
SSIS Software Development
Life Cycle

Software Development Life Cycles play an important role in any type of application development.
Many SQL Server database administrators and DTS developers have little experience with
Microsoft Source Control tools because the tools themselves have been less than “database project-
friendly.” Microsoft has responded with a more reliable version of Visual SourceSafe and a new
source control architecture called Team System.

In addition, many SQL Server DBAs have not been involved with Software Development Life
Cycles beyond executing scripts attached to change control documentation. Recent legislation in
the United States has changed the role of the SQL Server DBA in the enterprise. Regarding
Software Development Life Cycles, DBAs now must participate in ever-earlier phases of the pro-
ject development.

In addition, SQL Server DBAs — especially SSIS developers — will realize greater productivity and
development cycle fault tolerance as they employ source-controlled development practices. These
practices produce code that is auditable, an added benefit in the current corporate climate.

This chapter provides an overview of some of the available features in Microsoft’s new offerings. It
includes a brief description of how to store a project in Visual SourceSafe and a detailed walk-
through that describes creating a Team Project — using Visual Studio Team System — for SSIS. In
practice, Team Projects will most likely be created by someone else in the software development
enterprise.

A more detailed examination of Team System is beyond the scope of this book but may be found in
Professional Visual Studio 2005 Team System by Jean-Luc David et al. (Wrox, 2006).

21 584359 ch18.qxd 12/16/05 6:15 PM Page 547

Because the line between database administrator and software developer has blurred and blended over
the years, the Team Project walk-through is built in Visual Studio 2005. In the Team Project walk-
through, you are going to put together a project that uses the source control and collaboration function-
ality provided by Visual Studio Team System to demonstrate working with the tool and complying with
your SDLC process.

This chapter also contains information about debugging and breakpoints — highlighting features new to
database administrators and DTS developers in SSIS.

Included is a discussion regarding development and testing with an admitted bias toward the agile
development methodology. In the author’s humble opinion, there are two types of developers: those
who use agile methodologies and those who will.

The chapter concludes with a discussion about managing package deployment.

Introduction to Software Development Life
Cycles

Software Development Life Cycles (or SDLCs) are a systematic approach to each component of application
development — from the initial idea to a functioning production application. A step (or phase) is a unit of
related work in an SDLC. A methodology is a collection of SDLC steps in action, applied to a project.
Artifacts are the recorded output from steps.

For example, the first step of an SDLC is Analysis. The methodology requires a requirements document
as an Analysis artifact.

Software Development Life Cycles: A Brief History
Software Development Life Cycles have existed in some form or other since the first software applica-
tions were developed. The true beginning of what is now termed “software” is debatable. For your pur-
poses, the topic is confined to binary operations based on Boolean algebra.

In 1854, mathematician George Boole published An Investigation of the Laws of Thought, on which are
founded the Mathematical Theories of Logic and Probabilities. This work became the foundation of what is
now called Boolean algebra. Some 80 years later, Claude Shannon applied Boole’s theories to computing
machines of Shannon’s era. Shannon later went to work for Bell Labs.

Another Bell Labs employee, Dr. Walter Shewhart, was tasked with quality control. Perhaps the pinnacle
of Dr. Shewhart’s work is statistical process control (SPC). Most quality control and continuous improve-
ment philosophies in practice today utilize SPC. Dr. Shewhart’s work produced a precursor to Software
Development Life Cycles, a methodology defined by four principles: Plan, Do, Study, and Act (PDSA).

Dr. Shewhart’s ideas influenced many at Bell Labs, making an accurate and formal trace of the history
difficult. Suffice it to say that Dr. Shewhart’s ideas regarding quality spread throughout many industries;
one industry influenced was the software industry.

548

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 548

Types of Software Development Life Cycles
SQL Server Integration Services provides integrated support for many SDLC methodologies. This chap-
ter will touch on a few of them. In general, SDLCs can be placed into one of two categories: waterfall
and iterative.

Waterfall SDLCs
The first formal Software Development Life Cycles are sequential or linear. That is, they begin with one
step and proceed through subsequent steps until reaching a final step. A typical example of linear
methodology steps is the following:

❑ Analysis: Review the business needs and develop requirements.

❑ Design: Develop a plan to meet the business requirements with a software solution.

❑ Development: Build the software solution.

❑ Implementation: Install and configure the software solution.

❑ Maintenance: Address software issues identified after implementation.

These methodologies are referred to as waterfall methodologies because information and software “fall”
one-way from plateau to plateau (step to step).

Waterfall methodology has lots of appeal for project managers. It is easier to determine the status and
completeness of a linear project: It’s either in analysis, in development, in implementation, or in
maintenance.

A potential downside to the waterfall methodology is that the analysis and design steps are traditionally
completed in a single pass at the beginning of the project. This does not allow much flexibility should
business needs change after the project starts. In addition, the development and implementation steps
are expected to be defined prior to any coding.

Iterative SDLCs
Iterative methodology begins with the premise that it’s impossible to know all requirements for a suc-
cessful application before development starts. Conversely, iterative development holds that software is
best developed within the context of knowledge gained during earlier development of the project.
Development therefore consists of several small, limited-scope, feature-based iterations that deliver a
product ever closer to the customer’s vision.

The following are examples of iterative SDLCs:

❑ Spiral: Typified by ever-expanding scope in hopes of identifying large design flaws as soon as
possible.

