

Guide to sourcing
Database Developers

How to source the right database
developers for your business

2

CONTENTS

About Computer Weekly 4

About Approved Index 5

Introduction to Databases 7

Databases Demystified 8

Data and information 8

Schemas 8

Relational databases 9

A simple example 9

Tables, rows and columns 9

Relationships 10

Queries 11

SQL 11

Reports 12

Establishing your requirements 13

Type of project 13

Stakeholders 13

Users and access levels 14

Comprehensive requirements 14

Prioritise 14

Custom-built and off the shelf databases 15

Technologies 15

Price Guide 16

Adapting an existing database 16

New database 16

3

Bespoke solutions 16

Choosing a Database Developer 17

Quotations and Invitations to Tender 17

Evaluate the companies 18

Communication and level of service 18

Cost 18

Experience and expertise 18

Stability 19

Get references 20

Samples and prototypes 20

Extras 20

Completing the project 21

Glossary 22

4

ABOUT COMPUTER WEEKLY

ComputerWeekly.com is the number one online destination for
senior IT decision-making professionals.

It is dedicated to providing IT professionals with the best information,
the best knowledge and the best range of solutions that will enable
them to succeed in the industry.

 ComputerWeekly.com benefits from Computer Weekly
magazines unrivalled 40 year history

 ComputerWeekly.com offers exposure to a senior IT audience,
backed by user profile research

 Computer Weekly is a five-times winner of the PPA Editorial
Campaign of the Year award, demonstrating editorial excellence

 ComputerWeekly.com produces editorially independent breaking
news picked up regularly by the media

 Initiatives such as the CW500 club reinforces Computer
Weekly‟s impact and influence amongst senior IT decision-
makers

 Complete dominance of the national news agenda – over 750
mentions within the media in 2006

5

ABOUT APPROVED INDEX

Computer Weekly Guides are provided courtesy of Approved Index
Ltd., the UK‟s number one online B2B buyer‟s tool. Approved Index
offers free, quotes and buying advice across a range of over 100
product and service categories. Whether you‟re looking for office
equipment, marketing services or corporate training, visit
www.ApprovedIndex.co.uk to make the smartest purchasing
decisions for your business.

If you have any questions regarding our service, just contact the
Approved Index team on 0800 6122 113.

http://www.approvedindex.co.uk/

6

DATABASE DEVELOPERS: A GUIDE

Living in the so-called "Information Age" dictates that information
has a high value and that most businesses cannot function without a
means of storing and managing data. Thus, industry and society in
general demand not only the structuring of information, but highly
effective and specialised systems of interaction with it. Databases
provide the solution, and basically refer to places of stored
information.

This guide will give you an introduction to the world of databases
and help you define your requirements and find the best database
developers for your company.

7

INTRODUCTION TO DATABASES

A database is a system which stores information using computer
systems in a useful, structured way – a bit like an electronic filing
system or library. Databases provide a means of storing,
categorising, searching and analysing large amounts of similar data
and are central to many business processes today. Whenever you
telephone a company and they look up your account details,
whenever you use a credit card or a cash machine, behind the
scenes a database is in use.

Wherever a large amount of similar data (for example, different
customers‟ personal details) is stored, some kind of database is the
most appropriate system. Unless the number of records (for
example, a single customer‟s details) is very small, it is the only
sensible solution, as storing a separate file on a computer for each
record outside of a database system is little better than using paper-
based records and filing systems.

Databases are used on websites to store users‟ account information,
news articles, blog posts, and product details in online shops. A
database of postcodes and full postal addresses is used by Royal
Mail to help deliver mail and allow businesses to look up addresses
with just the post code. Governments use databases to gather
census information and manage taxation and welfare systems.
Companies uses databases to run loyalty card schemes, which in
turn provides them with detailed sales information which can be
used for strategy and marketing.

Whatever your business, you probably use some kind of database
system already, and if not you will definitely benefit from one.

8

DATABASES DEMYSTIFIED

This guide is not intended to be a technical document, and a full
technical understanding of databases is unnecessary for someone
seeking database development services. It is useful to understand
some of the basic concepts and terminology, however, to decrease
the gap between database developers‟ knowledge and your own.
Below is an explanation of some key concepts and a simple
example database. A more detailed glossary can be found at the
end of this guide.

