PRACTICAL DATA MIGRATION
BCS, THE CHARTERED INSTITUTE FOR IT

Our mission as BCS, The Chartered Institute for IT, is to enable the information society. We promote wider social and economic progress through the advancement of information technology science and practice. We bring together industry, academics, practitioners and government to share knowledge, promote new thinking, inform the design of new curricula, shape public policy and inform the public.

Our vision is to be a world-class organisation for IT. Our 70,000 strong membership includes practitioners, businesses, academics and students in the UK and internationally. We deliver a range of professional development tools for practitioners and employees. A leading IT qualification body, we offer a range of widely recognised qualifications.

Further Information
BCS The Chartered Institute for IT,
First Floor, Block D,
North Star House, North Star Avenue,
Swindon, SN2 1FA, United Kingdom.
T +44 (0)1793 417 424
F +44 (0)1793 417 444
www.bcs.org/contact
To Josephine, with my love, for being there.
CONTENTS

4 CREATING A MIGRATION STRATEGY
- Starting out on the right foot
- PDMv2 data migration strategy
- What is in a PDMv2 data migration strategy document?
- Data migration strategy checklist
- Getting the data migration strategy implemented

SECTION 2: TOOLS AND TECHNIQUES

5 METADATA AND KEY BUSINESS DATA AREA DECOMPOSITION
- Metadata and PDMv2
- Uses of data models in PDMv2
- Instantiating data models
- Developing a conceptual entity model
- Project decomposition and key business data areas

6 DEMILITARISED ZONES AND KEY DATA STAKEHOLDER MANAGEMENT
- The impact of the demilitarised zone
- Introduction to key data stakeholders

7 LANDSCAPE ANALYSIS
- What is landscape analysis and why do you do it?
- Legacy data stores
- Landscape analysis as a Super SMART Task
- When to perform landscape analysis
- Documenting legacy data stores
- Profiling, data gaps and master data management
- Software tools to support landscape analysis
- Impact of the DMZ

8 SYSTEM RETIREMENT PLAN
- Why have a system retirement plan?
- What are system retirement plans?
- How and when to implement SRPs
- SRP minimum requirements
- SRPs and Super SMART Tasks
- Impact of the DMZ on SRPs

9 DATA QUALITY RULES
- Introducing data quality rules
- How do you generate DQRs?
- The DQR process
- How a DQR board works
- Software support
- Role of the DMZ

10 GAP ANALYSIS AND MAPPING
- Gap analysis
- Gap analysis as a service
- Data quality monitoring as a service
CONTENTS

Mapping 163
Data lineage, data audit and the 'one-way street' problem 167
Impact of the DMZ 170
Software support 173

11 MIGRATION DESIGN AND EXECUTION 175
Migration end-to-end design 175
Extract, transform and load designs 181
Detailed decommissioning design 195
Migration build, test and execute 198

12 LEGACY DECOMMISSIONING 205
Executing the decommissioning design 205

SECTION 3: FAILING DATA MIGRATION PROJECTS 209

13 RESCUING FAILING DATA MIGRATION PROJECTS 211
Introduction 211
Stabilisation 212
Planned activity 214
Post-implementation mop-up 215
Impact of the DMZ 216
Conclusion 217

APPENDICES 219
A1 CONFIGURABLE ITEMS 221
A2 IMPACT ANALYSIS FRAME 223
A3 DATA MIGRATION STRATEGY CHECKLIST 226
A4 SPECIMEN DQR FORM 229
A5 DATA MAPPING EXAMPLE 231

Index 245
FIGURES AND TABLES

Figure 2.1	The three circles of activity	29
Figure 2.2	Standard reaction to change	30
Figure 3.1	A diagrammatic representation of PDMv2	35
Figure 4.1	Quality versus time versus budget	52
Figure 5.1	An example ERD	80
Figure 5.2	ERD relationship symbols	81
Figure 5.3	The involuted data relationship	81
Figure 5.4	Example conceptual entities	85
Figure 9.1	The DQR process	141

Table A1.1	Some PDMv2 configurable items	221
Table A2.1	PDMv2 impact analysis frame	223
Table A3.1	Data migration strategy checklist	226
Table A4.1	Specimen DQR form	229
Table A5.1	Target system equipment table	232
Table A5.2	Legacy Equipment Item Type table	233
Table A5.3	Target Equipment Type table	233
Table A5.4	Equipment type cross-reference table	234
Table A5.5	Equipment cross-reference table	235
Table A5.6	Location cross-reference table	236
Table A5.7	Partially completed example data mapping table	240
Johny Morris has over 25 years’ experience in IT working as a programmer, analyst, project manager and data architect. He has worked as an independent contractor for the last 20 years and in that time has worked for some of the biggest names in IT consultancy including CSC, Logica CMG and Price Waterhouse Coopers (PwC). He specialises in data migration and integration and for the last 14 years has been involved with large-scale migrations at blue chip clients like Barclays Bank, National Grid Transco and British Telecom.
I would like to thank my publisher, Matthew Flynn, who showed great patience as I struggled with the text; Jutta Mackwell for her patient chiding that finally got me over the line; and Nina Turner with whom I started this data migration journey and whose insistence on only providing the best we can is a rule I have stuck with. Dylan Jones of Data Migration Pro deserves a mention for the many conversations we have had over the years where ideas have been batted around – he has been one of the most consistent voices demanding that this under-developed corner of IT deserves better recognition. Finally, my thanks go to my wife, Jo, without whose support this book would not have been completed.