❑ Agile: A collection of methodologies fall into this category, including Scrum, Feature-Driven
Development, Extreme Programming, Test-Driven Design, and others.

❑ Microsoft Solutions Framework: Microsoft’s own practice gleaned from a sampling of best
practices from different methodologies.

549

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 549

What happens if, hypothetically, an iteration fails to produce the desired functionality? The developer or
DBA must remove the changes of the last iteration from the code and begin again. This is much easier to
accomplish if the developer or DBA has stored a copy of the previous version someplace safe, hence the
need for source control.

Source control is defined as preserving the software source code in a format that allows recovery to a
previous state of development or version, and it is a basic tenet of all iterative Software Development
Life Cycles.

Versioning and Source Code Control
SQL Server 2005 and SQL Server Integration Services (SSIS) integrate with source control products such
as Microsoft Visual SourceSafe (VSS) and the new Team System. Visual SourceSafe is Microsoft’s current
source control product. Team Foundation Server is Microsoft’s new suite of SDLC management tools —
which includes a source control engine.

Microsoft Visual SourceSafe
Visual SourceSafe 2005, which ships with the 2005 developer product suites, is an upgrade to previous
versions of the product. It boasts improved stability, performance, access, and capacity. In this section,
you’ll create a project in SQL Server Business Intelligence Development Studio (BIDS) and use it to
demonstrate integrated source control with Microsoft Visual SourceSafe.

To configure SSIS source control integration with Microsoft Visual SourceSafe 2005, open the SQL Server
Business Intelligence Development Studio. You don’t need to connect to an instance of SQL Server to
configure integrated source control.

To configure Visual SourceSafe as your SSIS source control, click Tools ➪ Options. Click Source Control
and select Microsoft Visual SourceSafe. Expand the Source Control node and click Environment for
detailed configuration, as shown in Figure 18-1.

Figure 18-1
550

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 550

The Source Control Environment Settings drop-down list contains three options that represent source
control environment roles: Visual SourceSafe, Independent Developer, and Custom.

The Custom role is automatically selected if you begin customizing the source control behaviors in the
environment. The following options are available for customization:

❑ Get everything when opening a solution or project:

❑ Checked: Retrieves all solution or project files from source control when a solution or
project is opened.

❑ Not checked: You must manually retrieve files from source control.

❑ Check in everything when closing a solution or project:

❑ Checked: Automatically checks in all files related to a solution or project on close.

❑ Not checked: Does not automatically check in all files related to a solution or project on
close.

❑ Don’t show Check Out dialog box when checking out items:

❑ Checked: Hides Check Out dialog box when checking out items.

❑ Not checked: Displays Check Out dialog box when checking out items.

❑ Don’t show Check In dialog box when checking in items:

❑ Checked: Hides Check In dialog box when checking in items.

❑ Not checked: Displays Check In dialog box when checking in items.

❑ Keep items checked out when checking in:

❑ Checked: Allows you to continue editing items that have been checked into source
control.

❑ Not checked: You must manually check out the file before editing it.

❑ Checked-in item behavior on Save:

❑ Prompt for checkout: You are prompted to check out the files after each Save.

❑ Check out automatically: Files are checked out automatically when you Save.

❑ Save as: When Save is clicked, a Save As dialog box appears.

❑ Checked-in item behavior on Edit:

❑ Prompt for checkout: You are prompted to check out the files when you begin editing.

❑ Prompt for exclusive checkouts: You are prompted to exclusively check out the files
when you begin editing.

❑ Check out automatically: Files are checked out automatically when you begin editing.

❑ Do nothing: When you begin editing, SQL Server Management Studio does nothing.

551

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 551

❑ Allow checked-in items to be edited:

❑ Checked: When you begin editing a checked-in file, the Checkout on Edit dialog box
appears. This option allows you to check out the file or continue editing without check-
ing out the file.

This is not a best practice. The only situation where this has any useful application is if you intend to
save the contents as a new file. If this is the case, it is recommended that you open the existing source-
controlled version, save it as the other file, and then make your edits.

❑ Not checked: Edits to checked-in items are not allowed.

The following predefined roles, and their settings, are available:

❑ Visual SourceSafe — A generic role with the following settings:

❑ Keep items checked out when checking in: Not checked.

❑ Checked-in item behavior on Save: Check out automatically.

❑ Checked-in item behavior on Edit: Check out automatically.

❑ Allow checked-in items to be edited: Not checked.

❑ Independent Developer — A role defined for stand-alone development with the following
settings:

❑ Keep items checked out when checking in: Checked.

❑ Checked-in item behavior on Save: Check out automatically.

❑ Checked-in item behavior on Edit: Check out automatically.

❑ Allow checked-in items to be edited: Not checked.

Check out automatically is the default behavior for checked-in items when saving or editing a project.
By not requiring developers to manually check out code, this feature alone saves hours of development
time.

One of the options for Source Control (or the Plug-in Selection) is Microsoft Visual SourceSafe
(Internet). You can configure Visual SourceSafe for remote access through and intranet or the Internet.
This allows you to store source files off-site. A detailed description is beyond the scope of this book, but
you can learn more by browsing the “How to: Enable the Internet Service for Remote Access” topic in
the Microsoft Visual SourceSafe Documentation.

For the purposes of this demo, select Visual SourceSafe from the Source Control Environment Settings
drop-down list and configure source control options as shown in Figure 18-1.

