
2
Is It Really This Easy?

I N T H E P R E V I O U S C H A P T E R , you saw how ASP.NET 2.0 contains a raft
of new features that reduce the code you need to write and save you

time and effort when building dynamic and interactive Web pages and
applications. To further illustrate this, and so that you get a better feel for
the way all these features combine to provide the overall ASP.NET 2.0
development experience, this chapter presents a scenario-based demon-
stration focused on a day in the life of a developer who is in the process of
fulfilling the requirements of a fictional customer.

Although this may seem a contrived approach, it actually follows the
general process of evolving your applications to meet the needs of the
users. More than that, it shows you how all the various features in ASP.NET
2.0 fit together and interact to give you improved productivity and a sim-
pler development process. Along the way, you will see the process steps
required for:

• Using a data source control and GridView to display data

• Enabling sorting and paging for the rows

• Providing a row editing feature

• Adding filtering to select specific sets of rows

• Displaying single rows in a form for editing

• Working with data exposed through a business object

• Caching the data to reduce database access

23

• Using a master page to give a consistent look and feel

• Adding a menu and other navigation features

By the end of this chapter, you will have a good understanding of the
main features in ASP.NET 2.0 that make your life as a developer much easier.

A Day in the Life of a Developer

It’s nine-thirty in the morning, and your second cup of coffee is just starting
to take effect when the phone rings. At the other end is Margaret, the CEO
of AdventureWorks Trading Inc., and she is in no mood for light conversa-
tion. It seems that, although they love the new Web site you created for
them, they just discovered that there is no page for their staff to view lists of
products. So you commit to provide one, drain the remnants of the now
cold coffee, and fire up Visual Studio 2005.

Using a Data Source Control and GridView to Display Data
To build almost all types of data access pages, you need to be able to get the
data from the database and display it in a Web page. In previous versions
of ASP and ASP.NET, you would already be thinking about creating a con-
nection to the database, building a Recordset or filling a DataSet, and
then either iterating through the rows to create an HTML table (in ASP 3.0)
or taking advantage of server-side data binding in ASP.NET 1.x.

However, in ASP.NET 2.0, the process is much easier. You start by using
the Server Explorer window (or the Database Explorer window in Visual
Web Developer) to create a connection to the database (see Figure 2.1).

Now that you have access to the database, you need a new Web page.
This will be part of the existing AdventureWorks Web site that you have
already built, and so you must first open this site. Visual Studio 2005 and
Visual Web Developer allow you to open an existing site using a range
of techniques––including directly from the file system, from the local IIS
folders via HTTP, or from a remote site via FTP or the Microsoft FrontPage
Extensions (see Figure 2.2).

Next, you create a new Web Form, switch to Design view, and drag the
Product table from the Server/Database Explorer window onto the new
Web Form. This adds a SqlDataSource and a GridView control to the page

Chapter 2: Is It Really This Easy?24

A Day in the Life of a Developer 25

Figure 2.1: Connecting to a database

and you can run the page to see the results. OK, so it isn’t very pretty and
probably contains columns that you don’t want to display, but it really does
save you time in getting the basics of the page up and running––and you
haven’t written any code at all! (see Figure 2.3).

You can now fine-tune the page to provide just the features you want
by removing columns, adding formatting to the values, and applying one
of the predefined (Auto Format) styles to the GridView. The Visual Studio
2005 and Visual Web Developer page designers provide a “tasks” pane for
many of the rich controls such as the GridView that makes it easy to com-
plete all these tasks. The tasks pane appears when you first add a control to

the page. You can also open it by clicking the small arrow icon that appears
when you move the mouse over the control (see Figure 2.4).

The tasks panes contain a set of links that open dialogs or start
Wizards––depending on the control type. For the GridView control, as you
can see in Figure 2.4, the tasks include applying an Auto Format, selecting
the appropriate data source control, enabling various features directly sup-
ported by the new GridView control in ASP.NET 2.0, and modifying the
columns displayed by the GridView control. You only want to display the
six most useful columns, so you can remove the rest from the list. Moreover,
you want the StandardCost and ListPrice columns to display as
currency values, so you can specify this in the DataFormatString prop-
erty for these columns (see Figure 2.5).

