
teach you the details of coding this statement.

The basic syntax of the SELECT statement

Figure 3-1 presents the basic syntax of the SELECT statement. The syntax
summary at the top of this figure uses conventions that are similar to those used
in other programming manuals. Capitalized words are keywords that you have to
type exactly as shown. In contrast, you have to provide replacements for the
lowercase words. For example, you can enter a list of columns in place of
select_list, and you can enter a table name in place of table_source.

Beyond that, you can choose between the items in a syntax summary that
are separated by pipes (|) and enclosed in braces ({}) or brackets ([]). And you
can omit items enclosed in brackets. If you have a choice between two or more
optional items, the default item is underlined. And if an element can be coded
multiple times in a statement, it’s followed by an ellipsis (…). You’ll see ex-
amples of pipes, braces, default values, and ellipses in syntax summaries later in
this chapter. For now, if you compare the syntax in this figure with the coding
examples in the next figure, you should easily see how the two are related.

The syntax summary in this figure has been simplified so that you can focus
on the four main clauses of the SELECT statement: SELECT, FROM, WHERE,
and ORDER BY. Most of the SELECT statements you code will contain all four
of these clauses. However, only the SELECT and FROM clauses are required.

The SELECT clause is always the first clause in a SELECT statement. It
identifies the columns that will be included in the result set. These columns are
retrieved from the base tables named in the FROM clause. Since this chapter
focuses on retrieving data from a single table, the FROM clauses in all of the
statements shown in this chapter name a single base table. In the next chapter,
though, you’ll learn how to retrieve data from two or more tables.

The WHERE and ORDER BY clauses are optional. The ORDER BY clause
determines how the rows in the result set are sorted, and the WHERE clause
determines which rows in the base table are included in the result set. The
WHERE clause specifies a search condition that’s used to filter the rows in the
base table. This search condition can consist of one or more Boolean expres-
sions, or predicates. A Boolean expression is an expression that evaluates to
True or False. When the search condition evaluates to True, the row is included
in the result set.

In this book, I won’t use the terms “Boolean expression” or “predicate”
because I don’t think they clearly describe the content of the WHERE clause.
Instead, I’ll just use the term “search condition” to refer to an expression that
evaluates to True or False.

Chapter 3 How to retrieve data from a single table 85

The simplified syntax of the SELECT statement
SELECT select_list
FROM table_source
[WHERE search_condition]
[ORDER BY order_by_list]

The four clauses of the SELECT statement
Clause Description

SELECT Describes the columns that will be included in the result set.

FROM Names the table from which the query will retrieve the data.

WHERE Specifies the conditions that must be met for a row to be included in the result set. This
clause is optional.

ORDER BY Specifies how the rows in the result set will be sorted. This clause is optional.

Description
• You use the basic SELECT statement shown above to retrieve the columns specified in

the SELECT clause from the base table specified in the FROM clause and store them in
a result set.

• The WHERE clause is used to filter the rows in the base table so that only those rows
that match the search condition are included in the result set. If you omit the WHERE
clause, all of the rows in the base table are included.

• The search condition of a WHERE clause consists of one or more Boolean expressions,
or predicates, that result in a value of True, False, or Unknown. If the combination of all
the expressions is True, the row being tested is included in the result set. Otherwise, it’s
not.

• If you include the ORDER BY clause, the rows in the result set are sorted in the speci-
fied sequence. Otherwise, the rows are returned in the same order as they appear in the
base table. In most cases, that means that they’re returned in primary key sequence.

Note
• The syntax shown above does not include all of the clauses of the SELECT statement.

You’ll learn about the other clauses later in this book.

Figure 3-1 The basic syntax of the SELECT statement

86 Section 2 The essential SQL skills

SELECT statement examples

Figure 3-2 presents five SELECT statement examples. All of these state-
ments retrieve data from the Invoices table. If you aren’t already familiar with
this table, you should use the Management Studio as described in the last
chapter to review its definition.

The first statement in this figure retrieves all of the rows and columns from
the Invoices table. Here, an asterisk (*) is used as a shorthand to indicate that all
of the columns should be retrieved, and the WHERE clause is omitted so that
there are no conditions on the rows that are retrieved. Notice that this statement
doesn’t include an ORDER BY clause, so the rows are in primary key sequence.
You can see the results following this statement as they’re displayed by the
Management Studio. Notice that both horizontal and vertical scroll bars are
displayed, indicating that the result set contains more rows and columns than
can be displayed on the screen at one time.

The second statement retrieves selected columns from the Invoices table. As
you can see, the columns to be retrieved are listed in the SELECT clause. Like
the first statement, this statement doesn’t include a WHERE clause, so all the
rows are retrieved. Then, the ORDER BY clause causes the rows to be sorted by
the InvoiceTotal column in ascending sequence.

The third statement also lists the columns to be retrieved. In this case,
though, the last column is calculated from two columns in the base table,
CreditTotal and PaymentTotal, and the resulting column is given the name
TotalCredits. In addition, the WHERE clause specifies that only the invoice
whose InvoiceID column has a value of 17 should be retrieved.

The fourth SELECT statement includes a WHERE clause whose condition
specifies a range of values. In this case, only invoices with invoice dates be-
tween 05/01/2008 and 05/31/2008 are retrieved. In addition, the rows in the
result set are sorted by invoice date.

The last statement in this figure shows another variation of the WHERE
clause. In this case, only those rows with invoice totals greater than 50,000 are
retrieved. Since none of the rows in the Invoices table satisfy this condition, the
result set is empty.

Chapter 3 How to retrieve data from a single table 87

A SELECT statement that retrieves all the data from the Invoices table
SELECT *
FROM Invoices

(114 rows)

A SELECT statement that retrieves three columns from each row, sorted
in ascending sequence by invoice total

SELECT InvoiceNumber, InvoiceDate, InvoiceTotal
FROM Invoices
ORDER BY InvoiceTotal

(114 rows)

A SELECT statement that retrieves two columns and a calculated value
for a specific invoice

SELECT InvoiceID, InvoiceTotal, CreditTotal + PaymentTotal AS TotalCredits
FROM Invoices
WHERE InvoiceID = 17

A SELECT statement that retrieves all invoices between given dates
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal
FROM Invoices
WHERE InvoiceDate BETWEEN '2008-05-01' AND '2008-05-31'
ORDER BY InvoiceDate

(29 rows)

A SELECT statement that returns an empty result set
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal
FROM Invoices
WHERE InvoiceTotal > 50000

Figure 3-2 SELECT statement examples

88 Section 2 The essential SQL skills

How to code the SELECT clause

Figure 3-3 presents an expanded syntax for the SELECT clause. The
keywords shown in the first line allow you to restrict the rows that are returned
by a query. You’ll learn how to code them in a few minutes. First, though, you’ll
learn various techniques for identifying which columns are to be included in a
result set.