Data and information

While in everyday language the two terms can be use
synonymously, data and information mean subtly different things in
the world of databases. Data means the raw facts, which could be
numbers or pieces of text. On their own, individual pieces of data
are meaningless. Information is data in some structured context – if
we know what a particular number represents, for example the
amount of money in a bank account, we have information which is
the account‟s balance. Information can be processed and analysed.

Schemas

Put simply, a schema is a definition of the structure of the database.
It determines how different kinds of information relate to one another
and is the core of the database‟s design. For example, the schema
could state that in one part of the database, records store
customers‟ personal details (name, address etc.) while another part
of the database stores each order made by a customer. Typically,
each customer could make more than one order, but each order is
made by only one customer.

9

Relational databases

Types of databases are defined by the kind of structure they have,
and by far the most common type of database in use today is the
relational database. These kinds of database are based on the
mathematical relational model. In practice, most relational database
systems use a common set of simplified, more obvious terminology
for what are in fact mathematical concepts. Below is an explanation
of a simple example database using this terminology.

A simple example

This simple example is based around a database for a shop. It could
be an online shop or a physical shop and applies equally well to
each, since we are not concerned with the details of the business,
but only the data and how it is structured. Our database will store
three distinct categories of information: customers, products, and
orders.

Tables, rows and columns

The easiest way to think of a table in database terms is as a
spreadsheet. A spreadsheet might list all of our customers and the
table in our database for customers will be very similar. Each column
would represent an attribute associated with this customer: First
name, surname, address, telephone number, and so on. Each row
of the table represents one customer. While the combination of all
attributes for a customer is likely to be unique, it is common to add a
column with an ID code, a unique number for each row or customer.
This unique ID is known as a Primary Key and is the means by
which we associate records or rows of one type with those of
another.

Our table for products would similarly list various attributes for each
product: A name, description, price, and an ID as a primary key to
uniquely identify each product. Note that, for simplicity, each row in
the fictitious products table represents one product line, as opposed

10

to each individual item in stock. Although dealing with stock levels is
a common feature of databases, it is also an extra layer of
complexity and is ignored for the purposes of this example.

Last is our orders table. The purpose of this table is to record the
fact of a customer placing an order for a product. As with our other
tables, we would have a unique ID column, and to store the required
information we also have a column for a customer‟s ID and a
product‟s ID. In the context of the orders table, the customer and
products IDs are referred to as Foreign Keys, since they are Primary
Keys in a different (hence foreign) table. Each row in the orders
tables relates a customer to a product, which constitutes an order. In
a real-world system, your database would probably be able to
handle orders for multiple products, but in this example an order is
restricted to one product.

Relationships

As is implied by the name and the above descriptions, a
fundamental element of relational databases is relationships. In our
example, a customer may place one or more orders, each order is
placed by only one customer and is for only one products. This is
implicit since each row (i.e. each order) the orders table stores only
one customer and one product. The relationship between customers
and orders, and the relationship between products and orders, is
called one-to-many, since one customer may place multiple orders,
and one product may be part of many different orders.

Relationships can also be one-to-one. For example, a table of
extended information about each customer like date of birth, could
have one row for each customer, and be related to the main
customers table on a one-to-one basis. Clearly this is similar to
simply having more attributes in the main customers table, though
splitting the data in this way may improve the performance of the
database since information is only retrieved when necessary.

11

The third kind relationship is many-to-many. Imagine our database
also stored information on the company‟s sales representatives and
we wanted to record which representatives had dealt with which
customers. This would be a many-to-many relationship, since a
customer may have spoken to many representatives, and each
representative would have spoken to many customers.

Queries

Now that our simple database‟s structure is defined, let‟s see how
we can access the information stored in it. Clearly we could look up
a customer or product based on their names or other attributes, and
all information has an ID associated with it, but in order to make the
most of our data we need queries.

A query is a sort of instruction to the database to retrieve information
according to a give set of constraints. For example, if we wanted to
find out all the products a particular customer had ordered, our
query would find all of the rows in the products table, for which there
is a corresponding row in the orders table, where the customer ID in
the orders table is the ID of the customer we‟re interested in.
Similarly we could list all the customers who have ordered a
particular product or all the products which have never been
ordered. More complicated queries can be used to count the number
of orders per product, or orders per customer.