Enabling Sorting and Paging for the Rows
The GridView control now displays the required columns from the data-
base table, but it is not very easy for the user to find the rows they want to

Chapter 2: Is It Really This Easy?26

Figure 2.2: Opening an existing Web site

A Day in the Life of a Developer 27

Figure 2.3: Creating a data display page with drag and drop in Visual Studio 2005

view. All the rows appear in one long list sorted by product number. It
would be helpful if users could sort the rows in a different order (perhaps
by name when they don’t know the product number), and it would also be
nice to be able to limit the display to a specific number of rows and provide
navigation controls so that they can see separate “pages” of rows.

Prior to ASP.NET 2.0, you would now be writing code to sort the source
rowset into the required order, and then connecting this code up to controls in
the page. In ASP.NET 2.0, it is all automatic. You just turn on sorting and pag-
ing with the checkboxes in the tasks pane (see Figure 2.6). The column head-
ings become hyperlinks, and the paging controls appear at the foot of the grid.

Then you can make the page look nicer by selecting an appropriate Auto
Format option from the list that appears when you click the link in the tasks
pane, and the page is complete (see Figure 2.7).

You run the page to see the results. Clicking any one of the column head-
ing hyperlinks sorts the rows in ascending order by that column value.
Another click on the heading changes the sort order to descending. You’ve

Chapter 2: Is It Really This Easy?28

Figure 2.4: Opening the Tasks pane in Visual Studio and Visual Web Developer

created an extremely useful and usable page, and you have not written any
code at all.

Providing a Row Editing Feature
While you have the tasks pane open for the GridView control, you might as
well take advantage of some of the other features it offers. How about allow-
ing users to edit the rows? This used to involve a lot of work writing code
to handle the edit/update/cancel options that are part of the process for
editing rows in a Web page, even in ASP.NET 1.x, and you still had to figure
out how to push the changes back into the database by executing SQL
UPDATE statements.

In ASP.NET 2.0, all of this goes away if you are happy to use the default
parameterized SQL statement approach to updating the database table. You
just select the Enable Editing and Enable Deleting options in the tasks pane
for the GridView control. You will see the Edit and Delete links appear at
the left-hand side of the grid (see Figure 2.8).

A Day in the Life of a Developer 29

Figure 2.5: Modifying the columns displayed by the GridView control

Now users can edit any of the column values in individual rows (except
for the primary key column) and persist these changes back to the database
(see Figure 2.9), while you still have not written a single line of code!

Adding Filtering to Select Specific Sets of Rows
Just when you think you’ve satisfied Margaret the CEO at AdventureWorks
Trading Inc. with a shiny new Web page for displaying product information,
the phone rings again. It’s Mike, the AdventureWorks sales manager, who
says that his sales people from different divisions of the company will want
to be able to filter the list by category, rather than just getting a list of all of
the products. He would also like this implemented as soon as possible.

Chapter 2: Is It Really This Easy?30

Figure 2.6: Enabling sorting and paging in the GridView tasks pane

Figure 2.7: Applying an Auto Format to the GridView control

Thoughts of a nice long lunch break evaporate, and back you go to
Visual Studio. You will need some kind of control where users can select
the category they want to view, and the obvious one is a drop-down list box
(a DropDownList control). You will also need some way of populating this

A Day in the Life of a Developer 31

Figure 2.9: Editing the rows in the GridView control

Figure 2.8: Enabling editing in the tasks pane of a GridView control

drop-down list with the available categories, taken from the database rows
in the Products table. Therefore, step one is to drag another SqlDataSource
control onto the page and click the Configure Data Source link in the tasks
pane to start the Configure Data Source Wizard.

The first page of the Wizard specifies the connection string to use (you
select the same one that was created for the previous SqlDataSource con-
trol from the list), and then you can specify the query to select the rows for
the database. The table named ProductSubcategory contains the ID and
name of each category for the items in the Products table (see Figure 2.10).

Chapter 2: Is It Really This Easy?32

Figure 2.10: Setting the properties of the new SqlDataSource to select the category details

Now you can drag that DropDownList control onto the page and select
the new SqlDataSource control as the source of the data. You specify that
the DropDownList will show the name of the subcategory, while the value
of each item in the list will be the ProductSubcategoryID. Also, make sure
you set AutoPostback to True (in the tasks pane) so that changes to the
selected value will submit the page to the server (see Figure 2.11).