How to code column specifications

Figure 3-3 summarizes the techniques you can use to code column specifi-
cations. You saw how to use some of these techniques in the previous figure. For
example, you can code an asterisk in the SELECT clause to retrieve all of the
columns in the base table, and you can code a list of column names separated by
commas. Note that when you code an asterisk, the columns are returned in the
order that they occur in the base table.

You can also code a column specification as an expression. For example,
you can use an arithmetic expression to perform a calculation on two or more
columns in the base table, and you can use a string expression to combine two
or more string values. An expression can also include one or more functions.
You’ll learn more about each of these techniques in the topics that follow.

But first, you should know that when you code the SELECT clause, you
should include only the columns you need. For example, you shouldn’t code an
asterisk to retrieve all the columns unless you need all the columns. That’s
because the amount of data that’s retrieved can affect system performance. This
is particularly important if you’re developing SQL statements that will be used
by application programs.

Chapter 3 How to retrieve data from a single table 89

The expanded syntax of the SELECT clause
SELECT [ALL|DISTINCT] [TOP n [PERCENT] [WITH TIES]]
 column_specification [[AS] result_column]
 [, column_specification [[AS] result_column]] ...

Five ways to code column specifications
Source Option Syntax

Base table value All columns *

Column name column_name

Calculated value Result of a calculation Arithmetic expression (see figure 3-6)

Result of a concatenation String expression (see figure 3-5)

Result of a function Function (see figure 3-7)

Column specifications that use base table values
The * is used to retrieve all columns
SELECT *

Column names are used to retrieve specific columns
SELECT VendorName, VendorCity, VendorState

Column specifications that use calculated values
An arithmetic expression is used to calculate BalanceDue
SELECT InvoiceNumber,
 InvoiceTotal - PaymentTotal – CreditTotal AS BalanceDue

A string expression is used to calculate FullName
SELECT VendorContactFName + ' ' + VendorContactLName AS FullName

A function is used to calculate CurrentDate
SELECT InvoiceNumber, InvoiceDate,
 GETDATE() AS CurrentDate

Description
• Use SELECT * only when you need to retrieve all of the columns from a table. Other-

wise, list the names of the columns you need.

• An expression is a combination of column names and operators that evaluate to a single
value. In the SELECT clause, you can code arithmetic expressions, string expressions,
and expressions that include one or more functions.

• After each column specification, you can code an AS clause to specify the name for the
column in the result set. See figure 3-4 for details.

Note
• The other elements shown in the syntax summary above let you control the number of

rows that are returned by a query. You can use the ALL and DISTINCT keywords to
determine whether or not duplicate rows are returned. And you can use the TOP clause
to retrieve a specific number or percent of rows. See figures 3-8 and 3-9 for details.

Figure 3-3 How to code column specifications

90 Section 2 The essential SQL skills

How to name the columns in a result set

By default, a column in a result set is given the same name as the column in
the base table. However, you can specify a different name if you need to. You
can also name a column that contains a calculated value. When you do that, the
new column name is called a column alias. Figure 3-4 presents two techniques
for creating column aliases.

The first technique is to code the column specification followed by the AS
keyword and the column alias. This is the ANSI-standard coding technique, and
it’s illustrated by the first example in this figure. Here, a space is added between
the two words in the name of the InvoiceNumber column, the InvoiceDate
column is changed to just Date, and the InvoiceTotal column is changed to
Total. Notice that because a space is included in the name of the first column,
it’s enclosed in brackets ([]). As you’ll learn in chapter 10, any name that
doesn’t follow SQL Server’s rules for naming objects must be enclosed in either
brackets or double quotes. Column aliases can also be enclosed in single quotes.

The second example in this figure illustrates another technique for creating
a column alias. Here, the column is assigned to an alias using an equal sign.
This technique is only available with SQL Server, not with other types of
databases, and is included for compatibility with earlier versions of SQL Server.
So although you may see this technique used in older code, I don’t recommend
it for new statements you write.

The third example in this figure illustrates what happens when you don’t
assign an alias to a calculated column. Here, no name is assigned to the column,
which usually isn’t what you want. That’s why you usually assign a name to any
column that’s calculated from other columns in the base table.

Chapter 3 How to retrieve data from a single table 91

Two SELECT statements that name the columns in the result set
A SELECT statement that uses the AS keyword (the preferred technique)
SELECT InvoiceNumber AS [Invoice Number], InvoiceDate AS Date,
 InvoiceTotal AS Total
FROM Invoices

A SELECT statement that uses the equal operator (an older technique)
SELECT [Invoice Number] = InvoiceNumber, Date = InvoiceDate,
 Total = InvoiceTotal
FROM Invoices

The result set for both SELECT statements

A SELECT statement that doesn’t provide a name for a calculated column
SELECT InvoiceNumber, InvoiceDate, InvoiceTotal,
 InvoiceTotal - PaymentTotal - CreditTotal
FROM Invoices

Description
• By default, a column in the result set is given the same name as the column in the base

table. If that’s not what you want, you can specify a column alias or substitute name for
the column.

• One way to name a column is to use the AS phrase as shown in the first example above.
Although the AS keyword is optional, I recommend you code it for readability.

• Another way to name a column is to code the name followed by an equal sign and the
column specification as shown in the second example above. This syntax is unique to
Transact-SQL.

• It’s generally considered a good practice to specify an alias for a column that contains a
calculated value. If you don’t, no name is assigned to it as shown in the third example
above.

• If an alias includes spaces or special characters, you must enclose it in double quotes or
brackets ([]). That’s true of all names you use in Transact-SQL. SQL Server also lets you
enclose column aliases in single quotes for compatibility with earlier releases.

Figure 3-4 How to name the columns in a result set

92 Section 2 The essential SQL skills

How to code string expressions

A string expression consists of a combination of one or more character
columns and literal values. To combine, or concatenate, the columns and
values, you use the concatenation operator (+). This is illustrated by the ex-
amples in figure 3-5.

