Create an XML 
Document

You can create XML documents if you know the rules. You can create your own tags in XML documents, because you do not have to use a predefined set of tags, as in HTML. There is a set of rules for creating XML documents, however, and you can find the full set of rules in the XML specification at www.w3.
org/TR/REC-xml/.

To create an XML document, you must begin with the XML declaration, which must specify the version of XML you are using — currently, only versions 1.0 and 1.1 are allowed. Here is an XML declaration: <?xml version=”1.0”?>. Note that the XML declaration is not an XML element.

XML documents must also contain a document element, which is an element that contains all other elements in the document. For example, if your document element is <products>, that might look like this in an XML document: <?xml version=”1.0”?> <products>...
</products>.

Each XML element has an opening tag, like <products>, and a closing tag, like </products>, unless the element is an empty XML element, which means there is only one tag. You end an empty XML element with the markup /> like this: <actor />. Note also that there are some rules on what tag names are legal: You cannot start a tag name with a number, and they cannot contain spaces and cannot contain a few other characters such as quotation marks.

As in HTML, you can also use attributes in opening tags or empty element tags like this: <products date=
”Tuesday”>. All values you assign to attributes must be quoted. As in HTML, XML elements may also contain text, such as <?xml version=”1.0”?> <products>printer
</products>. And XML elements may be nested, one inside the other, like this: <?xml version=”1.0”?> <products><product>printer</product></
products>.

Create an XML Document

1
Create a document named employees.xml, add the XML declaration and a document element named <corporation> to your XML document.

2
Nest a <human_resources> element inside the document element, and an <employees> element inside the <human_
resources> element.

3
Add three <employee> elements, each of which contains a <first_name> and <last_name> element.

4
Open the XML document in Internet Explorer.


The XML document appears in the browser.

Note the minus (–) icons at left in Internet Explorer. You can click those icons in the browser to collapse XML elements, hiding all the elements nested inside them. That makes it much easier to deal with larger XML documents — just collapse the elements you do not need to see. When an element is collapsed, you see a plus (+) icon next to it, and if you click that icon, the element expands. A minus icon means that an element is already expanded, and a plus icon indicates that an element can be expanded. Knowing how to use those icons gives you a fruitful way of dealing with XML inside Internet Explorer.

Internet Explorer also gives you a simple way to test your XML documents — if Internet Explorer cannot read an XML document, it tells you what is wrong with it. In technical terms, if Internet Explorer cannot read your XML document, that document is not considered well formed. See the section “Write Well-Formed XML” for more details.

Write Well-
Formed XML

You can create well-formed XML documents if you follow a few rules. Being well formed means that your XML document can be read by an XML parser. The XML data you pass to Ajax applications must be well formed, and it is worth learning the basic rules for well formedness in XML.

Besides being well formed, XML documents can also be valid, which means that they specify the syntax rules that their contents must obey — for example, that a <human_resources> element must be nested inside a <corporation> element, or that an <employee> element must have an attendance attribute, and so on. You can see more about creating valid XML documents in the section “Create a Valid XML Document.”

There are many rules for creating well-formed XML documents in detail, and you can see them all at www.
w3.org/TR/REC-xml/. However, the main rules are easily explained. To be well formed, an XML document must start 

with an XML declaration, such as <?xml version=”1.0” ?>. Such a declaration is required for all XML documents.

A well-formed XML document must also have a document element that contains all the other elements in the document. The document element is the first element in an XML document. Its opening tag is the first element tag in the document, and its closing tag is the last element tag in the document. For example, if your document element is <corporation>, that might look like this in an XML document: <?xml version=”1.0”?> <corporation>...</corporation>.

All elements in a well-formed XML document must be properly nested. For example, this XML is not nested correctly: <corporation> <human_resources> </corporation> </human_resources>, because the closing </corporation> tag appears before the closing </human_resources> tag. Here is the correctly nested version: <corporation> <human_resources> </human_resources> </corporation>. In fact, the term “well formed” originally meant “properly nested.”

Write Well-Formed XML

1
Create an XML document that has a nesting error by closing an enclosing XML element too soon.

2
Try to open the XML document in Internet Explorer. Internet Explorer indicates it cannot read the document because of a problem.

3
Fix the nesting error.

4
Open the document in Internet Explorer.


Internet Explorer opens the document successfully.

Internet Explorer is surprisingly helpful in telling you what the problem is if an XML document is not well formed. Internet Explorer error messages for JavaScript are nearly always useless, such as simply “Object expected”, which tells you that Internet Explorer could not run the code — that is why it is good to have Firefox when you are debugging your Ajax applications, because the JavaScript error message in the JavaScript console is very helpful. However, Internet Explorer does give good error descriptions when XML is not well formed, as seen in this task: “End tag ‘corporation’ does not match the start tag ‘human_resources’. Error processing resource ‘http://localhost/c09/emplo...”. In this error message, Internet Explorer says that it found a </corporation> tag when it was expecting a </human_resources> tag, which is a classic well-formedness error. When you fix a well-formedness error and want to view an XML document again in Internet Explorer, just click the Refresh button.