Johny Morris
July 2012
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application program interface</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial off-the-shelf</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer relationship management</td>
</tr>
<tr>
<td>DBA</td>
<td>Database administrator</td>
</tr>
<tr>
<td>DMZ</td>
<td>Demilitarised zone</td>
</tr>
<tr>
<td>DQR</td>
<td>Data quality rule</td>
</tr>
<tr>
<td>ERD</td>
<td>Entity relationship diagram</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise resource planning</td>
</tr>
<tr>
<td>ETL</td>
<td>Extract, transform and load</td>
</tr>
<tr>
<td>GAM</td>
<td>Gap analysis and mapping</td>
</tr>
<tr>
<td>KDSH</td>
<td>Key data stakeholder</td>
</tr>
<tr>
<td>KDSM</td>
<td>Key data stakeholder management</td>
</tr>
<tr>
<td>LA</td>
<td>Landscape analysis</td>
</tr>
<tr>
<td>LD</td>
<td>Legacy decommissioning</td>
</tr>
<tr>
<td>LDS</td>
<td>Legacy data store</td>
</tr>
<tr>
<td>MDE</td>
<td>Migration design and execution</td>
</tr>
<tr>
<td>MDM</td>
<td>Master data management</td>
</tr>
<tr>
<td>MIS</td>
<td>Management information system</td>
</tr>
<tr>
<td>MSG</td>
<td>Migration strategy and governance</td>
</tr>
<tr>
<td>PDM</td>
<td>Practical data migration</td>
</tr>
<tr>
<td>PID</td>
<td>Programme initiation document</td>
</tr>
<tr>
<td>PMO</td>
<td>Project management office</td>
</tr>
<tr>
<td>SI</td>
<td>Systems integrator</td>
</tr>
<tr>
<td>SME</td>
<td>System matter expert</td>
</tr>
<tr>
<td>SRP</td>
<td>System retirement plan</td>
</tr>
<tr>
<td>UAT</td>
<td>User acceptance testing</td>
</tr>
</tbody>
</table>
Check point A decision point at which it is agreed a new system is stable enough to go forward with or from which fallback occurs. (Also sometimes known as a ‘go/no-go point’.)

Churn The relative frequency with which records of different types are added, amended or deleted from a data store.

Conceptual entity model A form of data model where atomic entities are grouped together to form higher level entities that are meaningful to the enterprise.

Control total Either the sum of some meaningful value within the data being transferred or a count of the number of units of migration being transferred.

Data architect The person responsible for the design of how the data required for an organisation, possibly held over multiple applications, is held.

Data audit The verifiable proof that all the units of migration in the legacy data stores are accounted for in the migration.

Data freeze The prevention of updates to records after they have been extracted for data migration and before they have loaded into the new system.

Data lineage The history of transformation that shows how an individual data item is transformed from one system to another.

Data mapping The rule(s) by which one or more items in the Legacy Data Store will have their values moved to one or more items in the new system.

Data migration The selection, preparation, extraction, transformation and permanent movement of appropriate data that is of the right quality to the right place at the right time and the decommissioning of legacy data stores.

Data owners All the people within or outside an organisation who have the legitimate power to stop a migration from happening.

Data quality rules A set of processes and deliverables that are used to measure the quality of the data within a data migration project and to resolve or mitigate data quality issues.
Data size The amount of data to be loaded.

Data stakeholder Any person within or outside an organisation who has a legitimate interest in the data migration outcomes.

Data transitional rules The temporary business operating procedures put in place to cope with the disturbance caused by data migration itself.

Demilitarised zone The interface between the technology provider and the wider programme.

Entity type The generic description of an entity.

Fallback The steps that will be taken to get an enterprise back into the position it was in prior to a data migration.

Fallback window The length of time between starting up a new system and taking the final check point that allows for the full decommissioning of legacy data stores according to the system retirement plans.

Homonym Two words that are spelled the same way, but have different meanings.

Instance A particular example of an entity type.

Key business data areas The segments into which a large data migration project is broken down for management and planning purposes.

Landscape analysis The systematic discovery, review and documenting of the legacy data stores, including their linkages, data quality and key data stakeholders.

Legacy data store A data repository of any type that holds data of interest to the new system.

Metadata Data about data. The data that technologists hold about the data in the business.

Migration form The technical style of a migration.

Navigation The links in the data that allow software to move from one data item to another. An example would be a foreign key that allows a program to get from a holding company record to all the operational company records beneath it.

‘One-way street’ problem Occurs when an algorithm transforms data in such a way that the original values cannot be identified.

Policies The explicit or tacit underlying drivers for a project and for the surrounding environment in which a project operates.

Project A one-off enterprise event with a beginning, middle and an end.
Semantic issue A disagreement about the definition of a business term or the use of fields in corporate systems.

Sequencing The ordering of update processes into a tenable progression.

Source data store Synonym of legacy data store.

Synchronisation Enabling changes to data items in legacy data stores to be reflected in the target (forward synchronisation) or changes in the target to be reflected in the legacy data stores (reverse synchronisation) or in both directions (bidirectional synchronisation).

Synonym Two words that are spelled differently, but mean the same thing.

System retirement plan The user-side requirements of a data migration that will allow a legacy data store to be decommissioned.

Target The final destination system or systems.

Topography The map of data store linkages.

Training lag The length of time it takes to train all the staff who need to be trained in the target system.

Transitional data store A temporary database created during the process of data migration.

Unit of migration The lowest level of data granularity of meaning to the business.
USEFUL WEBSITES

www.bcs.org Publisher of this book and home of ‘Johny’s Data Migration Blog’ – the author’s regular commentary and insights into data migration.

www.dama.org Data Management International – some good data quality and modelling information, but light on data migration.

www.datamigrationmatters.org The Data Migration Matters event series with forthcoming events and past presentations.

www.datamigrationpro.com Probably the best community website devoted to data migration.

www.dataqualitypro.com Sister website to datamigrationpro with lots of product reviews, comment etc.

www.iaidq.org The International Association for Information and Data Quality – good for local events and discussions, especially via the LinkedIn® website.

www.iergo.com The author’s personal website.
SECTION 1: EXECUTIVE OVERVIEW
In this chapter I outline PDMv2 and show how it overcomes all the issues identified in Chapter 1 by using a set of integrated modules that cover the whole scope of a data migration from project start-up to legacy decommissioning and beyond. I give a brief overview of the types of software technology available to support data migration.