The first example shows how to concatenate the VendorCity and
VendorState columns in the Vendors table. Notice that because no alias is
assigned to this column, it doesn’t have a name in the result set. Also notice that
the data in the VendorState column appears immediately after the data in the
VendorCity column in the results. That’s because of the way VendorCity is
defined in the database. Because it’s defined as a variable-length column (the
varchar data type), only the actual data in the column is included in the result. In
contrast, if the column had been defined with a fixed length, any spaces follow-
ing the name would have been included in the result. You’ll learn about data
types and how they affect the data in your result set in chapter 8.

The second example shows how to format a string expression by adding
spaces and punctuation. Here, the VendorCity column is concatenated with a
string literal, or string constant, that contains a comma and a space. Then, the
VendorState column is concatenated with that result, followed by a string literal
that contains a single space and the VendorZipCode column.

Occasionally, you may need to include a single quotation mark or an
apostrophe within a literal string. If you simply type a single quote, however,
the system will misinterpret it as the end of the literal string. As a result, you
must code two quotation marks in a row. This is illustrated by the third example
in this figure.

Chapter 3 How to retrieve data from a single table 93

How to concatenate string data
SELECT VendorCity, VendorState, VendorCity + VendorState
FROM Vendors

How to format string data using literal values
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors

How to include apostrophes in literal values
SELECT VendorName + '''s Address: ',
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode
FROM Vendors

Description
• A string expression can consist of one or more character columns, one or more literal

values, or a combination of character columns and literal values.

• The columns specified in a string expression must contain string data (that means they’re
defined with the char or varchar data type).

• The literal values in a string expression also contain string data, so they can be called
string literals or string constants. To create a literal value, enclose one or more charac-
ters within single quotation marks (').

• You can use the concatenation operator (+) to combine columns and literals in a string
expression.

• You can include a single quote within a literal value by coding two single quotation
marks as shown in the third example above.

Figure 3-5 How to code string expressions

94 Section 2 The essential SQL skills

How to code arithmetic expressions

Figure 3-6 shows how to code arithmetic expressions. To start, it summa-
rizes the five arithmetic operators you can use in this type of expression. Then,
it presents three examples that illustrate how you use these operators.

The SELECT statement in the first example includes an arithmetic expres-
sion that calculates the balance due for an invoice. This expression subtracts the
PaymentTotal and CreditTotal columns from the InvoiceTotal column. The
resulting column is given the name BalanceDue.

When SQL Server evaluates an arithmetic expression, it performs the
operations from left to right based on the order of precedence. This order says
that multiplication, division, and modulo operations are done first, followed by
addition and subtraction. If that’s not what you want, you can use parentheses to
specify how you want an expression evaluated. Then, the expressions in the
innermost sets of parentheses are evaluated first, followed by the expressions in
outer sets of parentheses. Within each set of parentheses, the expression is
evaluated from left to right in the order of precedence. Of course, you can also
use parentheses to clarify an expression even if they’re not needed for the
expression to be evaluated properly.

To illustrate how parentheses and the order of precedence affect the evalua-
tion of an expression, consider the second example in this figure. Here, the
expressions in the second and third columns both use the same operators. When
SQL Server evaluates the expression in the second column, it performs the
multiplication operation before the addition operation because multiplication
comes before addition in the order of precedence. When SQL Server evaluates
the expression in the third column, however, it performs the addition operation
first because it’s enclosed in parentheses. As you can see in the result set shown
here, these two expressions result in different values.

Although you’re probably familiar with the addition, subtraction, multipli-
cation, and division operators, you may not be familiar with the modulo opera-
tor. This operator returns the remainder of a division of two integers. This is
illustrated in the third example in this figure. Here, the second column contains
an expression that returns the quotient of a division operation. Note that the
result of the division of two integers is always an integer. You’ll learn more
about that in chapter 8. The third column contains an expression that returns the
remainder of the division operation. If you study this example for a minute, you
should quickly see how this works.

Chapter 3 How to retrieve data from a single table 95

The arithmetic operators in order of precedence
* Multiplication

/ Division

% Modulo (Remainder)

+ Addition

- Subtraction

A SELECT statement that calculates the balance due
SELECT InvoiceTotal, PaymentTotal, CreditTotal,
 InvoiceTotal - PaymentTotal - CreditTotal AS BalanceDue
FROM Invoices

A SELECT statement that uses parentheses to control the sequence of
operations

SELECT InvoiceID,
 InvoiceID + 7 * 3 AS OrderOfPrecedence,
 (InvoiceID + 7) * 3 AS AddFirst
FROM Invoices
ORDER BY InvoiceID

A SELECT statement that uses the modulo operator
SELECT InvoiceID,
 InvoiceID / 10 AS Quotient,
 InvoiceID % 10 AS Remainder
FROM Invoices
ORDER BY InvoiceID

Description
• Unless parentheses are used, the operations in an expression take place from left to right

in the order of precedence. For arithmetic expressions, multiplication, division, and
modulo operations are done first, followed by addition and subtraction.

• Whenever necessary, you can use parentheses to clarify or override the sequence of
operations. Then, the operations in the innermost sets of parentheses are done first,
followed by the operations in the next sets, and so on.

Figure 3-6 How to code arithmetic expressions

96 Section 2 The essential SQL skills

How to use functions

Figure 3-7 introduces you to functions and illustrates how you use them in
column specifications. A function performs an operation and returns a value.
For now, don’t worry about the details of how the functions shown here work.
You’ll learn more about all of these functions in chapter 8. Instead, just focus on
how they’re used in column specifications.

To code a function, you begin by entering its name followed by a set of
parentheses. If the function requires one or more parameters, you enter them
within the parentheses and separate them with commas. When you enter a
parameter, you need to be sure it has the correct data type. You’ll learn more
about that in chapter 8.

The first example in this figure shows how to use the LEFT function to
extract the first character of the VendorContactFName and
VendorContactLName columns. The first parameter of this function specifies
the string values, and the second parameter specifies the number of characters to
return. The results of the two functions are then concatenated to form initials as
shown in the result set for this statement.

The second example shows how to use the CONVERT function to change
the data type of a value. This function requires two parameters. The first param-
eter specifies the new data type, and the second parameter specifies the value to
convert. In addition, this function accepts an optional third parameter that
specifies the format of the returned value. The first CONVERT function shown
here, for example, converts the PaymentDate column to a character value with
the format mm/dd/yy. And the second CONVERT function converts the
PaymentTotal column to a variable-length character value that’s formatted with
commas. These functions are included in a string expression that concatenates
their return values with the InvoiceNumber column and three literal values.