Run the page, and you see a list of the categories. All of the list controls
that support server-side data binding can be used with a data source
control in this way, even controls such as the DropDownList that were orig-
inally provided with ASP.NET version 1.x.

All that remains is to connect the DropDownList and the GridView
together so that the GridView displays rows from the category selected in

A Day in the Life of a Developer 33

Figure 2.11: Setting the properties of the new DropDownList control

the DropDownList. How much code do you need to write for this? Perhaps
you can guess that the answer is (still) none.

Select the SqlDataSource control that powers the GridView control
and run the Configure Data Source Wizard again by selecting this option
in the tasks pane. In the second page of the Wizard, click the WHERE
button to open the Add WHERE Clause dialog. Here you specify the col-
umn to which the condition will apply; the comparison operator; and the
source of the value to compare against the column value. This value is, of
course, the value currently selected in the DropDownList control, and the
dialog shows the SQL expression that will be added as the WHERE clause
next to the Add button (see Figure 2.12).

This adds a WHERE clause to the SQL statement that includes a parameter
for the category, and adds a ControlParameter to the declaration of the
SqlDataSource control. If you switch to Source view in Visual Studio 2005 or
Visual Web Developer, you will see the code for the SqlDataSource control

Chapter 2: Is It Really This Easy?34

Figure 2.12: Adding a WHERE clause to select on subcategory

with this ControlParameter element nested in the SelectParameters
section (see Listing 2.1).

Listing 2.1. The SqlDataSource Control and Its Nested ControlParameter

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ... >

<InsertParameters>

...

</InsertParameters>

<UpdateParameters>

...

</UpdateParameters>

<DeleteParameters>

...

</DeleteParameters>

<SelectParameters>

<asp:ControlParameter ControlID="DropDownList1"

Name="ProductSubcategoryID" PropertyName="SelectedValue"

Type="Int16" />

</SelectParameters>

</asp:SqlDataSource>

A Day in the Life of a Developer 35

Figure 2.13: Filtering the rows by category using a DropDownList and ControlParameter

Now, as the page posts back each time the user makes a selection in
the DropDownList, the original SqlDataSource control populates the
parameter in the SQL statement with the SelectedValue property of the
DropDownList, so that the GridView displays only rows from the selected
category (see Figure 2.13).

Displaying Single Rows in a Form for Editing
The page now displays the rows from the database table, allows them to be
sorted in almost any order, and displays them in separate pages. It also
allows filtering by product category to be applied to the rows, and editing
to be performed on all but the primary key column. However, this editing
feature is not the most ideal of approaches, and it is not as intuitive as the tra-
ditional approach for editing the values in one row in a separate “form”-style
page.

In ASP.NET 2.0, you can take advantage of a new control named
DetailsView that provides a “one page at a time” view of the rows exposed
by a data source control. Moreover, you can connect the GridView and
DetailsView controls together so that viewing rows is easy in the grid,
while editing is more intuitive in the “form” view.

The first step in this process is to turn off editing in the GridView, and
enable selection so that users can select a row in the GridView control. Both
of these tasks are performed simply by setting the checkboxes in the tasks
pane for the GridView control (see Figure 2.14).

Now you drag another SqlDataSource control onto the page and click the
Configure Data Source link in the tasks pane to start the Wizard. In the first
page, you select the same connection string as before. In the second page of the
Wizard, you specify that the query should include all except for the last two
columns from the Product table. Then click the WHERE button to add a Con-
trolParameter to the SqlDataSource control just as you did in the previous
section. However, this time, specify the SelectedValueproperty of the Grid-
View control so that––following a postback––this third SqlDataSource con-
trol will expose only the row selected in the GridView control (see Figure 2.15).

By default, the SqlDataSource does not provide for editing of rows. It
only did so for the SqlDataSource that powers the main GridView control
because you created this by dragging a table from the Server/Database
Explorer window onto the page. When you add a SqlDataSource to a
page from the Toolbox, you must specify if you want to be able to update

Chapter 2: Is It Really This Easy?36

Figure 2.14: Specifying selection without editing features for a GridView control

the rows (in most cases you will not, and so this default makes sense). You
therefore remember to click the Advanced button in the second page of the
Wizard and tick the options in the dialog that appears (see Figure 2.16).