Handle XML 
in JavaScript

You can use JavaScript to work with XML in Ajax applications. In JavaScript, XML is treated as a collection of nodes, and JavaScript can handle XML as nodes using special built-in properties and methods.

Being able to handle XML in JavaScript is crucial to Ajax applications. Ajax applications download XML from the server and process it in the browser. You then use JavaScript to process the XML. 

JavaScript is an excellent tool for this purpose, because it enables you to handle your XML using programming. When it is downloaded, your XML may have elements nested among other elements, text mixed in with those elements, and information stored in attributes as well — all of which must be extracted if you are going to use the data in your XML. In addition, learning how to handle XML in your Ajax-enabled Web pages with JavaScript enables you to extract that data.

JavaScript handles XML as a collection of nodes. You can operate on each node independently, extracting the data it contains, as well as navigating to the next node in the sequence.

For example, look at this simple XML document: <?xml version=”1.0” ?> <document> <greeting>No worries.</greeting> </document>. The document element is <document>, and it has one subnode, the <greeting> element. The <greeting> element, in turn, has a subnode — the text node containing the text “No worries.”.

Types of Nodes

There are various types of nodes, such as element nodes, text nodes, attribute nodes, and so on, and JavaScript can handle them all. JavaScript has built-in properties you can use to work with the nodes in XML document objects, such as the objects that are contained in the XMLHttpRequest object’s responseXML property.

For example, the documentElement property of the XML document object you get in the XMLHttpRequest object’s responseXML property gives you the element node corresponding to the XML data’s document element. This is where you typically start when working with an XML document object: with the documentElement property, which gives you the document element — as an element node object — for the XML data that is retrieved from the server.

Using the nodeType and nodeValue Properties

The nodeType property of any node object in JavaScript gives you the type of the node. The values in the nodeType property are numbers, and they correspond to the different types of nodes. Here are the possible values — note that some only make sense if you have used XML in depth before: 1 stands for an element node; 2 stands for an attribute node; 3 stands for a text node, which contains simple text, such as the text you would find inside an element; 4 stands for an XML CDATA section, which contains text data that is not supposed to be treated as XML; 5 stands for an XML entity reference; 6 stands for an XML entity node; 7 stands for an XML processing instruction; 8 stands for an XML comment, which is just like an XML comment, starting with <!-- and ending with -->; 9 stands for an XML document node, corresponding to the very beginning of the document; 10 stands for an XML Document Type Definition, a DTD; 11 stands for an XML document fragment; and 12 stands for an XML Notation.

The nodeValue property of a node in JavaScript holds the value of the node. For example, the value of a text node is the text in the node, so if the variable textNode contains a text node, then textNode.nodeValue contains the text inside that text node. That is the usual way that you retrieve the text from a text node — using the nodeValue property.

The name property contains the name of the node. For example, if you have an element node in a variable named elementNode, and that element node corresponds to an element named <corporation>, then the expression elementNode.name gives you the name of the element, “corporation”. Using the name property gives you a way of navigating through an XML document and determining which element you are currently dealing with.

XML as a Tree of Nodes

You can think of an XML document like this one as a tree of nodes. The top node is the document node, which is the very beginning of the document, even before the document element. After the document node can come processing instruction nodes, which are not covered in this book, and then the document element node, which contains the document element.

After the document element node comes the element nodes in the document. Element nodes themselves may be nested as well, one within another — a parent node can contain child nodes in this way. In programming terms, therefore, you can think of XML documents as trees of nodes, and for each type of node, you have a node object in JavaScript.

Getting XML Attributes

You use the attributes property in JavaScript to get an array of the attributes contained in a particular node. Because only elements can contain attributes, only element nodes support the attributes property.

Handling Child Nodes

The childNodes property holds an array of the child nodes of the current node. You usually use this property with element nodes. For example, if you had an element named <a> that contained other elements as children, such as <a><b></b><c></c></a>, then the childNodes property of the <a> element would contain an array with the <b> and <c> elements in it.

The firstChild property gives you the first child node of the current node. This property is often used to extract the text node inside an element node. For example, if you store an element node in a variable named elementNode, and want to extract the 
text in that element, you can use the expression elementNode.firstChild.nodeValue. Here, you are extracting the text node inside the element node, and then getting the text itself.

The lastChild property gives you the last child node of the current node. For example, if you had an element named <a> that contained other elements as children, such as <a><b></b><c></c></a>, then the lastChild property of the <a> element node gives you the <c> element node.

Handling Sibling Nodes

The nextSibling property of a node gives you a node corresponding to the next sibling of the current node. For example, if you have three elements in a row, <a></a><b></b><c></c>, and you have a node object corresponding to the <a> element, then the nextSibling property of that object would contain the <b> element node.

The previousSibling property contains the previous sibling node. If you have three elements in a row, <a></a><b></b><c></c>, then the previous sibling of the <c> element is the <b> element, and the previous sibling of the <b> element is the <a> element.

Note that siblings are on the same level in the document. For example, in the XML <a><b></
b><c></c></a><d></d>, the <b> and <c> elements are child elements of the <a> element, not sibling elements of the <a> element. So the next sibling of the <a> element here is the <d> element. Also, the <b> and <c> elements are siblings here, because they are on the same level.