The third example uses two functions that work with dates. The first one,
GETDATE, returns the current date. Notice that although this function doesn’t
accept any parameters, the parentheses are still included. The second function,
DATEDIFF, gets the difference between two date values. This function requires
three parameters. The first one specifies the units in which the result will be
expressed. In this example, the function will return the number of days between
the two dates. The second and third parameters specify the start date and the end
date. Here, the second parameter is the invoice date and the third parameter is
the current date, which is obtained using the GETDATE function.

Chapter 3 How to retrieve data from a single table 97

A SELECT statement that uses the LEFT function
SELECT VendorContactFName, VendorContactLName,
 LEFT(VendorContactFName, 1) +
 LEFT(VendorContactLName, 1) AS Initials
FROM Vendors

A SELECT statement that uses the CONVERT function
SELECT 'Invoice: #' + InvoiceNumber
 + ', dated ' + CONVERT(char(8), PaymentDate, 1)
 + ' for $' + CONVERT(varchar(9), PaymentTotal, 1)
FROM Invoices

A SELECT statement that computes the age of an invoice
SELECT InvoiceDate,
 GETDATE() AS 'Today''s Date',
 DATEDIFF(day, InvoiceDate, GETDATE()) AS Age
FROM Invoices

Description
• An expression can include any of the functions that are supported by SQL Server. A

function performs an operation and returns a value.

• A function consists of the function name, followed by a set of parentheses that contains
any parameters, or arguments, required by the function. If a function requires two or
more arguments, you separate them with commas.

• For more information on using functions, see chapter 8.

Figure 3-7 How to use functions

98 Section 2 The essential SQL skills

How to use the DISTINCT keyword to eliminate
duplicate rows

By default, all of the rows in the base table that satisfy the search condition
you specify in the WHERE clause are included in the result set. In some cases,
though, that means that the result set will contain duplicate rows, or rows whose
column values are identical. If that’s not what you want, you can include the
DISTINCT keyword in the SELECT clause to eliminate the duplicate rows.

Figure 3-8 illustrates how this works. Here, both SELECT statements
retrieve the VendorCity and VendorState columns from the Vendors table. The
first statement, however, doesn’t include the DISTINCT keyword. Because of
that, the same city and state can appear in the result set multiple times. In the
results shown in this figure, for example, you can see that Anaheim CA occurs
twice and Boston MA occurs three times. In contrast, the second statement
includes the DISTINCT keyword, so each city/state combination is included
only once.

Chapter 3 How to retrieve data from a single table 99

A SELECT statement that returns all rows
SELECT VendorCity, VendorState
FROM Vendors
ORDER BY VendorCity

(122 rows)

A SELECT statement that eliminates duplicate rows
SELECT DISTINCT VendorCity, VendorState
FROM Vendors

(53 rows)

Description
• The DISTINCT keyword prevents duplicate (identical) rows from being included in the

result set. It also causes the result set to be sorted by its first column.

• The ALL keyword causes all rows matching the search condition to be included in the
result set, regardless of whether rows are duplicated. Since this is the default, it’s a
common practice to omit the ALL keyword.

• To use the DISTINCT or ALL keyword, code it immediately after the SELECT keyword
as shown above.

Figure 3-8 How to use the DISTINCT keyword to eliminate duplicate rows

100 Section 2 The essential SQL skills

How to use the TOP clause to return a subset of
selected rows

In addition to eliminating duplicate rows, you can limit the number of rows
that are retrieved by a SELECT statement. To do that, you use the TOP clause.
Figure 3-9 shows you how.

You can use the TOP clause in one of two ways. First, you can use it to
retrieve a specific number of rows from the beginning, or top, of the result set.
To do that, you code the TOP keyword followed by an integer value that speci-
fies the number of rows to be returned. This is illustrated in the first example in
this figure. Here, only five rows are returned. Notice that this statement also
includes an ORDER BY clause that sorts the rows by the InvoiceTotal column
in descending sequence. That way, the invoices with the highest invoice totals
will be returned.

You can also use the TOP clause to retrieve a specific percent of the rows in
the result set. To do that, you include the PERCENT keyword as shown in the
second example. In this case, the result set includes six rows, which is five
percent of the total of 122 rows.

By default, the TOP clause causes the exact number or percent of rows you
specify to be retrieved. However, if additional rows match the values in the last
row, you can include those additional rows by including WITH TIES in the TOP
clause. This is illustrated in the third example in this figure. Here, the SELECT
statement says to retrieve the top five rows from a result set that includes the
VendorID and InvoiceDate columns sorted by the InvoiceDate column. As you
can see, however, the result set includes six rows instead of five. That’s because
WITH TIES is included in the TOP clause, and the columns in the sixth row
have the same values as the columns in the fifth row.

Chapter 3 How to retrieve data from a single table 101

A SELECT statement with a TOP clause
SELECT TOP 5 VendorID, InvoiceTotal
FROM Invoices
ORDER BY InvoiceTotal DESC

A SELECT statement with a TOP clause and the PERCENT keyword
SELECT TOP 5 PERCENT VendorID, InvoiceTotal
FROM Invoices
ORDER BY InvoiceTotal DESC

A SELECT statement with a TOP clause and the WITH TIES keyword
SELECT TOP 5 WITH TIES VendorID, InvoiceDate
FROM Invoices
ORDER BY InvoiceDate DESC

Description
• You can use the TOP clause within a SELECT clause to limit the number of rows

included in the result set. When you use this clause, the first n rows that meet the search
condition are included, where n is an integer.

• If you include PERCENT, the first n percent of the selected rows are included in the
result set.

• If you include WITH TIES, additional rows will be included if their values match, or tie,
the values of the last row.

• You should include an ORDER BY clause whenever you use the TOP keyword. Other-
wise, the rows in the result set will be in no particular sequence.

Figure 3-9 How to use the TOP clause to return a subset of selected rows

102 Section 2 The essential SQL skills

How to code the WHERE clause

Earlier in this chapter, I mentioned that to improve performance, you should
code your SELECT statements so they retrieve only the columns you need. That
goes for retrieving rows too: The fewer rows you retrieve, the more efficient the
statement will be. Because of that, you’ll almost always include a WHERE
clause on your SELECT statements with a search condition that filters the rows
in the base table so that only the rows you need are retrieved. In the topics that
follow, you’ll learn a variety of ways to code this clause.

How to use comparison operators

Figure 3-10 shows you how to use the comparison operators in the search
condition of a WHERE clause. As you can see in the syntax summary at the top
of this figure, you use a comparison operator to compare two expressions. If the
result of the comparison is True, the row being tested is included in the query
results.