SQL

Queries are formulated in a programming language called a query
language, and by far the most common of these is Structured Query
Language (SQL, commonly pronounced „sequel‟). In SQL, a query
to list the names of products order by a customer named John Smith
might look like this:

12

SELECT products.name

FROM products

WHERE products.ID IN (

SELECT orders.productID

FROM orders

WHERE orders.customerID IN (

SELECT customers.ID

FROM customers

WHERE customers.Firstname = ’John’ AND

customers.Surname=’Smith’)

);

As you can see, designing and programming even a simple
database can be very complicated. Luckily you don‟t need to worry
about this as a database system developed for you could have the
functionality to find all of a customer‟s orders built into it. However, it
is useful to have an idea of what is going on behind the scenes. This
is also a demonstration of how the structure of a database is of
fundamental importance, since the right design means that queries
like the above can be made (relatively) easily, quickly and efficiently.
A badly designed and implemented database will be slow and make
some queries impractical or even impossible.

Reports

A database will enable the retrieval of information of one or a small
number of records, for example one customer‟s details and order
history, but an equally important function is reporting. In general,
reports are a way of aggregating or summarising the information in a
database. This could be as simple as a listing of all customers, but
can also be used for listing outstanding orders, the top selling
products, or stock levels. Reports are based on queries and can be
very complicated but are way to analyse the information in your
database. As with queries as degree of programming is usually
involved.

13

ESTABLISHING YOUR REQUIREMENTS

Working out what you want from your database is the first step to
getting the system you need. You probably have a good idea about
what information you will be storing, but just as important is how you
will access, manipulate and analyse it. Think about where the data
will come from in the first place – will it be inputted manually (known
as data entry)? Who will do this and how should it work? Try to list
the different instances the database will be used in and have an idea
of what should happen in each instance.

Database companies should be able to help formalise your needs
into a detailed specification, but firmly establishing your own
requirements means that suppliers can assess the task at hand and
provide accurate quotations. There are a number of things to
consider when considering your requirements.

Type of project

Building a new database system is not the only kind of database
development project. Many companies have existing legacy systems
which need to be updated or adapted. You may wish to integrate an
existing database with a different application, for example a website,
or have a new database system built to integrate with an existing
application. You are probably clear about the type of your project,
but you should be aware that there can be varying cost implications.
Sometimes integrating an esoteric legacy system can be more costly
than rebuilding it from scratch.

Stakeholders

Think about your organisation and who will use the database. You
will probably find that different departments have very different
needs and priorities for the system. It is probably worth including a
representative from each department when discussing database
requirements. Additionally, customer-facing staff will have different
needs to middle and senior management teams. Those in customer

14

service roles will be more concerned with accessing and editing
individual customers‟ or client‟s information, whereas managers will
probably need detailing reporting facilities.

Users and access levels

Considering who will use the database and how will naturally lead to
matters of users and access levels. Assuming different people will
use the database, there may be a case for having user accounts
with different levels of access to data. For example, you may want
staff in your accounts department to be the only people who can
amend financial information. You may even want to make part or all
of your database available to the general public, perhaps via a web
interface. Make sure you have an idea of any requirements like this
so that they can be included in the specification and implementation
of your database from the outset.

Comprehensive requirements

Having discovered the different ways your database will be used you
should now be able to exhaustively list all functionality to be included
in the system. Think about what information you might want to print
from the system and how it should look, how users will search the
database, and how reports are to be generated. At this stage you
can indulge in some creativity and list some features that, while not
essential, could be useful. You may find later that implementing
them is relatively easy for a database developer, and if not you won‟t
be losing core functionality from your system.

Prioritise

Now that you have a lengthy set of potential functionalities and
features, you should prioritise the list and decide which of these are
essential, which are important and which would be nice to have, but
not mission-critical. Doing this helps clarify your requirements,
provides a sensible order for implementation and means that, should

15

your time or budget be constrained, less important requirements can
be dropped or left to be added later.

Custom-built and off the shelf databases

For many of the common uses of databases there are proven,
ready-made database systems available. For example, Customer
Relationship Management (CRM), inventories, accounting and
online shops with product databases are all areas with established,
off the shelf solutions available. If your needs could be met by one of
these systems with little or no customisation, they will probably work
out to be cheaper in the long run, even if the initial purchase price is
high. On the other hand, if your business or your needs are very
specific, the level of customisation required of an off the shelf
system might be as much (in terms of time and cost) as a bespoke
solution.

Technologies

As with most types of computer software, there is a range of
competing and complementary systems available. Which is the right
solution for your needs depends largely on the amount of data that
will be stored. For example, Microsoft Access (which is included in
Microsoft‟s Office suite) is perfect for a database with low numbers
of records which will only be used by one or a handful of users, and
allows sophisticated database applications to be created quickly.
Unfortunately Access does not perform so well for larger databases,
with multiple users or over networks. It can, however, be used to
rapidly build a prototype for a larger system, or as a graphical front
end which connects to a different back end database system.