Get the XML Document Element 
from Downloaded XML

You can extract an object corresponding to the document element of XML data that you download from the server using Ajax techniques. It is important to know how to handle the XML you download from the server using Ajax. Because that XML data is in XML document object form, you can handle that XML simply by using the JavaScript documentElement property.
Ajax relies on downloading XML from the server, and you have to work with that XML in JavaScript. Programmers often expect the downloaded XML from the server will be available in text form. However, when you want to download text, use the XMLHttpRequest object’s responseText property. When the data you download is in XML form, you use the XMLHttpRequest object’s responseXml property instead.

The data in the XMLHttpRequest object’s responseXml property is stored in a JavaScript XML document object. This object represents an XML document, and you use JavaScript properties and methods to work with it. In particular, you usually start by using the JavaScript documentElement property of this object to get an object that contains the XML data’s document element. And the document element contains all the other XML elements in the downloaded data.

Once you have the document object, you can use the other JavaScript properties of the document element to navigate through your XML data. For example, if the XML document you downloaded is <>xml version = “1.0”><data>No worries.</data>, then you can extract the text from the text node in this document this way in JavaScript: XML
HttpRequestObject.responseXml.documentElement.
firstChild.nodeValue. In other words, you get a JavaScript object corresponding to the document element, then get the text node inside that element with the firstChild property, then extract the text from the text node with the nodeValue property.

Get the XML Document Element from Downloaded XML

1
Store the XML data downloaded from the server in a variable named xmlDocument.

2
Get the document element of the downloaded XML data with the documentElement property, 
and store the document element 
in a variable named document
Element.


The document element contains all the other elements in the XML data.

3
Notify the user that you got the document element.

4
Open the Web page in a browser and click the button to download the XML data.


The message “Got the document element” appears.

If you want to take a good look at the XML data that is stored in the XMLHttpRequest object’s responseXML property, you actually can convert that XML into simple text to display it. To see the downloaded XML as text, you simply use the xml property. For example, to display the XML in an XMLHttpRequest object in an alert box, use this JavaScript code: alert(XMLHttpRequest
Object.responseXML.xml). If you have trouble navigating around inside your XML data using JavaScript properties and methods, it can be a good idea to look at the XML data in readable form, not as an object. And using the XML document object’s xml property, you can see the XML data you downloaded in simple text form. When you are debugging an Ajax application, being able to see the XML you are working with directly can be invaluable.

You do not need to use the document element to work with a JavaScript document object. You can use other methods on that object, such as the JavaScript getElementsByTagName method, to fetch the XML elements you want from the XML data, bypassing the document element.

Navigate XML Using firstChild 
and lastChild

You can use JavaScript properties like firstChild and lastChild to navigate through an XML document’s data. After you download your XML data, you can read that data from the XMLHttpRequest object’s responseXML property. That property holds a JavaScript XML document object, and you can navigate through the items in that object using JavaScript methods and properties.

You usually start by getting the document element for the XML data you have downloaded. When you have the document element, you have access to all the elements in the XML document, because the document element contains all the other elements. Once you have the document element, you can navigate through the document easily, using the available JavaScript properties.

The firstChild property lets you recover the first child of the current node. For example, if you had the XML <a><b></b><c></c></a>, the first child of the <a> element is the <b> element, so if you store the <a> element as a node object in a JavaScript variable named element, then the JavaScript expression element.firstChild gives you a node object containing the <b> element.

The lastChild property gives you access to the last child of the current node. For example, if you use the same XML, <a><b></b><c></c></a>, the last child of the <a> element is the <c> element. So, for example, if you store a node object corresponding to the <a> element in a variable named element, then the expression element.lastChild gives a node object corresponding to the element <c>. As you can see, the firstChild and lastChild properties are very useful for navigating around inside your downloaded XML data in JavaScript.

To get the document element for XML data downloaded from the server, see the section “Get the XML Document Element from Downloaded XML.”

Navigate XML Using firstChild and lastChild

1
Examine the XML document you want to extract data from.


In this case, you can extract the first name of the third employee using JavaScript after downloading this XML data using Ajax.

2
Get the document element of the downloaded data.

3
Navigate to the <employee> node containing the third employee’s data.

4
Navigate to the third employee’s <first_name> element.

After reaching the third employee’s <first_name> element, you can extract the name from that element, which is <first_name>John</
first_name>. Remember that the text in an XML element is stored in a text node as far as JavaScript is concerned. If you have stored the <first_name> element in a JavaScript object named firstNameNode, you can extract the text node that contains the employee’s name this way: firstNameNode.firstChild. In other words, the text node contained inside the <first_name> element is the first child of that element. When JavaScript programmers work with XML data, it is a common mistake to forget that the text inside XML elements is actually stored in text nodes.

After you recover the text node holding the text inside the third employee’s <employee> element, you can read the actual text in the text node with the nodeValue property. In JavaScript, you use this expression to do that: firstNameNode.first
Child.nodeValue, assuming that you have stored the <employee> element in the variable named firstNameNode.