INTRODUCING PDMv2

PDMv2 is modularised with seven functional modules and one overarching governance and project control module. This modularisation helps, as you will see, in tailoring PDMv2 to other project delivery methods. Figure 3.1 illustrates PDMv2. The arrowed lines illustrate product flows between modules. It is clear from the diagram that it anticipates a degree of recursion in a data migration. For instance, at any point a new requirement for data might emerge from the larger programme of which a data migration forms a part. You might be concentrating at this point on testing your data migration solution, but you still have to handle the requirement. This is something over which you have no control within the data migration project, but it is something you can manage.

Figure 3.1 A diagrammatic representation of PDMv2
The functional modules within PDMv2 are split over two work streams: business engagement and technical. Data quality rules (DQRs) span the two. It is important to note that even at this high level, PDMv2 is designed from the ground up to integrate the business as well as the technical sides of the project. For PDMv2, business engagement is not a separate task, but is built into the way you go about your job.

Each of the modules is briefly explained below. More detailed explanations are given in Section 2, which provides sub-module, workflow-level descriptions.

Landscape analysis

The landscape analysis (LA) module uses various techniques to discover and catalogue legacy data stores (LDSs) and their relationship to one another. It is here that you look inside data stores to see how they work, what data they have and what data challenges they might contain. This is data profiling. It is performed by using both available software tools and manually. It is necessary to seek out consciously all the available LDSs, not just the official enterprise ones, welcoming all contributions. That way PDMv2 turns a necessary technical activity into a set of Super SMART Tasks. Landscape analysis can commence prior to the design or even the selection of the target system.

HINT

If the decision on the target is still some way off, you can start on a small scale in an area that is likely to be rich in unofficial data stores. Start building the virtual team you will need to succeed. This also provides you with the opportunity to tailor the PDMv2 deliverables to your programme management standards and to learn PDMv2 by using it. Finally, data migration is a risky business. PDMv2 helps de-risking by moving as much activity up the timeline as possible. Your mantra should be ‘start small, start early’.

Do not expect that your selected systems integrator (SI) or software supplier can or will do much to help you in this area. Many of these LDSs are hidden away on departmental desktops, inaccessible to the reach of the SI. It is important to analyse and document how these data stores are linked (known as ‘system topography’) and include links across the scope boundary that receive or give data from and to stores that will be replaced. It is also a growing aspect of best practice that a fast iteration of LA is performed to quantify the scale of the data migration task you have in front of you prior to setting the budget for the remainder of the project.

Gap analysis and mapping

The gap analysis and mapping (GAM) module is where the data mapping takes place once the target system is available. Data mapping is the linking of fields in the LDSs to fields in the target, plus defining the transformation logic that is needed to split data up and merge fields. A classic example of this is reformatting name and addresses where perhaps a source database has the name in a single field, but the target holds the forename and surname separately and only holds the first line of the address, the rest being derived from a national postal file based on a postal or zip code.
It is perfectly normal for the target system to be delivered later than expected and in phases. Waiting for the target to be completely ready prior to starting data migration activities is a recipe for disaster. *PDMv2* gets around this by moving all discovery and profiling activity up the timeline to LA and the use of migration data models, which are explained in Section 2.

GAM is also where the mapping and gap analysis for legacy decommissioning design is performed so that an integrated target and archive design is developed. Again, it is absolutely standard for most SI or software suppliers not to be involved in designing a solution for those data items that the business might need (except rarely, for instance, where old transactions are preserved in case there is a tax inspection), but for which there is no place in the target. Therefore the design, build, test and execution of the archive solution is normally outside the DMZ, but driven by and dependent on the target migration design. After all, any item that is not moved to the target, but is needed by the business, has by definition to go into the archive, so these are activities that will need to be performed. *PDMv2* has them covered.

When reviewing proposals from suppliers, no matter how comprehensive they seem, comparing them against *PDMv2* will show you what is missing: in other words, what you will have to do yourself and therefore budget for. There are perfectly legitimate reasons, as you have seen from the discussion of the DMZ, for a supplier to limit their offering. Being aware of these missing elements, however, will allow you to plug the gaps.

Migration design and execution

The migration design and execution (MDE) module is where the physical design, test and execution of migration and archiving are carried out. Data migration is about more than just moving bits and bytes around. You have to be aware of business limitations, timings, audit requirements, data lineage, fallout, fallback, archiving requirements, reporting, management and control etc. MDE integrates all these elements within a single module solidly based on the business requirements expressed in the system retirement plans.

Legacy decommissioning

The legacy decommissioning (LD) module covers the physical or logical removal of legacy databases, hardware and software. It also covers the delivery of archived data storage for data items that have to be retained but which are not to be migrated to the target. There are also project close-down processes, including the handover of data quality issues (which it was not possible to fix within the project’s time and budget constraints) to the in-life data quality teams (where they exist). Again it is absolutely standard for SI and software vendors to ignore the legacy decommissioning aspect of a data migration. You need to work with them through the *PDMv2* mechanisms to develop a single coherent design.
It is with some regret that I have to confess to not always finding willing recipients of those data quality issues that could not be fixed in the time and budget of a data migration project. However, at a corporate level, more organisations are making a conscious effort to manage data quality issues. As good corporate citizens we should endeavour to pass on what we can.

Data quality rules
The data quality rules (DQR) module is the centrepiece of what makes PDMv2 unique. Sticking to the principle of Super SMART Tasks, this module manages all data quality and preparation-related activity on the programme. It integrates the legacy technical system experts, the target system experts and the business domain experts to prioritise, manage and complete all data issues, including the selection and exclusion of data sources. It is Super SMART because it builds the team by linking into the resources of the rest of the enterprise, creating a single virtual team; it builds the individual by empowering business colleagues and giving them the skills and opportunity to make a positive contribution to the project; and it completes the task by bringing much needed enterprise knowledge into a collaborative framework. DQRs are so important that Chapter 9 is dedicated to them alone.