Larger open source (i.e. free) databases include MySQL and
PostgresSQL. Larger off the shelf databases that require licenses to
use include Microsoft SQL Server, Oracle, or IBM DB2.

16

PRICE GUIDE

As with any computer project, the price you pay can vary hugely
depending on the nature of your project and your exact
requirements. Below is a rough guide, which should be viewed
noting that suppliers may have a minimum threshold price for
undertaking database work, as well as the fact that it is impossible to
give precise costs without discussing your requirements with
database developers.

Adapting an existing database

If a database developer is maintaining or modifying a project which
they have designed and developed, their charges for small
modifications and amendments depend on the contract they have
for that particular project. If you have an existing database system
which requires a minor redesign, modification, or many new
features, you could pay from £1,500 and up.

New database

For a brand new database system, built around your company‟s
needs and customised to your requirements, a considerable amount
of research into you organisation, development and programming
will be required. There may be purchase costs for database software
or significant work to be done in customising the system or building
parts of it from the ground up. For a professionally built database
solution, expect to pay around £3,000, rising depending on the scale
and complexity of the project.

Bespoke solutions

If you have a unique requirement for a totally customised system,
with specialist needs which require a fully programmed bespoke
solution, or many legacy systems to be integrated, expect to pay
anywhere from £5,000 upwards for a tailored solution.

17

CHOOSING A DATABASE DEVELOPER

Since databases are fundamental to so many areas of business,
designing and implementing them is a huge industry. This is
especially true given the amount of information that may be held by
even a relatively small organisation. As such there are a large
number of database developers and companies vying for your
business. This is where the Approved Index, the UK's leading online
business to business referral service, proves invaluable, with a list of
established, proven database companies on its books for you to
contact. You can complete a simple form on our website and receive
up to six free quotes.

http://www.approvedindex.co.uk/indexes/DatabaseDevelopers/defau
lt.aspx

Ultimately, you will still have to choose one company to work with,
so the guidance below is an overview of the process and how to
choose the right supplier.

Quotations and Invitations to Tender

Getting quotes for your project couldn‟t be easier using Approved
Index‟s referral system. With some high-level information about your
requirements, database companies from our approved suppliers list
will contact you to clarify your needs and supply you with quotes. For
large or high-budget projects, it may be necessary or useful to send
out a more formal Invitation to Tender, with a detailed requirements
specification for the project. Companies will then respond to this with
a similarly detailed quotation of how they will meet your
requirements and how much they will charge. Whatever your project,
it is important to find several companies to quote or tender as this
will give you the most options and a better chance to find the best
supplier.

http://www.approvedindex.co.uk/indexes/DatabaseDevelopers/default.aspx
http://www.approvedindex.co.uk/indexes/DatabaseDevelopers/default.aspx

18

Evaluate the companies

With quotations in hand, you need to choose which company to use
for your project. There are several definite areas in which you can
evaluate companies, though a big part of your decision should be
less tangible fields like customer service and communication.

Communication and level of service

The quotation/tender process is a good chance to evaluate a
company based on how well they communicate with you and the
service they provide in making a quotation. Did the people you dealt
with explain technical concepts to you in a way that you understand?
Companies should take time to understand your requirements and
should make you feel valued as a potential customer. If they don‟t,
it‟s unlikely that you‟d have a good working relationship with them.

Cost

Cost is about more than just price, and so the cheapest quote you
receive will not necessarily be the best. Value is of course important,
but you need to consider what you will get for you money. It‟s no
good choosing the cheapest supplier if you‟re not confident that
they‟ll meet your requirements or you find communication with them
difficult. A bad choice of a cheap supplier can cost you more in
terms of your own time and human resources than a supplier with a
higher quoted cost. Take care to strike the right balance between
price and levels of service.

Experience and expertise

Clearly an established company with many years of experience is
preferable to one that is just starting out, but there are many
companies with a long history of satisfied customers. Experience in
your industry is a definite plus as it means they will have a better
understanding of any subtleties of the sector and how this relates to
your database project. Equally important is experience with
databases of the same scale as yours. A company which provides

19

bespoke solutions involving small amounts of data may not be as
suitable as one which is used to dealing with databases holding
millions of records. Conversely, a company which builds huge
databases may be less able to provide the level of customisation
necessary for your project.