Open the SQL Server Business Intelligence Development Studio by clicking Start ➪ All Programs ➪

Microsoft SQL Server 2005 ➪ SQL Server Business Intelligence Development Studio (BIDS). Because
BIDS uses the Visual Studio Integrated Development Environment (IDE), opening SQL Server Business
Intelligence Development Studio will open Visual Studio 2005 if you have Visual Studio 2005 installed.
When the BIDS IDE opens, click File ➪ New ➪ Project to start a new project. Enter a project name in
the New Project dialog box. For now, do not check the Add to Source Control checkbox as shown in
Figure 18-2.

552

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 552

Figure 18-2

Click OK to proceed, and a new project is created in the BIDS IDE.

Add the project to Microsoft Visual SourceSafe by right-clicking the project name in the Solution
Explorer and selecting Add to Source Control. You will be prompted to log in to Microsoft Visual
SourceSafe. Enter your credentials and click OK as shown in Figure 18-3.

Figure 18-3

553

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 553

The Add to SourceSafe dialog box appears, as shown in Figure 18-4. SSISDemo1.root is the default VSS
project name assigned to your project. Accept the default by clicking OK.

Figure 18-4

Since an SSISDemo1 project does not currently exist in your instance of Visual SourceSafe, you will be
prompted to create a project. Click Yes on the dialog box.

After successfully creating a VSS project to maintain your source code, you are returned to the BIDS
development environment. Notice the source control “lock” beside your project and Package file as
shown in Figure 18-5. The lock icons indicate that the objects are checked in.

Figure 18-5

Manually check out Package.dtsx for editing by right-clicking Package.dtsx in the Solution Explorer and
clicking Check Out for Edit. The Check Out for Edit dialog box appears as shown in Figure 18-6. You
may enter a comment to identify why you are checking out the package. This is a good location for
change control documentation references, or at a minimum, good notes.

554

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 554

Figure 18-6

Click Check Out to start the checkout process. A Microsoft Visual SourceSafe dialog box will appear,
prompting you overwrite your local file or keep your changes. Select the Replace Your Local File with
this Version from SourceSafe? option and check the Apply to All Items checkbox. Click OK to begin edit-
ing. The Solution Explorer icon beside the Package.dtsx item will change to a red check mark to indicate
that the item is checked out exclusively to you, as shown in Figure 18-7.

Figure 18-7

Click View ➪ Pending Checkins to open the Pending Checkins window. The Pending Checkins window
displays checked-out files awaiting check-in, as shown in Figure 18-8.

Figure 18-8

555

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 555

Click the Comments button to add any notes to your check-in operation. Again, this is an excellent place
to add change control documentation references and bug fixes. Click the Check In button to check your
code back into source control. The Source Control confirmation dialog box appears.

If you check the Don’t Show this Dialog Box Again (Always Check In) checkbox, you will not see this
dialog box on check-in operations. Click the Check In button to continue. Note that the Pending
Checkins window is now empty, as no items are checked out for the project.

Observe the Package.dtsx item in the Solution Explorer as you drag a Data Source task onto the Control
Flow workspace. A red check mark appears beside the Package.dtsx item. This is the “automatic check-
out on edit” feature in action. The Pending Checkins window will now contain the Package.dtsx item, as
well as its parent items.

Continue the package construction by right-clicking the Connection Managers workspace just below the
Control Flow workspace. Click New ADO.Net Connection to launch the Configure ADO.NET Connection
Manager. Click the New button to open the Connection Manager editor. Type or select a server name in
the Server Name drop-down list. Select Use Windows Authentication to log on to the server, and select
AdventureWorks in the Database Name drop-down list, as shown in Figure 18-9.

Figure 18-9

Click OK to continue, and OK again to close the ADO.Net Connection Manager.

556

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 556

Double-click the Data Flow task on the Control Flow workspace to edit it. Drag a DataReader Source
onto the Data Flow workspace and double-click it to edit. On the Connection Managers tab, in the
Connection Manager drop-down list, select the ADO.Net Connection Manager you just defined.

The ADO.Net Connection Manager I defined shows up as AndyLTM.AdventureWorks because my
machine is named AndyLTM and the database is named AdventureWorks. Your ADO.Net Connection
Manager will be named something different.

Click the Component Properties tab and enter the following SQL query in the SQLCommand property:

SELECT * FROM Purchasing.vVendor

Your Component Properties tab will look like Figure 18-10.

Figure 18-10

557

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 557

Click the Column Mappings tab, and then click OK to close the Advanced Editor for DataReader Source.
Save your code, and then open the Pending Checkins window by clicking View ➪ Pending Checkins.
Click the Comments button and enter Added Connection and DataReader in the Comment text box as
shown in Figure 18-11.

Figure 18-11

Click the Check In button to add current changes to source control. Continue editing by dragging a Flat
File Destination onto the Data Flow workspace. Drag the DataReader Source output (represented by a
green arrow) from the DataReader Source to the Flat File Destination as shown in Figure 18-12.

Figure 18-12

Double-click the Flat File Destination to edit. Click the New button beside the Flat File Connection
Manager drop-down list. The Flat File Format dialog box will appear; select Delimited and click OK. The
Flat File Connection Manager appears. Enter File 1 in the Connection Manager Name text box. Click the
Browse button beside the File Name text box and enter C:\File1.txt in the File Name text box. Click
Open to continue. Check the Column Names in the First Data Row check box and accept the remaining
defaults as shown in Figure 18-13.