Navigate XML Using 
nextSibling and previousSibling

You can navigate through XML document objects using JavaScript properties like nextSibling and previousSibling. After you download XML data using Ajax techniques, you get an XML document object in the XMLHttpRequest object’s responseXML property, and you can use JavaScript to work with that XML data. The usual first step is to extract the XML data’s document element, which contains all the other elements in the XML data. When you have the document element, you can move throughout the XML data easily using the JavaScript properties of the nodes in the data.

You can use the firstChild property to move to the first child node of the current node. That is useful when you want to move from the document element, which contains all other elements, to the children of that element. It is also useful when you want to extract the text in an element, because that text is stored in a text node, which is the first child contained in the element. You can also use the lastChild property to move to the last child of the current node.

Properties like firstChild and lastChild let you navigate through your XML data by moving down successive levels as you target the data you want. For example, if you have the XML <a> <b></b> <c></c> <d></d> </a>, and you start with a node corresponding to the <a> element, that node’s firstChild property contains a node object corresponding to the <c> element, and the lastChild property contains a node object corresponding to the <d> element.

However, if you want to access the <c> element, you have to navigate among the <b>, <c>, and <d> elements, all of which are siblings. For example, if you start at 
the <a> element and want to get the <c> element, you could use firstChild.nextSibling or lastChild.
previousSibling.

Navigate XML Using nextSibling and previousSibling

1
Select the XML element you want to navigate to using JavaScript.


In this case, target the <last_name> element of the third employee.

2
To reach the <first_name> element of the third employee, you can use the firstChild and lastChild properties.

3
Navigate to the <last_name> element using the nextSibling property, and inform the user that you reached that element.

4
Open the Web page in a browser, and click the button.


The message “Got the <last_name> element” appears.

This example uses the nextSibling property to navigate, but say that you had been at the <last_name> element and wanted to get back to the <first_name> element instead:

   <employee attendance=”present”>

       <first_name>John</first_name>

       <last_name>Johnson</last_name>

   </employee>

In that case, you can use the previousSibling property instead, this way:

   corporationNode = xmlDocument.documentElement;

   humanResourcesNode = corporationNode.firstChild;

   employeesNode = humanResourcesNode.lastChild;

   employeeNode = employeesNode.lastChild;

   lastNameNode = employeeNode.firstChild;

   firstNameNode = lastNameNode.previousSibling;

Extract Text Data from 
an XML Element

You can extract text data from XML elements using JavaScript. When you locate the XML element you want to get text from, all you have to do is to extract the text node inside that element and use the text node’s nodeValue property to get the text.

Many JavaScript programmers have difficulty extracting text data from XML elements. If the element you want to extract text data from is <first_name>John</first_
name>, it looks like extracting the text data here is a simple task. Say that this element is stored as a node object in the JavaScript variable firstNameNode. It seems that you could access the text in the <first_
name> element simply using the nodeValue property this way: firstNameNode.nodeValue.

However, that does not work. The reason is that the text in the <first_name> element is stored in a text node. So the <first_name> element node itself has a child node, the text node that contains the text “John”. Enclosing text inside text nodes may seem like a needless additional level of complexity, but there are occasions in which you can have text in XML documents next to other text, and to keep those text items separate, you need to place them in separate nodes. To access the text contained in the <first_name> element, you must first access the text node that contains the text.

Because the text node inside the <first_name> element is the first child of that element, you can access that text node as firstNameNode.firstChild. You can reach the text inside the text node with the text node’s nodeValue property, so finally, you can access the text in the <first_name> element as firstNameNode.first
Child.nodeValue. That is the way to access the text in an element — first access the text node, then extract the text in that node.

Extract Text Data from an XML Element

1
Locate the XML elements you want to extract from text.


In this example, that is the first and last names of the third employee in the employees.xml document.

2
Get node objects corresponding to the elements whose text you want to extract.

3
Extract the text from the text nodes inside the elements, and display that text.

4
Open the Web page in a browser, and click the button.


The application displays the 
message “The third employee is John Johnson.”

The example in this task extracts the text node in the target XML elements using the firstChild property. However, it is also worth noting that if an XML element has a text node, that is usually the only child node in the element — you can technically place both text and child elements as siblings inside an element, but that is rarely done. When the text node is the only node inside an element, you can use the lastChild property instead of the firstChild property to access the text node.

Example:

        corporationNode = xmlDocument.documentElement;

        humanResourcesNode = corporationNode.firstChild;

        employeesNode = humanResourcesNode.lastChild;

        employeeNode = employeesNode.lastChild;

        firstNameNode = employeeNode.firstChild;

        lastNameNode = firstNameNode.nextSibling;

        showText = “The third employee is “ +

          firstNameNode.lastChild.nodeValue + ‘ ‘

          + lastNameNode.lastChild.nodeValue;

Handle White Space in 
Mozilla and Firefox

You can navigate through XML data using JavaScript, but how you navigate differs in Internet Explorer, Mozilla, and Firefox. In Mozilla and Firefox, text nodes that are pure white space — spaces, tabs, carriage returns, and so on — are considered real text nodes in JavaScript terms, although they are not in Internet Explorer. That is when you navigate around in XML data in Mozilla and Firefox, you have to take white space text nodes into account, but you do not in Internet Explorer.

