CHAPTER

How SDN Works

In previous chapters we have seen why SDN is necessary and what preceded the actual advent of SDN
in the research and industrial communities. In this chapter we provide an overview of how SDN actually
works, including discussion of the basic components of a Software Defined Networking system, their
roles, and how they interact with one another. In the first part of this chapter we focus on the methods
used by Open SDN. We also examine how some alternate forms of SDN work. As SDN has gained
momentum, some networking vendors have responded with alternate definitions of SDN, which better
align with their own product offerings. Some of these methods of implementing SDN-like solutions
are new (but some are not) and are innovative in their approach. We group the most important of these
alternate SDN implementations in two categories: SDN via existing APIs and SDN via hypervisor-based
overlay networks, which we discuss separately in the latter half of this chapter.

4.1 Fundamental Characteristics of SDN

As introduced in Chapter 3, Software Defined Networking, as it evolved from prior proposals, stan-
dards, and implementations such as ForCES, 4D, and Ethane, is characterized by five fundamental
traits: plane separation, a simplified device, centralized control, network automation and virtualization,
and openness.

4.1.1 Plane Separation

The first fundamental characteristic of SDN is the separation of the forwarding and control planes.
Forwarding functionality, including the logic and tables for choosing how to deal with incoming packets
based on characteristics such as MAC address, IP address, and VLAN ID, resides in the forwarding
plane. The fundamental actions performed by the forwarding plane can be described by the way it
dispenses with arriving packets. It may forward, drop, consume, or replicate an incoming packet. For
basic forwarding, the device determines the correct output port by performing a lookup in the address
table in the hardware ASIC. A packet may be dropped due to buffer overflow conditions or due to
specific filtering resulting from a QoS rate-limiting function, for example. Special-case packets that
require processing by the control or management planes are consumed and passed to the appropriate
plane. Finally, a special case of forwarding pertains to multicast, where the incoming packet must be
replicated before forwarding the various copies out different output ports.

The protocols, logic, and algorithms that are used to program the forwarding plane reside in the
control plane. Many of these protocols and algorithms require global knowledge of the network. The
control plane determines how the forwarding tables and logic in the data plane should be programmed

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00004-8 59
© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-416675-2.00004-8

60 CHAPTER 4 How SDN Works

or configured. Since in a traditional network each device has its own control plane, the primary task of
that control plane is to run routing or switching protocols so that all the distributed forwarding tables on
the devices throughout the network stay synchronized. The most basic outcome of this synchronization
is the prevention of loops.

Although these planes have traditionally been considered logically separate, they co-reside in legacy
Internet switches. In SDN, the control plane is moved off the switching device and onto a centralized
controller. This is the inspiration behind Figure 1.6 in Chapter 1.

4.1.2 A Simple Device and Centralized Control

Building on the idea of separation of forwarding and control planes, the next characteristic is the
simplification of devices, which are then controlled by a centralized system running management and
control software. Instead of hundreds of thousands of lines of complicated control plane software
running on the device and allowing the device to behave autonomously, that software is removed from
the device and placed in a centralized controller. This software-based controller manages the network
using higher-level policies. The controller then provides primitive instructions to the simplified devices
when appropriate in order to allow them to make fast decisions about how to deal with incoming packets.