558

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 558

Figure 18-13

Click OK to close the Flat File Connection Manager Editor. This returns you to the Flat File Destination
Editor. Click the Mappings item from the list on the left to configure column mappings for the connec-
tion, as shown in Figure 18-14.

Click OK to close the Flat File Destination Editor. Click View ➪ Pending Checkins to view the Pending
Checkins window. Enter Added File1.txt destination in the Comments text box and click the Check In
button.

You now have a functional version of a package in source control. Don’t take my word for it — click the
Play button (or press F5) to execute the package. After some validation completes, you should see the
Data Flow items turn green, as shown in Figure 18-15.

559

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 559

Figure 18-14

Figure 18-15

560

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 560

Note that the Package.dtsx item is read-only as it is now saved in VSS.

Click the Stop button (or press Shift+F5) to stop the debugger. You can view the resulting output by
opening Windows Explorer and double-clicking the C:\File1.txt file, as shown in Figure 18-16.

Figure 18-16

You will now roll back to an earlier version of the package. To begin, click File ➪ Source Control ➪

Launch Microsoft Visual SourceSafe. Navigate to the SSISDemo1 folder containing Package.dtsx as
shown in Figure 18-17.

Figure 18-17

View the history of the project by clicking Tools ➪ Show History (or Ctrl+H). The Project History dialog
box displays as shown in Figure 18-18.

561

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 561

Figure 18-18

For the purposes of this demo, click the OK button to accept the defaults. The History of Project dialog
box appears, showing all source control activity and items, as shown in Figure 18-19.

Figure 18-19

Click on the version of Package.dtsx that is the second newest and click the Get button. A dialog box ask-
ing if you wish to get the entire project with this version displays. Click the Yes button, and another dia-
log box prompts you for the location of the project files, as shown in Figure 18-20.

Figure 18-20

Clicking the OK button restores the previous version of code over your existing version. After clicking
the OK button, return to the SQL Server Business Intelligence Development Studio environment. A
prompt to reload displays as shown in Figure 18-21.

562

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 562

Figure 18-21

Click the Yes To All button to reload all files in the project. Click the Data Flow tab to observe that the
Flat File Destination and File1 Connection Manager are no longer part of this project, as shown in Figure
18-22. They have been removed from the project due to your version rollback from source control.

Figure 18-22

Add another Flat File Destination to the Data Flow workspace. Configure this Flat File Destination
exactly like the first, except change the file and Connection Manager names from File1 to File2 as shown
in Figure 18-23.

563

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 563

Figure 18-23

Open the Pending Checkins window and add the following comment: “Rolled back and added File2.txt
destination.” Click the Check In button to store this version in source control.

Execute the package by clicking the Play button. Verify C:\File2.txt is created and populated with
Vendor data from the AdventureWorks database.

Return to Visual SourceSafe and click Tools ➪ Show History to view the project history. As before, select
the second Package.dtsx in the history list and click the Get button as shown in Figure 18-24.

Figure 18-24

564

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 564

Click OK when the location confirmation dialog box displays and return to the BIDS environment.
Click the Data Flow Task tab and confirm that you now see the original working version of the package.
The File1 Connection Manager and Flat File Destination should now reflect this status, as shown in
Figure 18-25.

Figure 18-25

This example has provided a rudimentary procedure for manually accomplishing branching — a topic
that will be covered in a section to come.

Visual SourceSafe is a familiar source control tool to many with application development experience. For
this reason, it has been updated and integrated into the 2005 integrated development environments. The
new version addresses many complaints and shortcomings of previous versions of the product that were
not touched on in this section. One example of this is the native Internet connectivity functionality.

The next section provides a brief introduction to Microsoft’s new source control (and so much more)
server and client tools known collectively as Team System.

Team Foundation Server, Team System, and SSIS
With the coordinated release of SQL Server 2005 and Visual Studio 2005, Microsoft introduced Team
System and Team Foundation Server — a powerful enterprise software development life cycle suite and
project management repository consisting of collaborative services, integrated functionality, and an
extensible application programming interface (API). Team System seamlessly integrates software devel-
opment, project management, testing, and source control into the Visual Studio 2005 IDE.

To configure Team Foundation Server as your SSIS source control, click Tools ➪ Options. Click Source
Control and select Visual Studio Team Foundation. Expand the Source Control node for detailed config-
uration, as shown in Figure 18-26.

565

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:15 PM Page 565

Figure 18-26

This section discusses the relationship between Team System and SQL Server Integration Services. The
walk-through is shown using Visual Studio 2005, but it can be completed in SQL Server Business
Intelligence Developer Studio (BIDS).

If Visual Studio 2005 is installed, opening BIDS will open Visual Studio 2005. If Team System is specified
as the source controller for either environment, the environment, upon opening, will attempt to connect
to a Team Foundation Server. Open Visual Studio 2005 to proceed.

Once Visual Studio 2005 is open, press Shift+Alt+T or click the Team Explorer tab to view the Team
System properties. Click the Connect to the Team Foundation Server icon (as shown in Figure 18-27) to
connect to the Team System server.

Figure 18-27

Click the Servers button to browse for a Team Foundation Server or select a TF Server from the drop-
down list as shown in Figure 18-28.