For example, you have XML data starting a document element named <corporation>. The opening tag of that element is followed by some spaces used for indentation before the next opening tag, <human_resources>, like this: <corporation>    <human_resources>. Also, there were additional spaces before the next child element, <employees>, like this: <corporation>    <human_resources>    <employees>. That white space is treated as text nodes in Mozilla and Firefox, but not in Internet Explorer.

If you want to use JavaScript to navigate XML data in Ajax applications in Mozilla and Firefox, you must navigate over those white space nodes. For example, in Internet Explorer, if you store a node corresponding to the <corporation> element in the variable corporationNode, you can navigate to the <employees> element this way: corporationNode = xmlDocument.documentElement;       humanResourcesNode = corporationNode.
firstChild; employeesNode = humanResources
Node.firstChild;. But in Mozilla and Firefox, the <corporation> element’s first child is a white space text node, so you would have to do this: corporationNode = xmldoc.documentElement; humanResourcesNode = corporationNode.firstChild.nextSibling;       employeesNode = humanResourcesNode.lastChild.
previousSibling;.

That is how it works — you navigate past the text nodes with the nextSibling and previousSibling properties. See the section “Create the removeWhitespace Function in Mozilla and Firefox” to remove white space nodes from XML data so that you can treat XML data the same in Mozilla, Firefox, and Internet Explorer.

Handle White Space in Mozilla and Firefox

1
Examine the XML data you have to navigate through.


In this example, assume you want to extract the first and last names of the third employee.

2
Navigate to the two elements you want to extract, taking care to navigate over white space text nodes.

3
Extract the text data from the elements and display that data.

4
Open the page in the Mozilla or Firefox browser, and click the button.


The message “The third employee is John Johnson” appears.

You may think that you can avoid having to deal with white space nodes by removing all indentation white space this way:

<?xml version=”1.0”?>

<corporation>

<human_resources>

<employees>

<employee attendance=”present”>

<first_name>Frank</first_name>

<last_name>Finegan</last_name>

</employee>

<employee attendance=”absent”>

<first_name>Tom</first_name>

<last_name>Tupper</last_name>

</employee>

</employees>

</human_resources>

</corporation>

However, even carriage returns count as white space, so you actually must put all your XML on one line:

<?xml version=”1.0”?><corporation><human_resources><employees>....
Create the removeWhitespace 
Function in Mozilla and Firefox

You can handle the whitespace nodes used in XML documents for indentation in the Mozilla and Firefox browsers by explicitly navigating over those white space nodes. That is one way of handling such white space nodes. On the other hand, that means you must write very different code for Mozilla and Firefox in your JavaScript, compared to your code for Internet Explorer. It is far easier to simply strip out the white space nodes in the XML you download in Ajax applications, which will let you handle that downloaded XML using the same JavaScript navigation code in all these browsers.

The difference in handling XML data in Mozilla and Firefox compared to Internet Explorer is how you handle white space nodes. The problem is that in JavaScript in Mozilla and Firefox, white space text nodes are considered true text nodes, while they are ignored by Internet Explorer by default. So if you have this XML:  <corporation>    <human_resources>    <employees>, you must navigate over the white space nodes like this in Mozilla and Firefox:

corporationNode = xmldoc.documentElement; humanResourcesNode = corporationNode.
firstChild.nextSibling; employeesNode = humanResourcesNode.lastChild.previous
Sibling;

In Internet Explorer, you can ignore the pure white space nodes, so the JavaScript is

corporationNode = xmlDocument.
documentElement; humanResourcesNode = corporationNode.firstChild; employeesNode = humanResourcesNode.firstChild;

One solution is to remove all the white space nodes from the XML data in a function named removeWhitespace, which allows you to handle the XML data as you would in Internet Explorer. To find pure white space nodes, you can use a regular expression in JavaScript this way: /^\s+$/.test(currentNode.nodeValue). If the current node is indeed a white space node, you can remove it with the JavaScript removeChild method. For more on how to create and use regular expressions, see http://perldoc.perl.org/perlre.html.
Create the removeWhitespace Function in Mozilla and Firefox

1
In the removeWhitespace function, loop over all the child nodes in the XML object passed to the function.

2
If the current node is an element, pass it to the removeWhiteSpace function again to handle all children of that element.