HINT
To test how essential (and often missing) this element is in most data migration approaches, try the following. When analysing the bids of various suppliers, ask how they handle data quality issues. The common response is a long technical description of how they have sophisticated tools to trap errors. Your next question should be: ‘And then what?’ If you are lucky they will explain how they have an issues log that records the issues with appropriate dashboarding etc. Try another: ‘And then what?’ and you will be really pushing the boundaries of their method. The honest answer is: ‘And then we wait while you, the project, come up with a fix.’ They have no mechanism for getting that fix, only ones for uncovering errors and logging them. This illustrates the boundary of the DMZ. If you employ PDMv2 and its DQR processes you will have one.

Key data stakeholder management
PDMv2 has its own specific role definitions for each key data stakeholder (KDSH). Key data stakeholder management (KDSM) manages the discovery, briefing and management of these individuals. PDMv2 is very business-focused, so there are as many business as technical roles. PDMv2 is very prescriptive when it comes to KDSHs. A full description of KDSHs is provided in Chapter 6, but from the business side the two most important stakeholders are data owners and business domain experts.

PDMv2 is quite clear about the definition of data owners.
DEFINITION

Data owners are all the people within or outside an organisation who have the legitimate power to stop a migration from happening.

This definition is not based on organisation charts of who has titular responsibility for a database. If a person can legitimately stop the migration occurring because their information is not adequately managed, then they are the data owner of that piece of information. This means that the often forgotten, but powerful, individuals like financial controllers, who can stop migrations if the results compromise their needs, are equal data owners with the people who work directly with a data store (but only for the data items that impact them). Each data owner is expected to take part in the system retirement planning process, all of which is explained in more detail in Chapter 8.

The system owners, however, are often senior executives who cannot be expected to answer every query coming out of the project personally and who, in any case, often have no direct, day-to-day, hands-on experience of using the systems in question. They will generally defer to nominated business domain experts who they empower to input to the various meetings and provide the detailed knowledge to the project.

This is all very well, you might say, but how do you get the commitment of these powerful few to your project? We all know how difficult it is to get real commitment from colleagues working in silos different from our own. In this case, you leverage the compelling event of the forthcoming system retirement to grab attention and make your needs real to people.

System retirement plans

PDMv2 does not begin its conversation with the business by asking about data mappings, data quality, data gaps, data lineage or any other esoteric technical feature. *PDMv2* begins with the ultimate goal of a data migration: turning off legacy data stores.

HINT

It might seem cruelly brutal, but I have found in practice that the bold unvarnished question ‘You know system X that you depend on to do your day job? Well, we are turning it off on (enter date). How will you be certain that you will be able to continue with your day job once that has happened?’ works better than anything. I leave it to you to dress it up in language appropriate to your situation, but I find the unchallengeable simplicity of this statement works best.

Going back from this you uncover all the things that must be done so that data owners will be comfortable with signing off the decommissioning certificate. You seek and encourage objections to going forward. Getting these objections shows
you have moved the subject over the hump of denial, down the slopes beyond rejection, to at least the negotiation of reluctant acceptance, if not to positive acceptance. Starting the conversation this way makes real the compelling event of a data migration.

You provide reassurance by explaining that you will be proceeding through a controlled sequence of iterations (the data owners will have to sign off the system retirement plan (SRP) at least three times before you get to the decommissioning certificate) that allows them to be ready and confident in the migration and that they have made you aware of all the things you must do to satisfy them.

Under the guidance of the PDMv2 model you ask a series of structured questions that elicit the business view of the migration, looking at necessary items like business migration audit requirements, data lineage requirements, data retention requirements, migration restrictions, user acceptance testing requirements, go-live restrictions, fallback requirements, units of migration definitions, migration resource requirements and data transitional processes (all of which are explained in detail in Section 2). All responses are expressed in business terms.

The SRP is your business colleagues’ main view of the migration and is a key input to migration design and execution.

Migration strategy and governance

The migration strategy and governance (MSG) module covers all the standard programme management functions that are expected on a well-managed project, plus some unique activities that are mandated by PDMv2. Section 2 gives a full description of MSG; however, from an overview perspective there is one task that must be completed with the involvement of the senior management of the whole programme, that is the creation of a data migration strategy and that follows in Chapter 4.

Demilitarised zone

As you have seen, the demilitarised zone (DMZ) is the interface between the work of the technology supplier and the responsibilities of its clients. The DMZ is a key component of PDMv2 that will be, to an extent, formally defined in the contract with the supplier. However, the DMZ is wider than the contract and its formal definition will help both sides understand and manage their reciprocal dependencies. Throughout the rest of this book, I will constantly refer to the DMZ and its impact on each of the PDMv2 modules.

INTRODUCING THE TECHNOLOGY

So far I have looked at the softer issues around a data migration because these are typically where the project is likely to go wrong. I will now introduce the standard technology that underpins data migration projects. A more detailed description can be found in appropriate places in Section 2 where the use of the technology is covered.
TECHNOLOGY OVERVIEW

There has been an explosion in the technology available to assist with data migration over the last few years and it seems that each newcomer to the market has a different take on how to perform the necessary tasks. However, broadly speaking, there are three phases of activity where specific technology support is available: data profiling; data quality; and migration control. I will also discuss generic project-supporting software (hubs and workflow tools).

Data profiling tools
Data profiling tools allow you to analyse the legacy databases and discover unforeseen features at column and row level. Some tools on the market also allow cross data source analysis. This means that you can compare, say, customer names in a sales ledger with customer names in a customer relationship management (CRM) database, even though they are from different vendors. The majority of tools work at the database level, analysing and comparing fields, but some tools will even interrogate source code to find relationships that are in the code but not in the database management system. (This only works, of course, when you have access to the source code, but is very helpful in old, locally built legacy systems where validation rules have been lost in the mists of time.)

The use of profiling tools is a vital first step in producing data of the quality that will load into your new system. As you will now be aware, you must anticipate that there will be surprises in the LDSs. It is a common misconception that the use of tools can only start once the target system has been fully defined. This is not the case. As you have seen, semantic issues, the most difficult and time-consuming to resolve, will be issues whatever the new system is. Be prepared to profile data prior to the definition of the target system.