The examples in this figure show how to use some of the comparison
operators. The first WHERE clause, for example, uses the equal operator (=) to
retrieve only those rows whose VendorState column have a value of IA. Since
the state code is a string literal, it must be included in single quotes. In contrast,
the numeric literal used in the second WHERE clause is not enclosed in quotes.
This clause uses the greater than (>) operator to retrieve only those rows that
have a balance due greater than zero.

The third WHERE clause illustrates another way to retrieve all the invoices
with a balance due. Like the second clause, it uses the greater than operator.
Instead of comparing the balance due to a value of zero, however, it compares
the invoice total to the total of the payments and credits that have been applied
to the invoice.

The fourth WHERE clause illustrates how you can use comparison opera-
tors other than the equal operator with string data. In this example, the less than
operator (<) is used to compare the value of the VendorName column to a literal
string that contains the letter M. That will cause the query to return all vendors
with names that begin with the letters A through L.

You can also use the comparison operators with date literals, as illustrated
by the fifth and sixth WHERE clauses. The fifth clause will retrieve rows with
invoice dates on or before May 31, 2008, and the sixth clause will retrieve rows
with invoice dates on or after May 1, 2008. Like string literals, date literals must
be enclosed in single quotes. In addition, you can use different formats to
specify dates as shown by the two date literals shown in this figure. You’ll learn
more about the acceptable date formats in chapter 8.

The last WHERE clause shows how you can test for a not equal condition.
To do that, you code a less than sign followed by a greater than sign. In this
case, only rows with a credit total that’s not equal to zero will be retrieved.

Chapter 3 How to retrieve data from a single table 103

The syntax of the WHERE clause with comparison operators
WHERE expression_1 operator expression_2

The comparison operators
= Equal

> Greater than

< Less than

<= Less than or equal to

>= Greater than or equal to

<> Not equal

Examples of WHERE clauses that retrieve…
Vendors located in Iowa
WHERE VendorState = 'IA'

Invoices with a balance due (two variations)
WHERE InvoiceTotal – PaymentTotal – CreditTotal > 0

WHERE InvoiceTotal > PaymentTotal + CreditTotal

Vendors with names from A to L
WHERE VendorName < 'M'

Invoices on or before a specified date
WHERE InvoiceDate <= '2008-05-31'

Invoices on or after a specified date
WHERE InvoiceDate >= '5/1/08'

Invoices with credits that don’t equal zero
WHERE CreditTotal <> 0

Description
• You can use a comparison operator to compare any two expressions that result in like

data types. Although unlike data types may be converted to data types that can be
compared, the comparison may produce unexpected results.

• If a comparison results in a True value, the row being tested is included in the result set.
If it’s False or Unknown, the row isn’t included.

• To use a string literal or a date literal in a comparison, enclose it in quotes. To use a
numeric literal, enter the number without quotes.

• Character comparisons performed on SQL Server databases are not case-sensitive. So,
for example, ‘CA’ and ‘Ca’ are considered equivalent.

Figure 3-10 How to use the comparison operators

104 Section 2 The essential SQL skills

Whenever possible, you should compare expressions that have similar data
types. If you attempt to compare expressions that have different data types, SQL
Server may implicitly convert the data type for you. Often, this implicit conver-
sion is acceptable. However, implicit conversions will occasionally yield
unexpected results. In that case, you can use the CONVERT function you saw
earlier in this chapter or the CAST function you’ll learn about in chapter 8 to
explicitly convert data types so the comparison yields the results you want.

How to use the AND, OR, and NOT logical
operators

Figure 3-11 shows how to use logical operators in a WHERE clause. You
can use the AND and OR operators to combine two or more search conditions
into a compound condition. And you can use the NOT operator to negate a
search condition. The examples in this figure illustrate how these operators
work.

The first two examples illustrate the difference between the AND and OR
operators. When you use the AND operator, both conditions must be true. So, in
the first example, only those vendors in New Jersey whose year-to-date pur-
chases are greater than 200 are retrieved from the Vendors table. When you use
the OR operator, though, only one of the conditions must be true. So, in the
second example, all the vendors from New Jersey and all the vendors whose
year-to-date purchases are greater than 200 are retrieved.

The third example shows a compound condition that uses two NOT opera-
tors. As you can see, this expression is somewhat difficult to understand.
Because of that, and because using the NOT operator can reduce system perfor-
mance, you should avoid using this operator whenever possible. The fourth
example in this figure, for instance, shows how the search condition in the third
example can be rephrased to eliminate the NOT operator. Notice that the
condition in the fourth example is much easier to understand.

The last two examples in this figure show how the order of precedence for
the logical operators and the use of parentheses affect the result of a search
condition. By default, the NOT operator is evaluated first, followed by AND and
then OR. However, you can use parentheses to override the order of precedence
or to clarify a logical expression, just as you can with arithmetic expressions. In
the next to last example, for instance, no parentheses are used, so the two
conditions connected by the AND operator are evaluated first. In the last ex-
ample, though, parentheses are used so that the two conditions connected by the
OR operator are evaluated first. If you take a minute to review the results shown
in this figure, you should be able to see how these two conditions differ.

Chapter 3 How to retrieve data from a single table 105

The syntax of the WHERE clause with logical operators
WHERE [NOT] search_condition_1 {AND|OR} [NOT] search_condition_2 ...

Examples of queries using logical operators
A search condition that uses the AND operator
WHERE VendorState = 'NJ' AND YTDPurchases > 200

A search condition that uses the OR operator
WHERE VendorState = 'NJ' OR YTDPurchases > 200

A search condition that uses the NOT operator
WHERE NOT (InvoiceTotal >= 5000 OR NOT InvoiceDate <= '2008-07-01')

The same condition rephrased to eliminate the NOT operator
WHERE InvoiceTotal < 5000 AND InvoiceDate <= '2008-07-01'

A compound condition without parentheses
WHERE InvoiceDate > '05/01/2008'
 OR InvoiceTotal > 500
 AND InvoiceTotal - PaymentTotal - CreditTotal > 0

(100 rows)

The same compound condition with parentheses
WHERE (InvoiceDate > '05/01/2008'
 OR InvoiceTotal > 500)
 AND InvoiceTotal - PaymentTotal - CreditTotal > 0

(11 rows)

Description
• You can use the AND and OR logical operators to create compound conditions that

consist of two or more conditions. You use the AND operator to specify that the search
must satisfy both of the conditions, and you use the OR operator to specify that the
search must satisfy at least one of the conditions.