3
Check to see if the current node is a text node, which is nodeType 3, and if it contains only white space.

4
If the current node is a pure white space node, remove it from your XML data.

You can adapt the removeWhitespace function to remove any kinds of text nodes you want. For example, here is how you can remove any text nodes with the word “comment” in them:

Example:

function removeCommentTextNodes(xml)

{

  var loopIndex;

  for (loopIndex = 0; loopIndex < xml.childNodes.length;

    loopIndex++) {

    var currentNode = xml.childNodes[loopIndex];

    if (currentNode.nodeType == 1) {

      removeWhitespace(currentNode);

    }

    if (((/comment/.test(currentNode.nodeValue))) &&

      (currentNode.nodeType == 3)) {

        xml.removeChild(xml.childNodes[loopIndex--]);

    }

  }

}

Use the removeWhitespace 
Function in Mozilla and Firefox

You can use the removeWhitespace function to remove white space from XML data downloaded using Ajax techniques. When you do so, you strip out the white space text nodes from that XML data. Using the removeWhitespace function is very useful, because after you have removed that white space, you can use JavaScript to navigate around inside your XML data in the same way in the Mozilla, Firefox, and Internet Explorer browsers.

The main issue is simply to know when your code is executing in the Mozilla or Firefox browsers. When you determine that, you can call the removeWhitespace function if your code is operating in one of those browsers.

One easy way to determine if your Web page is in the Mozilla or Firefox browser is to see how your code creates the XMLHttpRequest object. The standard XMLHttpRequest object creation code has two different parts — one for the Mozilla and Firefox browsers, and one for Internet Explorer. In the Mozilla and Firefox browsers, window.XMLHttpRequest exists, and you create a new XMLHttpRequest object this way: XMLHttpRequestObject = new XMLHttpRequest(). If window.XMLHttpRequest exists, you can set a variable, which you might call mozilla, to true. Checking that variable tells you if you should pass the downloaded XML data to the removeWhitespace function.

If you do pass your XML data to the removeWhitespace function, all white space text nodes are removed, and you can then work with the downloaded XML data just as you would in Internet Explorer, where you do not have to worry about white space nodes in the first place. In that way, you can use the same JavaScript navigation code across all three browsers. To see how to create the removeWhitespace function, see the section “Create the removeWhitespace Function in Mozilla and Firefox.”

Use the removeWhitespace Function in Mozilla and Firefox

1
Create a new variable named mozilla, and initialize it to false.

2
Set the mozilla variable to true if your code is executing in the Mozilla or Firefox browsers.

3
If the mozilla variable is true, remove the white space nodes 
from the XML data with the removeWhitespace function.

4
Open the Web page in Firefox and click the button.


The Web page now works in Firefox, using the same XML navigation code as in Internet Explorer.

Another way of checking if your code is being executed in the Mozilla or Firefox browsers is to check the navigator object’s appName property. If that property contains the word “Firefox”, for example, your code is executing in the Firefox browser:

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

  XMLHttpRequestObject = new XMLHttpRequest();

} else if (window.ActiveXObject) {

  XMLHttpRequestObject = new

    ActiveXObject(“Microsoft.XMLHTTP”);

}

if(navigator.appName == “Netscape”) {

  if(navigator.userAgent.indexOf(“Firefox”) > 0) {

      removeWhitespace(xmlDocument);

  }

}

Find XML Elements 
by Name

You can find XML elements in an XML document by name. You can navigate through an XML document using the JavaScript node properties like nextSibling, firstChild, and so on. However, navigating from node to node means that you must know the exact structure of the XML data you are dealing with, and that structure cannot change. And it is more difficult to navigate from node to node throughout an entire document than simply to pluck out the elements you want by name.

To fetch the elements you want from an XML document, you can use the JavaScript XML document object’s getElementsByTagName method. Note that this method is called getElementsByTagName — plural — not just getElementByTagName. The reason is that your XML data may contain a number of elements with the same name.

For example, say that you have this XML data and that you want to extract the name of the third employee:

<employee attendance=”present”>      

<first_name>Frank</first_name> <last_name>
Finegan</last_name> </employee>            <employee attendance=”absent”> <first_name>
Tom</first_name> <last_name>Tupper</
last_name> </employee> <employee attendance
=”present”>  <first_name>John</first_name> <last_name>Johnson</last_name> </employee>

If you call getElementsByTagName(“first_name”) on the document object that contains this XML data, you get a JavaScript array that holds three <first_name> elements. In order to extract the element you want from that array of elements, you can simply use a numeric index. For example, if you have placed the array in a variable named firstnamenodes, you can access the first name of the third employee like this: firstnamenodes[2].
firstChild.nodeValue. Remember that arrays start with index 0, so the third element has index 2. Using the getElementsByTagName method is often easier than navigating through your data node by node because you can simply specify the elements you want.

Find XML Elements by Name

1
Identify the data you want to extract from your downloaded XML, such as the first and last names of the third employee here.

2
Use the getElementsByTagName method on the XML document object from the XMLHttpRequest object’s responseXML property to get the elements you want.

3
Get the text data you want from the element arrays and display that text.

4
Open the Web page in a browser and click the button.


The name of the third employee is downloaded and displayed.