However, data profiling tools are almost too good these days and will generate large amounts of information. You will need a process to winnow the wheat from the chaff. Fortunately PDMv2 comes complete with just such a process: DQRs. By just using data profiling tools without the DQR process you risk drowning in a sea of possible issues. Data profiling tools are also limited in what they can access. Although some can compare spreadsheet data, most are restricted to looking at corporate standard databases and none can look easily into hard copy sources like rolodex, notebooks etc.

Similarly, data profiling tools will not uncover, on their own, the hidden data sources that are not linked by database level exchanges of data. The clerk with the data stick, moving data from one machine to another before creating figures that are re-entered manually into an old application might be essential to regulatory processes, but will be invisible to any tools. To discover these you need to rely on the more pedestrian methods within the LA module and the creation of your virtual team.

However, having dwelt on the limitations of profiling tools, best practice now recommends the use of profiling tools for projects of any size prior to setting budgets and plans for data migration. For smaller migrations there are plenty of free-to-use, studio editions of some of the leading toolsets. They tend to have enough
functionality for small datasets, but are limited in their integration, and therefore application, to larger programmes. On the other hand, the studio editions are also a good way to get a feel for what is on the market even if eventually you need to scale up to enterprise level software.

Data quality tool

Once you have an idea of the target, on the one hand, and the constraints of the LDSs, on the other, data quality software allows the speedy (most are ‘point and click’) implementation of validation and cleaning rules. There is obviously some overlap in functionality between profiling and data quality tools. Some software can span both spheres, but most are stronger in one than the other. The difference is that profiling tools discover relationships and possible data quality issues, whereas data quality tools check for and enforce known data quality rules. It is for this reason that the leading vendors tend to have both in their software sets. Ideally the rules discovered in profiling should be passed seamlessly for implementation in the data quality software, which in turn is fully integrated with the migration controller.

Once again, there are studio editions of many of the leading software offerings. These are worth looking at to get a feel for what is on offer if you have no local expertise.

Migration controllers

Migration controllers are often known as the extract, transform and load (ETL) tools; however, they are expected to do more than merely perform these three functions. They are the essential ‘on the night’ software that delivers the migration. Migration controllers need to be capable of performing the following functions:

- Reading data from the LDSs (the ‘extract’ step).
- Validating the extracted data (preferably using the data quality software seamlessly embedded into the migration controller suite).
- Reformatting the data and blending data from multiple sources (the ‘transform’ step).
- Scheduling, starting and stopping the migration process.
- Writing the data to the target (the ‘load’ step).
- Managing fallout.
- Managing fallback.
- Reporting on execution.
- Reporting on fallout.
- Providing audits.

More sophisticated products are also capable of many other features including:

- Synchronisation (keeping the changes to source and target data in step after the data has been moved. This means that the source can continue to be used during the migration thus enabling zero downtime migrations).
• Data lineage (tracking individual units of migration to show how they were transformed, combined and written to the target. This is sometimes a necessity for regulatory reasons and is also helpful for other technical reasons covered in Section 2).

Modern, built-for-purpose migration controllers have so many complex features that it is unlikely that you would be successful in replicating them in locally produced software.

Hubs and workflow
It is commonplace these days on large projects to implement some form of hub. This is an area where documents can be shared and different software is used to facilitate collaboration. Good data migration projects are a hive of collaboration, with the disparate groups of workers sharing knowledge. Workflow engines allow the output of, say, records that have fallen out of the migration to be routed from the migration controller to the correct team for analysis. The use of these tools depends on the scale of the migration. Small, co-located teams, have less need for collaboration tools than large project teams spread over a number of time zones and continents, but the ubiquity of this software and its relative low cost compared with the benefits in productivity and knowledge sharing make it all but essential. At the time of writing there has been a surge in interest in using social networking type software for collaboration on projects. This really is an area where you need to discuss what is available for your project with your architectural resource.

THE CASE FOR SPECIALIST TECHNOLOGY

It is possible to complete a data migration using the code writing capabilities of an indigenous IT department, but there are risks. All code writing is inherently risky. Bugs work their way into the code and then need to be weeded out in testing. The more coding you do the more bugs, the more testing, the more time, the more risk. Using software designed for the job reduces the number of bugs dramatically because it is only the logic of the migration that is being tested not the logic as it was instantiated in someone’s handcrafted code.

A second compelling reason is that off-the-shelf data migration software these days is incredibly sophisticated. There is no way that any company, other than a rival software vendor, could ever justify the investment to recreate even a tenth of the features available out of the box.

ANECDOTE

I do know of one large technology company that decided in a fit of hubris to build their own migration hub. I have been quietly tracking the project and after five years and considerable expense they have not succeeded in replicating even the features of one of the cheaper off-the-shelf products. I suspect that their business drivers must go beyond merely delivering a solution.
All that being said, it remains a business judgement as to just where the cost–benefit lies. Tools can be purchased separately or as part of a set. Each migration has its own set of issues. For instance, is it a true 24/7 environment (like production control systems or telephony) where you really can never shut down the systems? If so, investment in sophisticated migration controllers that allow zero downtime are called for. Or do you have a complex heterogeneous migration environment to migrate from where the use of leading edge data profiling tools capable of cross database analysis will be useful? Possibly you are in a heavily regulated environment where data lineage is vital. Maybe you have only a short window of opportunity to migrate the data, in which case tools with superior prototyping capability could be key. And so on.

Only you know your own migration challenges and drivers. On the one hand, you do not want to invest in heavyweight technology you do not need. On the other, you do not want to be hamstrung trying to manhandle a migration via an inappropriate vehicle. It really pays to take advice at this point from internal or independent experts who can refine your thinking and define your options.

PDMv2 PROVIDES ALL THE ANSWERS

A review of the issues identified in the preceding text that have historically damaged data migration projects shows that PDMv2 provides a solution that covers all the bases but is flexible enough to be deployed in partnership with your chosen supplier's own preferred approach.

Techno-centricity
PDMv2 sees data migration as a business-led joint IT–business activity, albeit with a clear view of where technology sits and how to make informed decisions about which technology is appropriate for your project. Through the DQR and SRP processes the business provides direction over data selection, data preparation, data quality, decommissioning etc., and takes ownership not just of the end point but of the process of getting there. All this is completed within an integrated set of linked activities.