566

Chapter 18

21 584359 ch18.qxd 12/16/05 6:15 PM Page 566

Figure 18-28

Once you’ve connected to the Team Foundation Server, open the Team Explorer and click the New Team
Project icon, or right-click the Team Foundation Server and click New Team Project. The New Team
Project wizard starts. Enter a name and optional description for the new team project, and click Next to
continue. Select a Process Template on the next step of the New Team Project wizard, as shown in
Figure 18-29.

Figure 18-29

567

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 567

Click Next to continue. Here’s where Team System gets fun: The good people on the Team System team
at Microsoft automated the process of creating a project management Web site using Windows
SharePoint Services and Reporting Services.

Click Next to proceed and enter a Team Project Portal title and description in the next step of the wizard
as shown in Figure 18-30, and click Next to continue.

Figure 18-30

In the next step of the wizard, you’ll initialize source control and click Next to continue. The confirma-
tion dialog box displays a summary of selections made. Click Finish to set up the new Team Project. A
new Team Project is defined according to the configuration you specified. Creation status is indicated by
a progress bar as setup scripts execute. If all goes as expected, the wizard will display a Project Created
Successfully dialog box as shown in Figure 18-31.

At this point, you have created a Team System container for your SSIS projects. A Team Project is similar
to a Visual Studio solution, in that you can add several SSIS projects (or any other type of project) to it.

568

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 568

Figure 18-31

If this is your first Team Project, leave View Project Creation Log File checked, and click the Close button
to complete the New Team Project wizard and view the log file. The project creation log file provides a
lot of information that is helpful in troubleshooting should the project creation fail. If the project is cre-
ated successfully, there is no need to view the project creation log.

View Process Guidance Page is checked by default. Team System provides a great overview of the pro-
cess in the Process Guidance page as shown in Figure 18-32. These pages provide a wealth of informa-
tion, useful to beginners and the experienced alike.

“Why create a Team Project?” you ask? The short answer is, “The practice of database development is
changing.” Team development is becoming practical, even required for DBAs, in software shops of all
sizes. It is no longer confined to the enterprise with dozens or hundreds of developers.

Team System provides a mechanism for DBAs to utilize team-based methodologies, perhaps for the first
time. The Team Project is the heart of Team System’s framework for the database developer.

569

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 569

Figure 18-32

MSF Agile and SSIS
MSF Agile is an iterative methodology template included with Team System. In a typical agile software
project, a time- and scope-limited project — called an iteration — is defined by collaboration with the cus-
tomer. Deliverables are established, but they may be de-scoped in the interests of delivering a completed
feature-set at the end of the iteration. An important aspect of agile iterations is that features slip, but
timelines do not slip. In other words, if the team realizes that all features cannot be developed to comple-
tion during the time allotted, the time is not extended, and features that cannot be developed to comple-
tion are removed from the feature-set.

The author advocates agile methodologies.

No one uses a single methodology alone. There are facets of waterfall thinking in any iterative project. In
practice, your methodology is a function of the constraints of the development environment imposed by
regulatory concerns, personal style, and results.

570

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 570

Once an MSF Agile Team Project hierarchy has been successfully created, the following subitems are
available under the project in Team Explorer (see Figure 18-33):

❑ Work Items

❑ Documents

❑ Reports

❑ Team Builds

❑ Source Control

Figure 18-33

Take a moment now to examine some subitems.

Work Items
In MSF Agile projects, work items consist of Tasks, Bugs, Scenarios, and Quality of Service
Requirements. Bugs are self-explanatory — they are deficiencies or defects in the code or performance of
the application. Scenarios map to requirements and are akin to Use Cases in practice. Quality of Service
(QoS) Requirements include acceptable performance under attack or stress. QoS includes scalability and
security. Tasks are a catchall category for work items that includes features yet to be developed.

Documents
The MSF Agile template includes several document templates to get you started with project documen-
tation. Included are the following:

❑ Process Guidance — An HTML document that describes the MSF Agile process

❑ Development and Testing Project Plans — Microsoft Project templates for development and test-
ing efforts

❑ Project Checklist — A template containing a project “to do” list

571

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 571

❑ Scenarios Spreadsheet — Listing requirements for validation scenarios

❑ Persona document — A template for listing all parties connected to the project

❑ QoS Requirements document — Defining the Quality of Service Requirements and conditions

Reports
The MSF Agile template contains several built-in Reporting Services project status reports. These reports
are accessible directly from Reporting Services or from the Project Portal (SharePoint Portal Services)
Web site.

The Reporting Services home page contains links to several reports as shown in Figure 18-34.

Figure 18-34

The reports are formatted in a style sheet that complements the SharePoint Portal Web site. The
Remaining Work report is shown in Figure 18-35.

Figure 18-35

The Remaining Work report is part of the larger reporting solution provided by the Project Portal. The
Project Portal provides a nice interface for the development team, but project managers are the target
audience. The Project Portal can also serve to inform business stakeholders of project status.

572

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 572

To navigate to the Project Portal home page, right-click the Team Project in the Team Explorer and click
Show Project Portal.