• You can use the NOT operator to negate a condition. Because this operator can make the
search condition difficult to read, you should rephrase the condition if possible so it
doesn’t use NOT.

• When SQL Server evaluates a compound condition, it evaluates the operators in this
sequence: (1) NOT, (2) AND, and (3) OR. You can use parentheses to override this order
of precedence or to clarify the sequence in which the operations will be evaluated.

Figure 3-11 How to use the AND, OR, and NOT logical operators

106 Section 2 The essential SQL skills

How to use the IN operator

Figure 3-12 shows how to code a WHERE clause that uses the IN operator.
When you use this operator, the value of the test expression is compared with
the list of expressions in the IN phrase. If the test expression is equal to one of
the expressions in the list, the row is included in the query results. This is
illustrated by the first example in this figure, which will return all rows whose
TermsID column is equal to 1, 3, or 4.

You can also use the NOT operator with the IN phrase to test for a value
that’s not in a list of expressions. This is illustrated by the second example in
this figure. In this case, only those vendors who are not in California, Nevada,
or Oregon are retrieved.

If you look at the syntax of the IN phrase shown at the top of this figure,
you’ll see that you can code a subquery in place of a list of expressions.
Subqueries are a powerful tool that you’ll learn about in detail in chapter 6. For
now, though, you should know that a subquery is simply a SELECT statement
within another statement. In the third example in this figure, for instance, a
subquery is used to return a list of VendorID values for vendors who have
invoices dated May 1, 2008. Then, the WHERE clause retrieves a vendor row
only if the vendor is in that list. Note that for this to work, the subquery must
return a single column, in this case, VendorID.

Chapter 3 How to retrieve data from a single table 107

The syntax of the WHERE clause with an IN phrase
WHERE test_expression [NOT] IN ({subquery|expression_1 [, expression_2]...})

Examples of the IN phrase
An IN phrase with a list of numeric literals
WHERE TermsID IN (1, 3, 4)

An IN phrase preceded by NOT
WHERE VendorState NOT IN ('CA', 'NV', 'OR')

An IN phrase with a subquery
WHERE VendorID IN
 (SELECT VendorID
 FROM Invoices
 WHERE InvoiceDate = '2008-05-01')

Figure 3-12 How to use the IN operator

Description
• You can use the IN phrase to test whether an expression is equal to a value in a list of

expressions. Each of the expressions in the list must evaluate to the same type of data as
the test expression.

• The list of expressions can be coded in any order without affecting the order of the rows
in the result set.

• You can use the NOT operator to test for an expression that’s not in the list of expressions.

• You can also compare the test expression to the items in a list returned by a subquery as
illustrated by the third example above. You’ll learn more about coding subqueries in
chapter 6.

108 Section 2 The essential SQL skills

How to use the BETWEEN operator

Figure 3-13 shows how to use the BETWEEN operator in a WHERE clause.
When you use this operator, the value of a test expression is compared to the
range of values specified in the BETWEEN phrase. If the value falls within this
range, the row is included in the query results.

The first example in this figure shows a simple WHERE clause that uses the
BETWEEN operator. It retrieves invoices with invoice dates between May 1,
2008 and May 31, 2008. Note that the range is inclusive, so invoices with invoice
dates of May 1 and May 31 are included in the results.

The second example shows how to use the NOT operator to select rows that
are not within a given range. In this case, vendors with zip codes that aren’t
between 93600 and 93799 are included in the results.

The third example shows how you can use a calculated value in the test
expression. Here, the PaymentTotal and CreditTotal columns are subtracted from
the InvoiceTotal column to give the balance due. Then, this value is compared to
the range specified in the BETWEEN phrase.

The last example shows how you can use calculated values in the BETWEEN
phrase. Here, the first value is the result of the GETDATE function, and the
second value is the result of the GETDATE function plus 30 days. So the query
results will include all those invoices that are due between the current date and 30
days from the current date.

Chapter 3 How to retrieve data from a single table 109

The syntax of the WHERE clause with a BETWEEN phrase
WHERE test_expression [NOT] BETWEEN begin_expression AND end_expression

Examples of the BETWEEN phrase
A BETWEEN phrase with literal values
WHERE InvoiceDate BETWEEN '2008-05-01' AND '2008-05-31'

A BETWEEN phrase preceded by NOT
WHERE VendorZipCode NOT BETWEEN 93600 AND 93799

A BETWEEN phrase with a test expression coded as a calculated value
WHERE InvoiceTotal – PaymentTotal – CreditTotal BETWEEN 200 AND 500

A BETWEEN phrase with the upper and lower limits coded as calculated
values
WHERE InvoiceDueDate BETWEEN GetDate() AND GetDate() + 30

Description
• You can use the BETWEEN phrase to test whether an expression falls within a range of

values. The lower limit must be coded as the first expression, and the upper limit must be
coded as the second expression. Otherwise, the result set will be empty.

• The two expressions used in the BETWEEN phrase for the range of values are inclusive.
That is, the result set will include values that are equal to the upper or lower limit.

• You can use the NOT operator to test for an expression that’s not within the given range.

Warning about date comparisons
• All columns that have the datetime data type include both a date and time, and so does

the value returned by the GetDate function. But when you code a date literal like ‘2008-
05-01’, the time defaults to 00:00:00 on a 24-hour clock, or 12:00 AM (midnight). As a
result, a date comparison may not yield the results you expect. For instance, May 31,
2008 at 2:00 PM isn’t between ‘2008-05-01’ and ‘2008-31-01’.

• To learn more about date comparisons, please see chapter 8.

Figure 3-13 How to use the BETWEEN operator

110 Section 2 The essential SQL skills

How to use the LIKE operator

One final operator you can use in a search condition is the LIKE operator
shown in figure 3-14. You use this operator along with the wildcards shown at
the top of this figure to specify a string pattern, or mask, you want to match.
The examples shown in this figure illustrate how this works.

In the first example, the LIKE phrase specifies that all vendors in cities that
start with the letters SAN should be included in the query results. Here, the
percent sign (%) indicates that any characters can follow these three letters. So
San Diego and Santa Ana are both included in the results.

The second example selects all vendors whose vendor name starts with the
letters COMPU, followed by any one character, the letters ER, and any charac-
ters after that. Two vendor names that match that pattern are Compuserve and
Computerworld.

The third example searches the values in the VendorContactLName column
for a name that can be spelled two different ways: Damien or Damion. To do
that, the mask specifies the two possible characters in the fifth position, E and
O, within brackets.