Lack of specialist skills
PDMv2 provides the tools and techniques that are all you need to perform low-risk data migrations. You can use it either as a checklist against likely internal resources or seek training in specific skills or even the whole methodology.

For those partners, like implementation service suppliers, who will perform the final ‘lift and shift’ and who have their own preferred approach, PDMv2 has the DMZ concept to insulate them from having to change their approach, which might well be optimised from their knowledge of their own technology and the target systems’ load requirements.

Underestimating
PDMv2 provides two ways of managing estimates. Firstly, there is the LA module that can be run separately on a fast pass through basis to generate the understanding on which estimates of scale can be arrived at prior to setting the budget for the
rest of the migration. Secondly, when the project is in-flight there is an assumption (Golden Rule 3) that more issues will be generated than can be solved, but there is the DQR process to manage the prioritisation needed to get the appropriate data of an appropriate level of quality to the right place at the right time. As I have shown, knowing there is an issue and solving an issue is not the same thing, especially if the issue is a business-side or semantic problem. Only PDMv2 has built in the controls of these decision-making processes via DQR that reach beyond the boundaries of the project. Spotting the challenges early while working in a collegiate, virtual team, with the business taking a leading role, means that time, quality or budget can be flexed in a dynamic but controlled manner. Put together as a coherent whole you have a set of processes that allow sensible decisions to be made that will deliver the data you need at the time you want it within a budget that you can accept.

Uncontrolled recursion
Using PDMv2 from the start of the project will build the single virtual team across business and technical stovepipes that will ensure that the responsibility gap never has a chance to develop. Via the DQR and SRP processes, you retain a tight control on your migrations using common metrics across multiple different data types, data sources, geographical locations etc.

Technology
Within PDMv2 there is an understood place for technology and a clear decision point for deciding which technology is appropriate to your migration. However, technology is not divorced from the rest of the migration processes. Technology on its own, in any walk of life, rarely solves any problems without being wrapped in some form of meaningful best practice. Technology is embedded in the modules that make up PDMv2 and is therefore still directed by business towards optimally aiding your data migration. If necessary, and to get the maximum benefit from your software investment, encapsulation in the DMZ means that you do not expect to have to destabilise your chosen implementation partner’s favoured approach, which will optimise the use of their toolset’s salient features.

To achieve all of this, however, you need to make sure that you have set up your project in the right way in the first place: in other words that you are setting off from the right starting point. For that, you need to get your data migration strategy right in the first place. This is the subject of Chapter 4.

CHAPTER REVIEW
In this chapter I have introduced you to the various modules of PDMv2 and showed their interrelated nature. I also looked at the use of technology and you saw how it overlays the activities within the modules. Finally, you saw how the use of PDMv2 mitigates all the risks, both technical and non-technical, that I identified in previous chapters.
INDEX

abstraction 79
accreditation in PDMv2 61
always up migration 54
amnesties, legacy data stores 66, 100, 107
application program interfaces (API) 182, 191
architectural diagram 178
archived data storage delivery of 37
design 37, 195–197
implementation 205
testing 131
assessments, data quality 110, 154–155
audit see data audit
audit experts on DQR board 149
identifying 101–102
automated fixes of data 145–146
awareness training 130
benefits, post-project 206–207
big bang migration 54
‘black boxing’ 90
budgeting 68–69
budgets for project 49
for software 57–58
see also quality versus time versus budget
build, migration 198–199
business colleagues gaining support of 32–34
losing trust of 31–32
see also key data stakeholders (KDSH)