The Project Portal
The Project Portal (see Figure 18-36) is implemented in SharePoint Portal Services and contains several
helpful portals, including the following:

❑ Main Menu

❑ Announcements

❑ Links

❑ Reports (Bug Rates, Builds, and Quality Indicators)

Figure 18-36

Putting It to Work
In this section, you’ll create a small SSIS package to demonstrate some fundamental Team System fea-
tures. To begin, create a new SSIS package in Visual Studio 2005 by clicking File ➪ New ➪ Project. From
the Project Types treeview, select Business Intelligence Projects. From the Templates listview, select
Integration Services Project. Do not check the Add to Source Control check box. Enter SSISDemo as the
project name in the Name text box as shown in Figure 18-37.

573

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 573

Figure 18-37

Click OK to create the new project. Drag a Data Flow task onto the Control Flow workspace as shown in
Figure 18-38.

Figure 18-38

Right-click in the Connection Managers tab and select New OLE DB Connection to add a database con-
nection. Click the New button to create a new OLE DB Connection and complete the configuration dia-
log box, as shown in Figure 18-39.

574

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 574

Figure 18-39

Select your local server from the Server Name drop-down list. Configure the connection for Windows
or SQL Server authentication. Select AdventureWorks as the database name. You can click the Test
Connection button to test connectivity configuration. Click OK to close the Connection Manager dialog,
and OK again to continue.

Double-click the Data Flow task to edit. Drag an OLE DB Source onto the Data Flow workspace.
Double-click the OLE DB Source to edit. Select the AdventureWorks connection in the OLE DB connec-
tion manager drop-down list. Select Table or View in the Data Access Mode drop-down list. Select
[Sales].[vStoreWithDemographics] in the Name of Table or View drop-down list, as shown in
Figure 18-40.

575

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 575

Figure 18-40

Click OK to continue. Drag an Aggregate transformation onto the Data Flow workspace. Connect the
output of the OLE DB Source to the Aggregate transformation by dragging the green arrow from the
source to the transformation. From the Available Input Columns table, select StateProvinceName,
SquareFeet, and AnnualSales. In the grid below, ensure that the operation for StateProvinceName is
Group by, the operation for SquareFeet is Average, and the operation for AnnualSales is Sum as shown
in Figure 18-41.

Click OK to close the Aggregate editor, and drag an OLE DB Source Output (denoted by the green
arrow) from the OLE DB Source to the Aggregate as shown in Figure 18-42.

Drag an Excel Destination onto the Data Flow workspace and connect the Aggregate output to it.
Double-click the Excel Destination to open the Excel Destination Editor. Click the New button beside the
OLE DB Connection Manager drop-down list to create a new Excel connection object. Enter or browse to
the path of an Excel file as shown in Figure 18-43.

576

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 576

Figure 18-41

Figure 18-42

577

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 577

Figure 18-43

Click OK to continue.

You can create an Excel spreadsheet in this step. If you enter the desired name of a spreadsheet that does
not yet exist, the Excel Destination Editor will not be able to locate a worksheet name. The “No tables or
views could be loaded” message to this effect will appear in the Name of Excel Worksheet drop-down
list as shown in Figure 18-44.

Figure 18-44

578

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 578

To create a worksheet, click the New button beside the Name of the Excel Sheet drop-down list. A Create
Table dialog box will appear as shown in Figure 18-45. Click OK to accept the defaults and create the
worksheet and Excel workbook.

Figure 18-45

Click Mappings in the Excel Destination Editor to configure column-to-data mappings. Accept the
defaults by clicking OK.

Click File ➪ Save All to save your work.

Version and Source Control with Team System
To add your SSIS project to the Team Project, open the Solution Explorer, right-click the project, and click
Add to Source Control.

The Add Solution SSISDemo to Source Control dialog box appears containing a list of Team Projects.
Select the SSISTeam Team Project you created earlier, as shown in Figure 18-46.

579

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 579

Figure 18-46

Click OK to continue.

You have successfully created a Team Project and a SSIS project. The Team Project contains version con-
trol information — even now.

Source control is loosely modeled after a library. Items are checked out for modification and checked in
when modifications are complete.

Click View ➪ Other Windows ➪ Pending Changes to view the current source control status for the SSIS
project, as shown in Figure 18-47.

Figure 18-47

The Change column indicates that the files are currently in an Add status. This means the files are not
yet source-controlled but are ready to be added to source control.

580

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 580

Click the Check In button to add the current SSISDemo project to the SSISTeam Team Project’s source
control. This clears the Pending Checkin list. Editing the SSISDemo SSIS project will cause the affected
files to reappear in the Pending Checkin list.

Any change to the SSISDemo project is now tracked against the source-controlled version maintained
by the SSISTeam Team Project. Seemingly insignificant changes count: For instance, moving any of the
items in the Data Flow workspace is considered an edit to the package item and is tracked.

The default behavior for source control in Visual Studio 2005 is that checked-in items are automatically
checked out when edited. You can view the current status of all Team Projects on your Team Foundation
Server in the Source Control Explorer. To access the Source Control Explorer, double-click Source Control
in the Team Explorer or click View ➪ Other Windows ➪ Source Control Explorer as shown in Figure
18-48.

Figure 18-48

The example will now implement a larger change to demonstrate practical source control management
before moving into some advanced source control functionality. In your SSIS project, add an Execute
SQL task to the Control Flow workspace. Configure the task by setting the Connection Type to OLE DB,
the Connection to your AdventureWorks connection, and the SQLSourceType to Direct input, as shown
in Figure 18-49.