Next, drag a DetailsView control onto the page and bind it to the new
SqlDataSource control using the drop-down Choose Data Source list in
the tasks pane. While you are there, use the options in the tasks pane for the
DetailsView control to apply the same Auto Format as before, and turn
on Enable Inserting, Enable Editing, and EnableDeleting. You then see
the Edit, Delete, and New links appear at the bottom of the control (see
Figure 2.17). You also adjust the width of the DetailsView control by drag-
ging the right-hand border.

Now you can run the page to see the results. You discover that, as you
select rows in the GridView, the DetailsView shows the values for that
row. Moreover, using the links at the bottom of the DetailsView, all the

A Day in the Life of a Developer 37

Figure 2.15: Creating a ControlParameter for the third SqlDataSource control

Chapter 2: Is It Really This Easy?38

Figure 2.16: Specifying the options to allow row updates through controls linked to this

SqlDataSource

values (except for the primary key) are available for editing. You can even
insert new rows. It looks rather like a traditional executable data access
application, yet you have built it in less than an hour––and you still have
not had to write any code at all (see Figure 2.18)!

Working with Data Exposed through a Business Object
Just as you are leaning back and admiring your handiwork, the phone rings
again. This time, it is the senior developer at AdventureWorks Trading
Inc.––and he is not a happy fellow. His team has spent months building an
object-oriented business and data access layer, and they do not approve of
people using SQL statements to access the database directly. This n-tier
architecture approach is a common scenario, and you probably should have
known better at the start. The SqlDataSource can use stored procedures
instead of SQL statements, but to use a data layer based on business objects
means more significant changes are required.

However, all you actually need do is change the controls that expose
the data (the SqlDataSource controls) for controls that can communicate
with business objects. AdventureWorks can provide a .NET managed code
assembly that implements their data access layer, so all you have to do is
switch to using this in place of direct database access.

A Day in the Life of a Developer 39

Figure 2.17: Setting the editing options for the DetailsView control

However, first, you must install the business object. As it is a .NET
assembly, there is no registration required. A compiled DLL can just be
dropped into the bin folder of the application, and then referenced in the
pages. What happens if the code is not compiled? In that case, you can run
the compiler from the command line, or use Visual Studio to compile it, and
then deploy.

Even better, in ASP.NET 2.0, you can deploy the source code and leave it
to ASP.NET to compile it and register it with the application at runtime.
Files placed in the App_Code subfolder of the application root folder are
compiled automatically as soon as the application starts (when the first hit
is received), and the compiled code is stored on disk for use in subsequent
hits. If you edit or update the source code file, it is automatically recompiled
and the application restarts.

Chapter 2: Is It Really This Easy?40

The (extremely simplified) data access component provided by the
AdventureWorks team is a single class file named DataLayer.cs con-
taining public methods that return the data to be displayed in the page
(it does not support updates to the data). The three methods it exposes
are named GetProductsByCategory, GetProductByProductID, and
GetCategoryList—as shown in Listing 2.2.

Listing 2.2. The Data Access Component Implemented as a Class File

using System;

using System.Data;

using System.Data.SqlClient;

using System.Configuration;

public class DataLayer

{

public DataSet GetProductsByCategory(Int32 category)

{

String connect = ConfigurationManager.ConnectionStrings[

"AdventureWorksConnectionString1"].ConnectionString;

String sql = "SELECT ProductID, Name, ProductNumber, Color, "

+ "StandardCost, ListPrice, ProductSubcategoryID "

+ "FROM AdventureWorks.Production.Product "

+ "WHERE ProductSubcategoryID = @Category";

using (SqlConnection con = new SqlConnection(connect))

{

SqlDataAdapter da = new SqlDataAdapter(sql, con);

da.SelectCommand.Parameters.AddWithValue("@Category", category);

DataSet ds = new DataSet();

da.Fill(ds, "Products");

return ds;

}

}

public DataSet GetProductByProductID(Int32 pid)