business domain experts on DQR board 148
identifying 95–96, 137
and testing 131
business engagement communications strategies 65–67
need for 9, 17–23
overcoming resistance 28–34
ownership 91–92
see also key data stakeholders (KDSH)
business engagement work stream Fig. 3.1, 36
business knowledge, importance of 17, 23–24
business readiness 74
business readiness teams 67, 110, 129
business-class plane flight metaphor 13–14
change, emotional reactions to Fig. 2.2, 29–31
change control 64–65
in failing projects 212–213
of legacy data store list 110, 212
change management 70–71
check points 186–187
churn 183–184
close down, project 206
commercial off-the-shelf (COTS) packages 43–44, 118, 182
communications strategies 65–67
communications teams 67, 110, 129
complex datasets 111
concatenating data 168–169
costs of systems integrators 60
see also budgets
corporate data architects see data architects
costs of systems integrators 60
see also budgets
customer experience, in system retirement plans 135
cutover plans 194, 195, 204
cutover timelines 178
dashboards 74, 142
data architects definition 99
on DQR board 149
identifying 99–101
data audit 167, 170
definition 133
and demilitarised zone 172
design 194, 195
in end-to-end design 177, 179
fallback 189
manual 159
testing 200, 201
data customers 102
data dictionaries 161
data gaps 114–120, 158–159
internal 115–116, 160
migration model 116–120, 121–122, 160
target model 114, 145, 158, 160–161
topographical 159
see also reality gaps and checks
data governance 101
data lineage 133–134, 167–168, 170
and demilitarised zone 172
in end-to-end design 177, 179
fallback 189
software feature 43
testing 200
data mapping 36–37, 163–170
and demilitarised zone 171–172
‘one-way street’ problem 169–170
parsing and concatenation 168–169
post-project benefits 207
software for 173–174
worked example 231–244
data migration common problems 9–10
definition 7–8
where to start 75
data migration analysts chairs DQR board 149
identifying 97–98
data migration strategy 46–75
checklist 226–228
communications strategies 65–67
contents of 47–48
implementation 75
initial migration plan 55–56
migration form 54–55
policies 50–53
project scope 48–49
project scope 48–49
software selection 56–60
systems integrator selection 60–63
data models
data store models 83
entity relationship diagrams
Fig. 5.1, Fig. 5.2, Fig. 5.3, 80–81
instantiating 84–85, 161–162
target data models 83, 117
types of 80
uses in PDMc2 81–83
see also conceptual entity model;
migration models
data owners
definition 38–39
identifying 94–95
and system retirement plans 128–130
data profiling
in landscape analysis 36,
114–120
services 125–126
tools 41–42, 125–126
data quality
assessments 110, 154–155
compromise 24–26
enhancing 24, 26
monitoring 163, 171
removing duplicates 120–121, 124
responsibility of the business
10–12, 17–23
see also quality versus time
versus budget
data quality rules (DQR) 38,
140–157
control of in failing projects 213
definition 140–141
and demilitarised zone 157
documentation 153–156,
229–230
escalation path 68
fix methods 143–144
fix types 144–146, 159
initial list of 72
monitoring 163, 171
post-project benefits 206–207
priorities 142, 154
process Fig. 9.1, 142–147,
151–152, 207
reporting on 73, 146–147
software for 156–157
specimen form 229–230
see also DQR board
data quality tools 42, 125, 146
and migration models 161–162
data retention 131–132, 179
data sizing 181–182
data stakeholders see key data stakeholders (KDSH)
data standards in legacy data stores 100
data store models 83
data transitional rules 143,
183–184, 235
demilitarising see legacy decommissioning (LD)
demilitarised zone (DMZ) 20–23,
40, 89–91
and data quality rules 157
definition 22
and end-to-end design 176–177
establishing 61–62
and extract, transform and load 190, 191, 192, 193, 195
and failing projects 216–217
and gap analysis and mapping 170–173
and in-house resources 23
and landscape analysis 125–126
and legacy decommissioning 177
logical 90
physical 90
and programme experts 98
and system retirement plans 139
and transitional business processes 193
design see extract, transform and load (ETL) design;
migration design and execution (MDE)
DMZ see demilitarised zone (DMZ)
documentation 69
data quality rules 153–156,
229–230
legacy data stores 109–114
downsizing policies 53
DQR see data quality rules (DQR)
DQR board
composition of 148–149
frequency of meetings 152
running meetings 150–151
size 150
tasks 142–143
emotional reactions to change
Fig. 2.2, 29–31
end-to-end (E2E) design 175–181
engagement see business
gap analysis and mapping (GAM)
gaps see data gaps
Golden Rules 16–27
and data quality rules 140, 152
importance of 16
rule 1 17–23
rule 2 23–24
rule 3 24–26
rule 4 26–27
go-live restrictions 134–135, 179
governance
data 101
migration strategy and
governance module 40
project 49–50
hardware considerations 184
hubs 43
impact analysis 70, 71
frame 223–225
in-flight transactions, handling 138,
178, 192–193
initial lists 72
instance, definition 120
integration testing 199
internal gaps 115–116, 160
issue management 67–68
key business data areas 86–87,
177, 216
key data stakeholder management (KDSM) 38–39, 102–103
key data stakeholders (KDSH) 91–103
definition 93
documenting 110
in failing projects 213–214
identifying 92–102
initial list of 72
managing 38–39, 102–103
and ownership 91–92
landscape analysis (LA) 36,
105–126
data profiling 36, 114–120
and data quality tools 161–162
definition 106
and demilitarised zone 125–126
documenting legacy data stores 109–114
identifying legacy data stores 36,
107–108, 110
master data management 120–124
software for 125
as Super SMART Task 108–109
timing of 109
see also master data
management (MDM)
LD see legacy decommissioning
(LD)
legacy data stores (LDS)
amnesties 66, 100, 107
control of in failing projects 212
definition 106
documenting 109–114
identifying 36, 107–108, 110
initial list of 72
modelling 83
technical details of 111–112
technical system experts 148
topography of 112–113
legacy decommissioning (LD)
and demilitarised zone 177
design 195–198
execution 205–208
introduction 37
reporting on 74
signing off 130, 138, 203
testing 199
lessons learned 207
library services 69, 73
load design 191–192
see also extract, transform and
load (ETL) design
load testing 199
see also mock load testing
loading rules 145, 167, 172
logical migration models 161
‘long tail’ problem 206
manual fixes of data 145
mapping see data mapping
master data management (MDM)
101, 120–124
objective of 122
policies 52–53
post-project benefits 207
MDE see migration design and
execution (MDE)
meetings, DQR board 150–151, 152
metadata
definition 79
see also data models
metaphors for data migration 13–14
method statements 155–156
methodologies
project 49, 51
supplier-side 23, 61, 90
see also PDMv2 methodology
methods, fix 143–144
metrics and data quality rules 156
mid-change cycle slump Fig. 2.2,
29–31
migration build 198–199
migration controllers 42–43
migration design and execution
(MDE)
decommissioning design 195–198
end-to-end design 175–181
introduction 37
migration build 198–199
migration execution 203–204
migration testing 199–203
see also extract, transform and
load (ETL) design
migration form 54–55
definition 54
impact of training lag on 130
and key business data areas 87
and ‘one-way street’ problem 170
and software selection 58
and systems integrator
selection 60
see also phased migration
migration model gaps 116–120,
121–122, 160
migration models 83, 116–120
instantiating 119, 161–162
logical 161
physical 162
migration plans, initial 55–56
migration readiness 66, 74, 147
migration strategy and governance
(MSG)
introduction 40
see also data migration strategy;
governance
mock load testing 201–202
see also trial migrations
models see data models; migration
models
MSG see migration strategy and
governance (MSG)
navigation, definition 159
navigation rules 166
network considerations 184
non-functional requirements of
design 181–184
off-the-shelf software 43–44, 118,
182
‘one-way street’ problem 169–170,
189, 196
open source software 41–42,
57–58, 60
open transactions, handling 138,
178, 192–193
orchestration 177
ownership 91–92
see also data owners
parallel migration 54
and ‘one-way street’ problem
170
parallel processing 58
parsing data 168–169
partial fallback 187
PDMv2 methodology
accreditation 61
overview Fig. 3.1, 35–40
solutions to common problems
44–45
people management 28–29
phased migration 54, 87
due to training lag 130
and ‘one-way street’ problem
170
switching to 188
and transitional interfaces 192
physical decommissioning design
197
physical migration models 162
plane flight metaphor 13–14
planning, project 67
initial migration plan 55–56
updating after end-to-end design
180–181
plans
Cutover 194, 195, 204
initial migration 55–56
see also system retirement plans
(SRP)
and policies in data migration strategy
50–53
definition 51
framework purchasing
agreements 62
risk aversion 51–52, 57, 147
software 58
post-implementation mop-up in
failing projects 215–216
priorities, data quality rules 142,
154
procurement processes 21, 89, 97
profiling see data profiling
programme experts, identifying
98–99
programme initiation document
(PID) 48
project close down 206
project decomposition 54, 86–88
in failing projects 216
project governance 49–50
project office functions 64–72
qualitative assessments of data
154–155
quality see data quality; data
quality rules (DQR)
quality versus time versus budget
Fig. 4.1, 51–52, 57, 147
quantitative assessments of data
154–155
quest metaphor 13–14
readiness
business 74
migration 66, 74, 147
see also business readiness teams
reality gaps and checks 115,
119–120, 159–160
in failing projects 216
in master data management 121
recession, uncontrolled
PDMv2 solution 45
problem with 9
regulatory experts
on DQR board 149
identifying 101–102
regulatory requirements,
policies 53
reuse management 71
in failing projects 214
reporting
on data quality rules 73, 146–147
on legacy decommissioning 74
during migration 191
requirements 177
rescuing projects 211–218
resources, in system retirement
plans 136–137
responsibility gap 10–15
retention, data 131–132, 179
risk aversion policies 51–52
effect on software selection 57
revisiting 147
risk management 67–68
rollback see fallback
rules
data mapping 145, 165–167,
171–172
data transitional 143, 183–184,
235
see also data quality rules (DQR);
Golden Rules
run times 182–183
scope
 data migration project 48–49
 management of 64–65
 programme 48
 semantic issues 11–12
 sequencing 183–184
 rules 167, 172
 SI see systems integrators (SI)
 sign-off
 check points 187
 decommissioning 130, 138, 203
 system retirement plans 74,
 129–130, 194, 203
 sizing, data 181–182
 SMART tasks 67
 see also Super SMART Tasks
 social networking 43, 59
 software
 budget for 57–58
 data profiling tools 41–42, 125–126
 data quality tools 42, 125, 146,
 161–162
 in end-to-end design 175–176
 implementing 128–130
 introduction 39–40
 signing off 74, 129–130, 194, 203
 as Super SMART Tasks 127,
 138–139
 systems administrators 96
 systems integrators (SI)
 costs of 60
 selection 60–63
 tasks outside scope of 36, 37
 target data models 83, 117
 target model gaps 114, 145, 158,
 160–161
 team building 28–29
 teamwork, on data quality rules
 147–148
 technical system experts
 on DQR board 148–149
 identifying 96–97
 technical work stream Fig. 3.1
 techno-centricity
 PDM v2 solution 44
 problem with 9
 technology
 case for using off-the-shelf 43–44
 overview 41–43, 178
 in *PDM* v2 45
 see also software
 telephone conferencing 157
 testing
 data migration 199–203
 exception handling 202–203
 mock load 201–202
 responsibility for 176–177
 in system retirement plans 131,
 179
 user acceptance 130, 131, 200
 timing
 of landscape analysis 109
 of migration 134–135, 178
 of mock load testing 201
 run times 182–183
 windows of opportunity 134–135,
 179, 182, 183
 see also quality versus time
 versus budget
 timing rules 166
 tools see software
 topographical gaps 159
 topography of legacy data stores
 112–113
 tracking see data lineage
 training 130, 179
 training lag 130, 179
 transactions, handling in-flight
 138, 178, 192–193
 transformation
 and demilitarised zone 176
 design 190–191
 see also extract, transform and
 load (ETL) design
 transformation rules 145, 167, 172
 transitional business processes
 65–66, 124
 closing down 206
 design of 192–193
 in system retirement plans 138,
 194
 transitional data stores 160
 transitional interface design 192
 transitional rules 143, 183–184,
 235
 trial migrations 55–56
 see also mock load testing
 type, definition 120
 UAT see user acceptance testing
 (UAT)
 uncontrolled recursion see
 recursion, uncontrolled
 underestimating
 PDM v2 solution 44–45
 problem with 9
 units of migration
 definition 27
 in system retirement plans
 137–138
 use in reporting 74, 146–147
 user acceptance testing (UAT) 130,
 131, 200
 validation rules 145, 166, 172, 190
 widgets 59, 60
 windows of opportunity 134–135,
 179, 182, 183
 workflow 43