Set the SQLStatement to the following:

if not exists(select * from sysobjects where id = object_id(‘Log’)
and ObjectProperty(id, ‘IsUserTable’) = 1)
begin

CREATE TABLE Log (
LogDateTime datetime NOT NULL,
LogLocation VarChar(50) NOT NULL,
LogEvent VarChar(50) NOT NULL,
LogDetails VarChar(1000) NULL,
LogCount Int NULL

) ON [Primary]
ALTER TABLE Log ADD CONSTRAINT DF_Log_LogDateTime DEFAULT (getdate()) FOR

LogDateTime
end

INSERT INTO Log
(LogLocation, LogEvent, LogDetails, LogCount)
VALUES(‘SSISDemo’, ‘DataFlow’, ‘Completed’, ‘1st Run’)

581

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 581

Figure 18-49

It is always a good practice to check your SQL before execution. Do so by clicking the Parse Query but-
ton and correct if necessary. Then click OK to continue.

Connect the Data Flow task to the Execute SQL task by dragging the output (green arrow) of the Data
Flow task over the Execute SQL task as shown in Figure 18-50.

Figure 18-50

582

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 582

Save your changes by clicking the Save button on the toolbar. You now have updated your SSIS project
and saved the changes to disk, but you have not committed the changes to source control. You can verify
this in the Pending Changes window by clicking View ➪ Other Windows ➪ Pending Changes as shown
in Figure 18-51.

Figure 18-51

The Change column indicates that the Package.dtsx is in an Edit status. This means that changes to the
existing source-controlled Package.dtsx file have been detected. Click the Check In button. The next sec-
tion introduces shelving and unshelving changes, using the code in its current state.

Shelving and Unshelving
Shelving is a new concept in Microsoft source control technology. It allows you to preserve a snapshot of
the current source state on the server for later retrieval and resumed development. You can also shelve
code and pass it to another developer as part of a workload reassignment. In automated nightly build
environments, shelving provides a means to preserve semi-complete code in a source control system
without fully checking it into the build.

To shelve code, click the Shelve button on the Pending Checkin toolbar. The Shelve dialog box appears,
as shown in Figure 18-52.

Figure 18-52 583

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 583

The “Preserve pending changes locally” checkbox allows you to choose between rolling back or keeping
the edits since the last source code check-in. Checking the checkbox will keep the changes. Unchecking
the checkbox will roll changes back to the last source-controlled version.

The rollback will effectively “undo” all changes — even changes saved to disk.

Leave the Preserve Pending Changes Locally checkbox checked and click Shelve to proceed.

To unshelve code, click the Unshelve button on the Pending Checkin toolbar. You’ll see the dialog box
shown in Figure 18-53.

Figure 18-53

Click Unshelve to proceed with unshelving. The Unshelve Details wizard opens, providing options for
unshelving metadata and preserving the shelve set on the server as shown in Figure 18-54.

Unshelving code with conflicts will roll the project back to its state at the time of shelving. For this rea-
son, you may wish to consider shelving your current version of the code prior to unshelving a previous
version.

If you see the dialog box similar to the one shown in Figure 18-55 and respond by clicking Yes or Yes to
All, your current version will be rolled back to the shelve set version.

Branching
The ability to branch code provides a mechanism to preserve the current state of a SSIS project and mod-
ify it in some fashion. Think of it as driving a stake in the sod of project space marking the status of the
current change set as “good.”

To branch, open Source Control Explorer. Right-click the project name you wish to branch and click
Branch from the context menu, which brings up the Branch dialog box shown in Figure 18-56. Select a
name for the branched project and enter it into the To text box. Note the option to lock the new branch —
thus preserving it indefinitely from accidental modification. You can further secure the branched code by
including the option to not create local working copies for the new branch.

584

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 584

Figure 18-54

Figure 18-55

Figure 18-56

Merging
Merging is the inverse operation for branching. It involves recombining code that has been modified
with a branch that has not been modified.

585

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 585

To merge projects, open Source Control Explorer. Right-click the name of the branched project containing
the changes and click Merge. The project you right-clicked in the previous step should appear in the
Source Branch text box of the Version Control Merge Wizard. Select the Target branch (the branch con-
taining no changes) from the Target Branch drop-down, as shown in Figure 18-57. Note the options to
merge all or selected changes from the Source branch into the Target branch. Click Next to proceed.

The Source Control Merge Wizard allows users to select the version criteria during merge. The options
include Latest Version (default), workspace, label, date, and change set. Click Finish to proceed.

Figure 18-57

If the Version Control Merge Wizard encounters errors while attempting the merge, the Resolve
Conflicts dialog box is displayed. Click Auto-Merge All to attempt an automatic merge. Click Resolve to
manually merge branches.

When all conflicts have been resolved, the Resolve Conflicts dialog will reflect this condition.

Labeling (Striping) Source Versions
Labeling provides a means to mark (or “stripe”) a version of the code. Generally, labeling is the last step
performed in a source-controlled version of code — marking the version as complete. Additional
changes require a branch.

To label a version, open Source Control Explorer. Right-click the project and click Apply Label. Enter a
name for the Label and optional comment. Click the Add button to select files or project(s) to be labeled
as shown in Figure 18-58.

586

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 586

Figure 18-58

Click OK to complete labeling.

Much has been debated about when to Shelve, Branch, or Label. The following advice is based on years
of utilizing many software source control products:

❑ Shelve — When your code is not code complete. In other words, if your code isn’t ready for the
nightly or weekly build, shelve it for now.