{

String connect = ConfigurationManager.ConnectionStrings[

"AdventureWorksConnectionString1"].ConnectionString;

String sql = "SELECT ProductID, Name, ProductNumber, "

+ "SafetyStockLevel, Color, FinishedGoodsFlag, "

+ "MakeFlag, ReorderPoint, StandardCost, ListPrice, "

+ "Size, DaysToManufacture, Weight, "

+ "WeightUnitMeasureCode, SizeUnitMeasureCode, "

+ "ProductSubcategoryID, Style, Class, ProductLine, "

+ "ProductModelID, SellStartDate, SellEndDate, "

+ "DiscontinuedDate "

+ "FROM AdventureWorks.Production.Product "

+ "WHERE ProductID = @ProductID";

using (SqlConnection con = new SqlConnection(connect))

{

A Day in the Life of a Developer 41

SqlDataAdapter da = new SqlDataAdapter(sql, con);

da.SelectCommand.Parameters.AddWithValue("@ProductID", pid);

DataSet ds = new DataSet();

da.Fill(ds, "Products");

return ds;

}

}

public SqlDataReader GetCategoryList()

{

String connect = ConfigurationManager.ConnectionStrings[

"AdventureWorksConnectionString1"].ConnectionString;

String sql = "SELECT ProductSubcategoryID, Name "

+ "FROM AdventureWorks.Production.ProductSubcategory";

SqlConnection con = new SqlConnection(connect);

try

{

con.Open();

SqlCommand cmd = new SqlCommand(sql, con);

return cmd.ExecuteReader(CommandBehavior.CloseConnection);

}

catch

{

return null;

}

}

}

The data access class listed here is designed to be only a basic demon-
stration of using the ObjectDataSource control. A “real-world” exam-
ple would generally contain a great deal more code, incorporate update
methods, and use stored procedures rather than declarative SQL
statements.

The ASP.NET page calls these methods, via the data source control, to
fetch rows from the database table. Therefore, the next step after deploying
the data access class file is to remove the SqlDataSource controls from the
page and replace them with instances of the ObjectDataSouce control.
Using the Configure Data Source Wizard for each one, you connect these con-
trols to the data access layer so that they can expose the same rowsets as the
SqlDataSource controls did. No changes are required to the UI of the page,
and––besides the data-access layer class––there is still no code required!

Figure 2.19 shows the only two steps required to connect the Object-
DataSource that populates the DropDownList of categories to the GetCat-
egoryList method, because this method accepts no parameters. The
ObjectDataSource for the GridView control requires a parameter, and this

Chapter 2: Is It Really This Easy?42

Figure 2.18: Viewing and editing rows in a linked DetailsView control

is specified in the third step of the Configure Data Source Wizard––it recog-
nizes that a parameter is required, and you link it up to the SelectedValue
property of the DropDownList just as you did when using a SqlDataSource
control earlier (see Figure 2.20).

Having added a third ObjectDataSource control to replace the
SqlDataSource that populates the DetailsView control, you just connect

A Day in the Life of a Developer 43

Figure 2.19: Configuring the ObjectDataSource for the DropDownList

Figure 2.20: Configuring the ObjectDataSource for the GridView

the DropDownList, GridView, and DetailsView controls to the new data
source controls using the tasks panes for each one. Because the data layer
does not support editing, the tasks panes do not display the Enable Editing
checkbox (see Figure 2.21).

Now you can run the page, and see that—with the exception of editing
features––the results are the same (see Figure 2.22). This is just what you
want and expect, because the UI has not changed. In addition, the work

Chapter 2: Is It Really This Easy?44

involved in changing to a data access/business object layer from declarative
SQL statements is not difficult or time-consuming.

Caching the Data to Reduce Database Access
It has taken a couple of hours to build the new page for Margaret at
AdventureWorks Trading Inc., and you are ready for a break. However,
Lucy (the database administrator), has just been told about the new features
in the application. It is her job to keep the database running smoothly and
efficiently, and she is worried that you are going to slow things down. You

Figure 2.21: Connecting the data display controls to the ObjectDataSource instances

A Day in the Life of a Developer 45

are generating constant hits on her database server for every postback as
users sort, page, filter, select, and edit rows.