The fourth example uses brackets to specify a range of values. In this case,
the VendorState column is searched for values that start with the letter N and
end with any letter from A to J. That excludes states like Nevada (NV) and New
York (NY).

The fifth example shows how to use the caret (^) to exclude one or more
characters from the pattern. Here, the pattern says that the value in the
VendorState column must start with the letter N, but must not end with the
letters K through Y. This produces the same result as the previous statement.

The last example in this figure shows how to use the NOT operator with a
LIKE phrase. The condition in this example tests the VendorZipCode column
for values that don’t start with the numbers 1 through 9. The result is all zip
codes that start with the number 0.

The LIKE operator provides a powerful technique for finding information in
a database that can’t be found using any other technique. Keep in mind, how-
ever, that this technique requires a lot of overhead, so it can reduce system
performance. For this reason, you should avoid using the LIKE operator in
production SQL code whenever possible.

If you need to search the text that’s stored in your database, a better option
is to use the Integrated Full-Text Search (iFTS) feature that’s provided by SQL
Server 2008. This feature provides more powerful and flexible ways to search
for text, and it performs more efficiently than the LIKE operator. However,
iFTS is an advanced feature that requires some setup and administration and is
too complex to explain here. For more information, you can look up “full-text
search” in Books Online.

Chapter 3 How to retrieve data from a single table 111

The syntax of the WHERE clause with a LIKE phrase
WHERE match_expression [NOT] LIKE pattern

Wildcard symbols
Symbol Description

% Matches any string of zero or more characters.

_ Matches any single character.

[] Matches a single character listed within the brackets.

[-] Matches a single character within the given range.

[^] Matches a single character not listed after the caret.

WHERE clauses that use the LIKE operator
Example Results that match the mask

WHERE VendorCity LIKE 'SAN%' “San Diego” and “Santa Ana”

WHERE VendorName LIKE 'COMPU_ER%' “Compuserve” and “Computerworld”

WHERE VendorContactLName LIKE 'DAMI[EO]N' “Damien” and “Damion”

WHERE VendorState LIKE 'N[A-J]' “NC” and “NJ” but not “NV” or “NY”

WHERE VendorState LIKE 'N[^K-Y]' “NC” and “NJ” but not “NV” or “NY”

WHERE VendorZipCode NOT LIKE '[1-9]%' “02107” and “08816”

Description
• You use the LIKE operator to retrieve rows that match a string pattern, called a mask.

Within the mask, you can use special characters, called wildcards, that determine which
values in the column satisfy the condition.

• You can use the NOT keyword before the LIKE keyword. Then, only those rows with
values that don’t match the string pattern will be included in the result set.

• Most LIKE phrases will significantly degrade performance compared to other types of
searches, so use them only when necessary.

Figure 3-14 How to use the LIKE operator

112 Section 2 The essential SQL skills

How to use the IS NULL clause

In chapter 1, you learned that a column can contain a null value. A null isn’t
the same as zero, a blank string that contains one or more spaces (' '), or an
empty string (''). Instead, a null value indicates that the data is not applicable,
not available, or unknown. When you allow null values in one or more columns,
you need to know how to test for them in search conditions. To do that, you can
use the IS NULL clause as shown in figure 3-15.

This figure uses a table named NullSample to illustrate how to search for
null values. This table contains two columns. The first column, InvoiceID, is an
identity column. The second column, InvoiceTotal, contains the total for the
invoice, which can be a null value. As you can see in the first example, the
invoice with InvoiceID 3 contains a null value.

The second example in this figure shows what happens when you retrieve
all the invoices with invoice totals equal to zero. Notice that the row that has a
null invoice total isn’t included in the result set. Likewise, it isn’t included in the
result set that contains all the invoices with invoices totals that aren’t equal to
zero, as illustrated by the third example. Instead, you have to use the IS NULL
clause to retrieve rows with null values, as shown in the fourth example.

You can also use the NOT operator with the IS NULL clause as illustrated
in the last example in this figure. When you use this operator, all of the rows
that don’t contain null values are included in the query results.

Chapter 3 How to retrieve data from a single table 113

The syntax of the WHERE clause with the IS NULL clause
WHERE expression IS [NOT] NULL

The contents of the NullSample table
SELECT *
FROM NullSample

Figure 3-15 How to use the IS NULL clause

A SELECT statement that retrieves rows with zero values
SELECT *
FROM NullSample
WHERE InvoiceTotal = 0

A SELECT statement that retrieves rows with non-zero values
SELECT *
FROM NullSample
WHERE InvoiceTotal <> 0

A SELECT statement that retrieves rows with null values
SELECT *
FROM NullSample
WHERE InvoiceTotal IS NULL

A SELECT statement that retrieves rows without null values
SELECT *
FROM NullSample
WHERE InvoiceTotal IS NOT NULL

Description
• A null value represents a value that’s unknown, unavailable, or not applicable. It isn’t the

same as a zero, a blank space (' '), or an empty string ('').

• To test for a null value, you can use the IS NULL clause. You can also use the NOT
keyword with this clause to test for values that aren’t null.

• The definition of each column in a table indicates whether or not it can store null values.
Before you work with a table, you should identify those columns that allow null values
so you can accommodate them in your queries.

Note
• SQL Server provides an extension that lets you use = NULL to test for null values. For

this to work, however, the ANSI_NULLS system option must be set to OFF. For more
information on this option, see Books Online.

114 Section 2 The essential SQL skills

How to code the ORDER BY clause

The ORDER BY clause specifies the sort order for the rows in a result set.
In most cases, you can use column names from the base table to specify the sort
order as you saw in some of the examples earlier in this chapter. However, you
can also use other techniques to sort the rows in a result set, as described in the
topics that follow.

How to sort a result set by a column name

Figure 3-16 presents the expanded syntax of the ORDER BY clause. As you
can see, you can sort by one or more expressions in either ascending or de-
scending sequence. This is illustrated by the three examples in this figure.

The first two examples show how to sort the rows in a result set by a single
column. In the first example, the rows in the Vendors table are sorted in ascend-
ing sequence by the VendorName column. Since ascending is the default
sequence, the ASC keyword is omitted. In the second example, the rows are
sorted by the VendorName column in descending sequence.

To sort by more then one column, you simply list the names in the ORDER
BY clause separated by commas as shown in the third example. Here, the rows
in the Vendors table are first sorted by the VendorState column in ascending
sequence. Then, within each state, the rows are sorted by the VendorCity
column in ascending sequence. Finally, within each city, the rows are sorted by
the VendorName column in ascending sequence. This can be referred to as a
nested sort because one sort is nested within another.