❑ Branch — When you need to add functionality and features to an application that can be consid-
ered complete in some form. Some shops will have you branch if the code can be successfully
built; others will insist on no branching unless the code can be labeled.

❑ Label — When you wish to mark a version of the application as “complete.” In practice, labels
are the version; for instance “1.2.0.2406.”

Code Deployment and Promotion from
Development to Test to Production

In DTS, you had the option to store packages in SQL Server or persist them to disk as either a Visual
Basic or Structured Storage file. But most DTS development occurred within the context of a SQL Server.

SQL Server Integration Services is decoupled from the SQL Server engine. Packages are developed in
either Business Intelligence Development Studio or Visual Studio 2005. Because of this, code promotion
is addressed in different ways.

587

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 587

For instance, in DTS you would likely develop a package on a local or development server. You would
unit test the package to ensure proper functionality and desired results, and then you would click
Package ➪ Save As to promote the package to a test server. This was by no means the only method avail-
able, but it was a popular method for accomplishing package migration through the SDLC hierarchy in
many SQL Server 2000 shops.

Now that SSIS is decoupled from the SQL Server environment, developing packages is equivalent to
external software development. Some DBAs have experience as developers. To them, this will pose no
challenge or threat. To others, this may be outside their comfort zone. To the uncomfortable, I say,
“Relax. You can do this!”

The Deployment Wizard
You will now look at one method for migrating a package created in Visual Studio 2005 into an instance
of SQL Server 2005 Integration Services: using the Deployment wizard.

For the example, you’ll use a project you built in Chapter 17. You can substitute the previous project or
a project of your own.

In Solution Explorer, right-click the project and click Properties to display the project Property Pages.
Click Deployment Utility beneath Configuration Properties and set CreateDeploymentUtility to True as
shown in Figure 18-59.

Figure 18-59

588

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 588

Click OK to close the Property Pages.

Build the solution in Visual Studio 2005 (or Business Intelligence Development Studio) by clicking Build ➪

the Build Solution (or Build [Solution Name]). A \Deployment folder is created in the project \bin directory
if you accepted the Configuration Property defaults in a previous step. The Deployment folder contains
the package dtsx files (one per package in the project) and a file of type SSISDeploymentManifest (one per
project). To deploy the package, right-click the SSISDeploymentManifest file and click Deploy to start the
Package Installation Wizard.

The Package Installation Wizard allows you to install a SSIS package to an instance of Integration
Services or to a File System location. For SQL Server or File System installations, a folder is created (the
default directory is in %Program Files%) to hold support files only or support and package dtsx files,
respectively — as shown in Figure 18-60.

Figure 18-60

After you select the installation location, click Next to continue. A confirmation wizard screen displays;
click Next to continue. A summary displays showing the location of the files installed; click Finish to
complete the installation.

Import a Package
Another method for migrating a code-complete package is to import it directly into an instance of
Integration Services on a target server, as follows:

First, build the solution. The Output window will display a message indicating the status of the build. If
the Output window is not visible, click View ➪ Other Windows ➪ Output to view it.

589

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 589

Once the solution has been successfully built, open Microsoft SQL Server Management Studio and con-
nect to an instance of Integration Services on the destination SQL Server. In the Integration Services tree-
view, expand the Stored Packages item. There are two subitems listed beneath Stored Packages: File
System and MSDB. The package may be imported into either (or both — with the same name, if desired).
Right-click File System or MSDB and click Import Package to begin the import.

Select a Package location (SQL Server, File System, or SSIS Package Store). Choosing File System disables
the Server text box and Authentication controls. Select File System. Click the ellipsis beside the Package
Path text box and navigate to the dtsx file of the package you desire to import as shown in Figure 18-61.
Enter a Package name in the appropriate text box and click OK to import the package.

Figure 18-61

Once a package is imported into an instance of SQL Server Integration Services, it may be exported to
another instance of SQL Server, File System, or SSIS Package Store via the Export Package functionality
as shown in Figure 18-62. To start the export, right-click the Package name and click Export Package.

Export functionality can be used to promote SSIS packages from development to test to production
environments.

590

Chapter 18

21 584359 ch18.qxd 12/16/05 6:16 PM Page 590

Figure 18-62

Summary
You now have a clearer picture of the Software Development Life Cycle of SSIS projects. In this chapter,
you learned how to use the new Integrated Development Environment (IDE) to add SSIS projects to
Microsoft Visual SourceSafe. You also learned how to do the following:

❑ Create a Team Project in Team System

❑ Add a SSIS project to the Team Project

❑ Manage and report project status

❑ Control the SSIS source code

Finally, you have more experience with code promotion — deploying an SSIS package from
Development to an Integration Services server, as well as exporting a package to another Integration
Services server.

You know more about software development methodologies and about how Team Foundation Server
allows you to customize Team System to clearly reflect your methodology of choice. Team System is a
fascinating framework! I encourage you to learn more about Team System and Team Foundation Server
from the Professional Visual Studio 2005 Team System, by Jean-Luc David, et al. (Wiley, 2006), and the
MSDN Team System Developer center (http://lab.msdn.microsoft.com/teamsystem).

591

SSIS Software Development Life Cycle

21 584359 ch18.qxd 12/16/05 6:16 PM Page 591

21 584359 ch18.qxd 12/16/05 6:16 PM Page 592