JavaScript lets you condense the process of getting the arrays holding the elements you want and referencing those elements in your code. Putting everything together into single statements can make your code much more compact. Here is what the code that takes advantage of that JavaScript capability looks like:

   function showEmployee (xmlDocument)

   {

     var displayText = “The third employee is: “ +

       xmlDocument.getElementsByTagName(“first_name”)[2]

       .firstChild.nodeValue + ‘ ‘

       + xmlDocument.getElementsByTagName[2]

       .firstChild.nodeValue;

     var target = document.getElementById(“targetDiv”);

     target.innerHTML=displayText;

   }

Extract XML 
Attributes

You can extract attribute values from XML data. XML elements can have text content, but they can also have attributes. For example, say you have an XML element named <employee> like this: <employee attendance=”present”> <first_name>John</
first_name> <last_name>Johnson</last_name> </employee>. Note that the opening tag has an attribute, attendance. You can extract the value assigned to that attribute, which is “present” in this example, using JavaScript.

For example, you want to extract the value of the attendance attribute for the third employee in an XML document named employees.xml. First navigate to that <employee> element using the navigational technique you prefer — you can use node properties like nextSibling and firstChild to get the <employee> element you are interested in, or you can use the JavaScript XML document object getElementsByTagName method instead.

After you have a JavaScript object corresponding to the element you want to extract an attribute or attributes from, you can use the element’s attributes property, which contains a JavaScript named node map of attributes. A named node map is a JavaScript object that lets you access items by name, not just numeric index. For example, you store the <employee> element as a node object in a variable named employeeNode. You can get a named node map of the element’s attributes this way: var attributes = employeeNode.attributes.

Now you have a named node map, named attributes, that holds the attributes of the <employee> element. You can get the value of the attribute you are interested in, the attendance attribute, using the named node map’s getNamedItem method this way: var attendance
Employee = attributes.getNamedItem
(“attendance”).

At this point, you have an attendance node stored in the variable named attendanceEmployee. To extract the text assigned to the attendance attribute, you can use the node’s nodeValue property this way: attendance
Employee.nodeValue.

Extract XML Attributes

1
Select the <employee> element whose attendance attribute you want to access.

2
Navigate to the <employee> element and get a named node map of its attributes.

3
Get a node corresponding to the attribute you are interested in and display that attribute’s value.

4
Open the Web page and click the button.


The attendance attribute is read, and the message “John Johnson was present” appears.

In much Ajax code, you do not display the values of attributes, but you use those values to filter the data you want. For example, if you only want to display data in English, you might look for elements whose language attribute is set to “English”. If you only want to display employees who are present, you might use code like this:

        firstNameNode = employeeNode.firstChild;

        lastNameNode = firstNameNode.nextSibling;

        attributes = employeeNode.attributes

        attendanceEmployee = attributes.getNamedItem(“attendance”);

        if(attendanceEmployee.nodeValue == “present”){

          var displayText = firstNameNode.firstChild.nodeValue

            + ‘ ‘ + lastNameNode.firstChild.nodeValue;

        }

        var target = document.getElementById(“targetDiv”);

        target.innerHTML=displayText;

Create a Valid 
XML Document

You can create XML documents that are valid as well as well formed. A valid XML document meets a set of requirements you specify for its syntax. There are two ways of specifying the syntax of an XML document by using a Document Type Definition (DTD), or with an XML schema. For official details on DTDs, see www.w3.org/TR/REC-xml/; for XML schema, see www.w3.org/XML/Schema.

DTDs are the easiest to create. The DTD for a document may be placed at the beginning of the document using a <!DOCTYPE> element. For example, if the document element is <corporation>, then you start an XML DTD listing that document element this way: “<!DOCTYPE corporation [“. The rest of the DTD follows the square brace, [, and you end the DTD with the markup ]>.

Say that the <corporation> element contains a <human_resources> element. You can indicate that in the DTD this way: <!ELEMENT corporation (human_
resources)>. In turn, say that the <human_resources> element contains an <employees> element. You can indicate that in the DTD this way: <!ELEMENT human_resources (employees)> .

Now say that the <employees> element can contain zero or more <employee> elements. You can indicate that in the DTD this way: <!ELEMENT employees (employee*)>. Note the asterisk, *, which means that you can have zero or more <employee> elements.

In addition, say that an <employee> element contains both a <first_name> and a <last_name> element, in that order. You specify that in the DTD this way: <!ELEMENT employee (first_name,last_name)>.

You can specify that the contents of the <first_name> and <last_name> elements are just text with the PCDATA keyword: <!ELEMENT first_name (#PCDATA)>. And finally, you can indicate that the <employee> element should have an attribute named attendance, which may be assigned simple text, this way: <!ATTLIST employee attendance CDATA #IMPLIED>.
Create a Valid XML Document

1
Create a DTD, giving the name of the document element.

2
Declare the XML elements that contain other elements in your document in the DTD.

3
Declare the elements that contain plain text, called parsed character data, or PCDATA, in XML.

4
Declare the attendance attribute of the <employee> element.

You can specify any number of attributes for an element in the <!ATTLIST> declaration — “ATTLIST” stands for attribute list. To add a date, time, location, and attendance attribute to the <employee> element, you can use this <!ATTLIST> declaration:

<!ATTLIST employee

    date CDATA #IMPLIED

    time CDATA #IMPLIED

    location CDATA #IMPLIED

    attendance CDATA #IMPLIED>

]

You can also indicate that an element must contain one or more of another element. For example, to specify that the <employees> element must contain one or more <employee> elements, you can use this like in a DTD:

<!ELEMENT employees (employee+)>

You can use the + and * symbols when declaring sequences of elements as well:

<!ELEMENT employees (employee+, consultant*)>

Validate an 
XML Document

You can use XML parsers to validate XML documents. Doing so in Ajax applications can be especially useful to make sure that the XML data you download downloads intact — if it cannot be validated, there is a problem with the XML data. Internet Explorer has an XML parser built in to it that you can use to validate XML documents.