Although all of the columns in this example are sorted in ascending se-
quence, you should know that doesn’t have to be the case. For example, I could
have sorted by the VendorName column in descending sequence like this:

ORDER BY VendorState, VendorCity, VendorName DESC

Note that the DESC keyword in this example applies only to the VendorName
column. The VendorState and VendorCity columns are still sorted in ascending
sequence.

Chapter 3 How to retrieve data from a single table 115

The expanded syntax of the ORDER BY clause
ORDER BY expression [ASC|DESC] [, expression [ASC|DESC]] ...

An ORDER BY clause that sorts by one column in ascending sequence
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors
ORDER BY VendorName

An ORDER BY clause that sorts by one column in descending sequence
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors
ORDER BY VendorName DESC

An ORDER BY clause that sorts by three columns
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors
ORDER BY VendorState, VendorCity, VendorName

Description
• The ORDER BY clause specifies how you want the rows in the result set sorted. You can

sort by one or more columns, and you can sort each column in either ascending (ASC) or
descending (DESC) sequence. ASC is the default.

• By default, in an ascending sort, nulls appear first in the sort sequence, followed by
special characters, then numbers, then letters. Although you can change this sequence,
that’s beyond the scope of this book.

• You can sort by any column in the base table regardless of whether it’s included in the
SELECT clause. The exception is if the query includes the DISTINCT keyword. Then,
you can only sort by columns included in the SELECT clause.

Figure 3-16 How to sort a result set by a column name

116 Section 2 The essential SQL skills

How to sort a result set by an alias, an expression,
or a column number

Figure 3-17 presents three more techniques you can use to specify sort
columns. First, you can use a column alias that’s defined in the SELECT clause.
The first SELECT statement in this figure, for example, sorts by a column named
Address, which is an alias for the concatenation of the VendorCity, VendorState,
and VendorZipCode columns. Within the Address column, the result set is also
sorted by the VendorName column.

You can also use an arithmetic or string expression in the ORDER BY clause,
as illustrated by the second example in this figure. Here, the expression consists
of the VendorContactLName column concatenated with the
VendorContactFName column. Here, neither of these columns is included in the
SELECT clause. Although SQL Server allows this seldom-used coding tech-
nique, many other database systems do not.

The last example in this figure shows how you can use column numbers to
specify a sort order. To use this technique, you code the number that corresponds
to the column of the result set, where 1 is the first column, 2 is the second
column, and so on. In this example, the ORDER BY clause sorts the result set by
the second column, which contains the concatenated address, then by the first
column, which contains the vendor name. The result set returned by this state-
ment is the same as the result set returned by the first statement. Notice, however,
that the statement that uses column numbers is more difficult to read because you
have to look at the SELECT clause to see what columns the numbers refer to. In
addition, if you add or remove columns from the SELECT clause, you may also
have to change the ORDER BY clause to reflect the new column positions. As a
result, you should avoid using this technique.

Chapter 3 How to retrieve data from a single table 117

An ORDER BY clause that uses an alias
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors
ORDER BY Address, VendorName

An ORDER BY clause that uses an expression
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors
ORDER BY VendorContactLName + VendorContactFName

An ORDER BY clause that uses column positions
SELECT VendorName,
 VendorCity + ', ' + VendorState + ' ' + VendorZipCode AS Address
FROM Vendors
ORDER BY 2, 1

Description
• The ORDER BY clause can include a column alias that’s specified in the SELECT

clause.

• The ORDER BY clause can include any valid expression. The expression can refer to
any column in the base table, even if it isn’t included in the result set.

• The ORDER BY clause can use numbers to specify the columns to use for sorting. In
that case, 1 represents the first column in the result set, 2 represents the second column,
and so on.

Figure 3-17 How to sort a result set by an alias, an expression, or a column number

118 Section 2 The essential SQL skills

Perspective

The goal of this chapter has been to teach you the basic skills for coding
SELECT statements. You’ll use these skills in almost every SELECT statement
you code. As you’ll see in the chapters that follow, however, there’s a lot more to
coding SELECT statements than what’s presented here. In the next three chapters,
then, you’ll learn additional skills for coding SELECT statements. When you
complete those chapters, you’ll know everything you need to know about retriev-
ing data from a SQL Server database.

Terms

keyword
filter
Boolean expression
predicate
expression
column alias
substitute name
string expression
concatenate
concatenation operator
literal value
string literal
string constant
arithmetic expression
arithmetic operator
order of precedence
function
parameter
argument
date literal
comparison operator
logical operator
compound condition
subquery
string pattern
mask
wildcard
Integrated Full-Text Search (iFTS)
null value
nested sort

Chapter 3 How to retrieve data from a single table 119

Exercises
1. Write a SELECT statement that returns three columns from the Vendors table:

VendorContactFName, VendorContactLName, and VendorName. Sort the result
set by last name, then by first name.

2. Write a SELECT statement that returns four columns from the Invoices table,
named Number, Total, Credits, and Balance:

Number Column alias for the InvoiceNumber column

Total Column alias for the InvoiceTotal column

Credits Sum of the PaymentTotal and CreditTotal columns

Balance InvoiceTotal minus the sum of PaymentTotal and
CreditTotal

a. Use the AS keyword to assign column aliases.

b. Use the = assignment operator to assign column aliases.

3. Write a SELECT statement that returns one column from the Vendors table
named Full Name. Create this column from the VendorContactFName and
VendorContactLName columns. Format it as follows: last name, comma, first
name (for example, “Doe, John”). Sort the result set by last name, then by first
name.

4. Write a SELECT statement that returns three columns:

InvoiceTotal From the Invoices table

10% 10% of the value of InvoiceTotal

Plus 10% The value of InvoiceTotal plus 10%

(For example, if InvoiceTotal is 100.0000, 10% is 10.0000, and Plus 10% is
110.0000.) Only return those rows with a balance due greater than 1000. Sort the
result set by InvoiceTotal, with the largest invoice first.

5. Modify the solution to exercise 2a to filter for invoices with an InvoiceTotal that’s
greater than or equal to $500 but less than or equal to $10,000.

6. Modify the solution to exercise 3 to filter for contacts whose last name begins
with the letter A, B, C, or E.

7. Write a SELECT statement that determines whether the PaymentDate column of
the Invoices table has any invalid values. To be valid, PaymentDate must be a
null value if there’s a balance due and a non-null value if there’s no balance due.
Code a compound condition in the WHERE clause that tests for these conditions.