Stability

In this current climate, it is important to make sure that a company is
solvent and has the ability to survive. You don‟t want a company
going bust midway through your database project.. Our
recommendation is to view the latest accounts to ensure they have
made no significant losses recently. It is also worth considering
using Equifax or Experian for a further check.

20

Get references

Database developers should be happy to provide you with a list of
satisfied clients as references. This is possibly the most important
step in choosing the right company as talking to past clients will give
you an idea what the company is like to work with in practice.

There are a number of areas you should talk to referees about. Did
the company deliver what was required within budget and to
schedule? Has the project stood the test of time or presented any
technical problems and is it dynamic and adaptable enough that
alterations to the content can be made without difficulty? Be sure to
check what sort of customer service the company gives, how
responsive they are to problems, and whether there were any
surprise charges or costs. You should also ask them specific
questions about their own database project, the supplier‟s customer
service and post-development availability.

Samples and prototypes

Ask suppliers for a sample database to try out. Even if it is very
different to the database you want, it will still give you an idea of the
quality of work the company produces. They may be willing to build
a prototype of your database, but should at least provide a technical,
functional specification for it. Although a prototype is by its nature
incomplete and will only have a small, test dataset, it will still help
you to see what the company‟s work is like and if they understand
your requirements correctly. A company‟s willingness to provide a
prototype also demonstrates that they take your project seriously.

Extras

There will almost inevitably be work and costs associated you‟re
your database project beyond construction of the system itself.
Although it may not be strictly necessary, some level of training with
the system for your staff can be invaluable. Also be clear about what
support and maintenance services are included after development
has been included. Particularly with bespoke solutions, you are to a
degree tied to your supplier for the lifespan of the system, so check

21

what charges they will make and be sure what services you are
entitled to. Talking to past clients can help you find out what the
supplier‟s provision is like once development is complete.

Completing the project

Once you have chosen a supplier (or maybe as part of your decision
making) you need to ensure the development of your database
commences and is completed, meeting your requirements and with
as few problems as possible.

The course of the development should be planned out in detail.
Rather than a single deadline, it is better to include a number of
deadlines as milestones in the project, starting with the core
functionalities and requirements and ending with the least important.
This means that you can keep track of progress and catch any
potential problems before they disrupt the project as a whole. It is a
good idea to have your payment terms linked to these milestones.
This provides an incentive to the developers and means that even in
the worst case you will only pay for working parts of the system.

22

GLOSSARY

Column A field, column or attribute is one type of
information stored for each entity or row
in a table. For example, a table storing
information about people might have a
„name‟ field.

Data entry The process of adding information to a
database. This is usually done by typing it
into data entry forms.

Database A database is a system which stores
similar and related information on a
computer system.

DBMS A Database Management System is a
program for running and managing
databases. The term is often used as a
synonym for database.

Field A field, column or attribute is one type of
information stored for each entity or row
in a table. For example, a table storing
information about people might have a
„name‟ field.

Flat file A flat file is a plain text file used for
storing data. Comma Separated Value
(CSV) files are flat files which store data
in rows and columns, where each new
line of the text file is a row, and the
columns or fields of each row are
delimited by commas.

23

Foreign key A column in a table which stores the
value of a primary key in another, related
table. While primary keys must be unique
values, foreign keys may be duplicated.

Normalisation Normalisation is a process whereby data
in a database is reorganised to remove
duplication and inconsistencies.

Primary key A column or field that uniquely identifies a
row in a table. Typically, an ID column is
included in a table containing unique
numbers as the primary key.

Query A query is a way of asking a question of a
database, for example “which customers
have placed more than one order”.

RDBMS Relational Database Management
System. A DBMS for a relational
database made up of tables.

Record A record or row is a set of information
about a single entity.

Relational database A database made up of tables. Tables
are typically linked with keys defining
which rows in one table „belong‟ to the
rows in another.

Report A list or summary of information in a
database on screen or for print.

24

Row A row is the set of fields or columns for
one entity in a table. For example, a
customers table might have columns for
name and address, with each row
consisting of the name and address of
one customer.

SQL Structured Query Language is the most
common language used to write queries
for databases.

Table A table is a store of related information,
consisting of columns (or fields) of
information and a number of rows, each
of which is the set of fields of information
for one entity. For example, a customers
table might have columns for name and
address, with each row consisting of the
name and address of one customer.