When you use an XML schema or an XML DTD, you specify the syntax of an XML document. When you download XML using Ajax, you can test the validity of the data you download in Internet Explorer. You can download XML data using an XMLHttpRequest object’s responseXML property. That property holds a JavaScript XML document object that you can parse directly using Internet Explorer’s XML parser.

You start by storing the XML document object in a variable: var xmlDocument = XMLHttpRequest


Object.responseXML. To work with and parse that object for validity errors, you can pass it to the load method of the Internet Explorer parser.

To create a parser object, you use this JavaScript in Internet Explorer: var parser = new ActiveXObject
(“MSXML2.DOMDocument”). That gives you the object you need to parse XML and to determine if there are any validity errors. By default, this parser only reads in XML data and makes it available as a document object, but you can turn on validity checking by setting the validateOnParse property of the parser to true: parser.validateOnParse = true.

To validate the XML document object, just pass it to the parser’s load method this way: parser.load(XMLHttp
RequestObject.responseXML). If there is an error, the parser.parseError.errorCode property holds a nonzero value. To create a sample DTD, see the section “Create a Valid XML Document.”

Validate an XML Document

1
Create a validity error in employees.xml by changing <employee> to <employees1>.

2
Parse the downloaded XML.

3
Display an error message if there is a validity error.

4
Open the Web page and click the button.


The validity error is caught and an error dialog box appears.

You can also use the MSXML2.DOMDocument object to download XML documents from the server in Internet Explorer. As the example is written, it parses an XML document downloaded from the server using Ajax techniques — you pass it that document from the XMLHttpRequest object’s responseXML property:

var parser = new ActiveXObject(“MSXML2.DOMDocument”);

parser.validateOnParse = true;

parser.load(XMLHttpRequestObject.responseXML);

var target = document.getElementById(“targetDiv”);

However, you can also download XML documents by giving their URL:

var parser = new ActiveXObject(“MSXML2.DOMDocument”);

parser.validateOnParse = true;

parser.load(“http://www.noisp.com/user/employee.xml”);

var target = document.getElementById(“targetDiv”);

Although this works, this code downloads XML data synchronously, waiting for that data to appear, as opposed to the asynchronous Ajax method.

Report XML 
Validation Errors

You can use Internet Explorer’s built-in parser to report exactly what validity errors there are in the XML data you download from the server, if any. When there is a validation error, you can get an error object in the Internet Explorer XML parser’s parseError property. That error object contains a number of properties that you can use to determine more about the error.

To validate the XML data you download using Ajax in Internet Explorer, you can create an XML parser this way: var parser = new ActiveXObject(“MSXML2.
DOMDocument”). Then you set the parser’s validate
OnParse property to true, and pass that parser the XML data you download this way: parser.load
(XMLHttpRequestObject.responseXML).

If there is a validity error, then the parser.parseError.
errorCode is nonzero — if this property is zero, there is no error. When there is a validity error, you can use the properties of the parser.parseError object to get more information about the error.

The parser.parseError.url holds the URL of the XML document that caused the problem. If there is no URL, as when you pass an object to the load method — as in this example, where you pass the downloaded XML text to the parser this way: parser.load(XMLHttpRequest
Object.responseXML) — then this property does not hold any text.

The parser.parseError.line holds the line in the XML document that caused the error. That kind of information is very useful, letting the user locate the problem immediately.

The parser.parseError.linepos property holds the position in the line where the error happened. Using the parser.parseError.line property, you can locate 
the line where the error occurs, and the parser.
parseError.linepos tells the user what character position in the line the error starts at.

The parser.parseError.srcText holds the XML text that causes the error; and the parser.parseError.
reason contains a message holding the reason for the error.

Report XML Validation Errors

1
Check if there is a validation error.

2 
Report the file name, line, and position of the error.

3
Report the source, reason for the error, and the error code.

4
Open the Web page in Internet Explorer and click the button.


If there is a validation error, a complete error report appears.

You can display your own error messages instead of relying on the error messages that the Internet Explorer parser creates. To do that, simply determine which error occurred by checking the parser.parseError.
errorCode property, and display an error message to match:

if (XMLHttpRequestObject.readyState == 4 &&

  XMLHttpRequestObject.status == 200) {

  var xmlDocument = XMLHttpRequestObject.responseXML;

  var parser = new ActiveXObject(“MSXML2.DOMDocument”);

  parser.validateOnParse = true;

  parser.load(XMLHttpRequestObject.responseXML);

  var target = document.getElementById(“targetDiv”);

  if (parser.parseError.errorCode == -1072898028) {

    alert(“The parser found an unexpected element.”);

  }