Lucy is a great believer in caching data where it does not change very
often, and wants you to implement this in the new page. No, not next week,
but now. It looks very much like the game of golf you were planning is not
going to happen today.

Figure 2.22: The results from using a data access/business logic layer

AdventureWorks Trading Inc. uses the new SQL Server 2005 database,
and so you can take advantage of a feature called database cache invalida-
tion to improve performance and reduce database server loading. This
makes much more sense than the traditional technique of caching for a spe-
cific period, based on a best guess as to how often the data might change.

ASP.NET database cache invalidation supports both SQL Server 2000
and SQL Server 2005. In SQL Server 2000, you use the special tool named
aspnet_regsql (in the %windir%\Microsoft.NET\Framework\[version]
folder of your machine) to prepare the database and the table containing
your source data. You also have to edit your Web.Config file (see Chapter 11
for more details).

In SQL Server 2005, database cache invalidation depends on the Broker
Service feature of the database. This allows a SqlCacheDependency to
be linked to a data source control so that the data is cached within ASP.NET
and only refreshed from the database when it changes (or when another
notifiable event such as a server restart occurs on the database server).

All that is required, when you use the data source controls, is to add an
OutputCachedirective to the page that includes a SqlDependency attribute.

<%@OutputCache SqlDependency="CommandNotification"

Duration="60" VaryByParam="*" %>

Note that you must enable the Broker Service for the database, and
grant the relevant permissions, before using the Command Notification
architecture. For more details, see http://msdn.microsoft.com/library/
enus/dnvs05/html/querynotification.asp.

Now you can run the page and then refresh it without causing a database
query to occur (you can monitor database activity using the SQL Profiler tool
that comes with SQL Server). However, if you open the source table in Visual
Studio or Visual Web Developer and change one of the column values, you
will see that the next time you refresh the page there is a hit on the database.

Using a Master Page to Give a Consistent Look and Feel
The styles you applied to the GridView and DetailsView controls, using the
Auto Format feature, provide a reasonably attractive outcome. However,
they say that beauty is in the eye of the beholder, and so it is no surprise to
hear the phone ringing again. This time, Juan-Paul from the marketing

Chapter 2: Is It Really This Easy?46

http://msdn.microsoft.com/library/enus/dnvs05/html/querynotification.asp
http://msdn.microsoft.com/library/enus/dnvs05/html/querynotification.asp

A Day in the Life of a Developer 47

department is “just calling to say” that they have a corporate design scheme
from their Web site, and he would really appreciate your help to “facilitate an
outward appearance of compatibility for reasons of enhanced staff resource
utilization via familiarization with the infrastructure.”

You take a wild guess that he means he wants the new page to follow the
same style and layout as the existing pages. After promising Juan-Paul that
you will “personally endeavor to push the envelope, drive the process, and
aim skyward toward a satisfactory and visually coherent solution,” you fire
up Visual Studio again.

Luckily, you took advantage of the Master Pages feature of ASP.NET 2.0
when you built the AdventureWorks Web site. Therefore, fitting the new
page into the existing site simply means converting it from a “normal” Web
page into a Content Page and referencing the Master Page file. You did this
because you realized marketing departments have a changeable attitude to
life, and you may well be required to change the whole design and layout of
the site at some time in the future. Figure 2.23 shows the Master Page, with

Figure 2.23: The AdventureWorks Master Page in Design View in Visual Studio

the ContentPlaceHolder control indicating the area occupied by the con-
tent from each of the Content Pages. The code that creates this page is shown
in Listing 2.3, where you can see the PlaceHolder control within an HTML
table.

Listing 2.3. The Source Code of the AdventureWorks Master Page

<%@ Master Language="C#" AutoEventWireup="true"

CodeFile="MasterPage.master.cs" Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>AdventureWorks Inc.</title>

<link rel="Stylesheet" type="text/css"

href="StyleSheet.css" title="Default" />

</head>

<body topmargin="0" leftmargin="0" rightmargin="0">

<form id="form1" runat="server">

<table width="100%" border="0" cellpadding="0" cellspacing="0">

<tr>

<td align="left" colspan="3" bgcolor="#000000">

</td>

</tr>

<tr>

<td bgcolor="#000000"> </td>

<td style="padding:10px">

<asp:ContentPlaceholder id="CP1" runat="server" />

</td>

<td bgcolor="#000000"> </td>

</tr>

<tr>

<td align="center" colspan="3" bgcolor="#000000">

AdventureWorks Inc. is a fictional corporation.