248
Nearly 40% of data migration projects are over time, over budget or fail entirely. Studies have shown that using a proven methodology greatly increases the chances of on time, on budget and zero defect migrations. Enhance your career prospects by reading this book and making a success of your migration projects.

The author uses a series of steps developed in real-life situations that will deliver a populated, clean, working system backed by the user population.

The first edition of this book provided the first non-proprietary methodology for data migration and quickly became the primary text on the subject. This new edition is updated to take account of changes in technology and the maturing of the market for data migration services.

- New updated edition of bestselling text
- Get the dirty old data out of your legacy systems and transform it into clean new data
- Enriched with anecdotes, hints, golden rules and definitions

ABOUT THE AUTHOR
Johny Morris has over 25 years’ experience in IT working as a programmer, analyst, project manager and system designer. He has worked as a data migration consultant for some of the biggest names in IT consultancy (CSC, Logica CMG and others) and has been involved in data migrations large and small at blue chip clients like Barclays Bank, BT, Network Rail and Jaguar Land Rover.

For any practitioner faced with the challenge of delivering a successful data migration, this book is an absolute necessity.

Dylan Jones, Founder
Data Migration Pro/Data Quality Pro

You might also be interested in:
PRINCIPLES OF DATA MANAGEMENT:
Facilitating Information Sharing
Keith Gordon

BUSINESS ANALYSIS Second Edition
Debra Paul, Donald Yeates and James Cadie (Editors)