</td>

</tr>

</table>

</form>

</body>

</html>

All that is required is to strip out of the page all the <html>, <body>,
<head>, <form>, and other elements that are not part of the display of rows
from the new Web page. Then add the MasterPageFile attribute to the
Page directive, and wrap the content in a Content control that specifies the

Chapter 2: Is It Really This Easy?48

ContentPlaceHolder control on the Master Page that it will populate.
Listing 2.4 shows how this looks in outline.

Listing 2.4. The Outline Structure of a Content Page

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Products.aspx.cs" Inherits="Products"

MasterPageFile="~/MasterPage.master" %>

<asp:Content ContentPlaceHolderID="CP1" runat="server" ID="Content1">

... all page content goes here ...

</asp:Content>

Now, in Design view of the “product list” page, you can see how the new
page fits into the Master Page (see Figure 2.24), with the Master Page itself
grayed out and not available for editing unless you open it in a separate
window. At runtime, the Master Page content merges into the content
generated by the new page you have been building to give the combined
result.

Adding a Menu and Other Navigation Features
One item missing from the site is a menu that makes it easy to navigate from
one page to another. Again, ASP.NET 2.0 provides all you need to implement
various navigation strategies, and the common and effective solution is often
a dynamic fly-out or drop-down menu. The data to drive the Menu control
comes from an XML file named Web.sitemap, which defines the items for
the menu, their position within the hierarchical menu structure, the pop-up
tool-tip for each item, and the target URL for navigation. With the new “prod-
ucts” page added to the XML file, the menu will automatically provide a link
to this page.

You drag a SiteMapDataSource control from the Toolbox and drop it
onto the page, using the Configure Data Source Wizard to select the
Web.sitemap file. Then you drag a Menu control from the Toolbox and
drop it onto the Master Page, select the new SiteMapDataSource control
in the Choose Data Source list, and use the tasks pane to apply a suitable
Auto Format (see Figure 2.25).

You also decide to make it easy for users to tell where they are in the
site hierarchy by adding a SiteMapPath control to the Master Page as
well, at the bottom of the right-hand section of the page below the
ContentPlaceHolder control. This uses the same Web.sitemap file, and

A Day in the Life of a Developer 49

Chapter 2: Is It Really This Easy?50

automatically displays a “breadcrumb trail” for the current page (see
Figure 2.26). In addition, like all the other features of ASP.NET 2.0 you have
used so far, there is no code to write! It all just works...

Figure 2.24: The new page running within the Master Page

Summary 51

Figure 2.25: Adding a SiteMapDataSource and menu control to the Master Page

Figure 2.26: Adding a menu and a navigation trail to the Master Page

Chapter 2: Is It Really This Easy?52

SUMMARY

Although this is a somewhat contrived scenario, this chapter has demon-
strated just how powerful ASP.NET 2.0 is, and how it can considerably
reduce development time while helping you to construct efficient and
attractive Web sites and Web applications. One of the main goals of
ASP.NET 2.0 is to reduce even further the amount of code you have to write
to build dynamic and interactive pages, removing, in particular, the need
for that repetitive code you seem to need for almost all of your projects! As
you can see from this chapter, you can achieve remarkable results without
writing any code at all.

In this chapter, you have seen how you can create and then evolve a data
access page, starting with dragging a database table onto the editing window.
You then saw how easy it is to change the content and appearance of the grid
and then add features like sorting, paging, and editing. The next stage added
a category selection capability, so that only specific sets of rows appear.
Following this was implementation of a “form”-style view of the data.

Once the page provided the features required, you next saw how you
can make it part of an existing site, by matching the overall style and layout
using a Master Page and by integrating it with a menu and navigation
system. All this was achieved within the visual design tool, using drag and
drop techniques and Wizards, and without writing any code at all.

In the next chapter, you will work more deeply with the data source
controls and data display controls introduced here, seeing how they offer
a wide range of features to support all kinds of data management
requirements.