4.1.3 Network Automation and Virtualization

Three basic abstractions forming the basis for SDN are defined in [15]. This asserts that SDN can be
derived precisely from the abstractions of distributed state, forwarding, and configuration. They are
derived from decomposing into simplifying abstractions the actual complex problem of network control
faced by networks today. For a historical analogy, note that today’s high-level programming languages
represent an evolution from their machine language roots through the intermediate stage of languages
such as C, where today’s languages allow great productivity gains by allowing the programmer to simply
specify complex actions through programming abstractions. In a similar manner, [15] purports that
SDN is a similar natural evolution for the problem of network control. The distributed state abstraction
provides the network programmer with a global network view that shields the programmer from the
realities of a network that is actually comprised of many machines, each with its own state, collaborating
to solve network-wide problems. The forwarding abstraction allows the programmer to specify the
necessary forwarding behaviors without any knowledge of vendor-specific hardware. This implies that
whatever language or languages emerge from the abstraction need to represent a sort of lowest common
denominator of forwarding capabilities of network hardware. Finally, the configuration abstraction,
which is sometimes called the specification abstraction, must be able to express the desired goals of the
overall network without getting lost in the details of how the physical network will implement those
goals. To return to the programming analogy, consider how unproductive software developers would be
if they needed to be aware of what is actually involved in writing a block of data to a hard disk when they
are instead happily productive with the abstraction of file input and output. Working with the network
through this configuration abstraction is really network virtualization at its most basic level. This kind
of virtualization lies at the heart of how we define Open SDN in this work.

The centralized software-based controller in SDN provides an open interface on the controller to
allow for automated control of the network. In the context of Open SDN, the terms northbound and
southbound are often used to distinguish whether the interface is to the applications or to the devices.
These terms derive from the fact that in most diagrams the applications are depicted above (i.e., to the

4.2 SDN Operation 61

north of) the controller, whereas devices are depicted below (i.e., to the south of) the controller. The
southbound API is the OpenFlow interface that the controller uses to program the network devices. The
controller offers a northbound API, allowing software applications to be plugged into the controller
and thereby allowing that software to provide the algorithms and protocols that can run the network
efficiently. These applications can quickly and dynamically make network changes as the need arises.
The northbound API of the controller is intended to provide an abstraction of the network devices and
topology. That is, the northbound API provides a generalized interface that allows the software above it
to operate without knowledge of the individual characteristics and idiosyncrasies of the network devices
themselves. In this way, applications can be developed that work over a wide array of manufacturers’
equipment that may differ substantially in their implementation details.

One of the results of this level of abstraction is that it provides the ability to virtualize the network,
decoupling the network service from the underlying physical network. Those services are still presented
to host devices in such a way that those hosts are unaware that the network resources they are using are
virtual and not the physical ones for which they were originally designed.

4.1.4 Openness

A characteristic of Open SDN is that its interfaces should remain standard, well documented, and
not proprietary. The APIs that are defined should give software sufficient control to experiment with
and control various control plane options. The premise is that keeping open both the northbound and
southbound interfaces to the SDN controller will allow for research into new and innovative methods of
network operation. Research institutions as well as entrepreneurs can take advantage of this capability
in order to easily experiment with and test new ideas. Hence the speed at which network technology is
developed and deployed is greatly increased as much larger numbers of individuals and organizations
are able to apply themselves to today’s network problems, resulting in better and faster technological
advancement in the structure and functioning of networks. The presence of these open interfaces also
encourages SDN-related open source projects. As discussed in Sections 1.7 and 3.5, harnessing the
power of the open source development community should greatly accelerate innovation in SDN [6].

In addition to facilitating research and experimentation, open interfaces permit equipment from
different vendors to interoperate. This normally produces a competitive environment which lowers
costs to consumers of network equipment. This reduction in network equipment costs has been part of
the SDN agenda since its inception.

4.2 SDN Operation

At a conceptual level, the behavior and operation of a Software Defined Network is straightforward.
In Figure 4.1 we provide a graphical depiction of the operation of the basic components of SDN: the
SDN devices, the controller, and the applications. The easiest way to understand the operation is to
look at it from the bottom up, starting with the SDN device. As shown in Figure 4.1, the SDN devices
contain forwarding functionality for deciding what to do with each incoming packet. The devices also
contain the data that drives those forwarding decisions. The data itself is actually represented by the
flows defined by the controller, as depicted in the upper-left portion of each device.

A flow describes a set of packets transferred from one network endpoint (or set of endpoints) to
another endpoint (or set of endpoints). The endpoints may be defined as IP address-TCP/UDP port

62 CHAPTER 4 How SDN Works

Global Network View
A

App App App App (

High-Performance
Machine

[Northbound API |
Controller
[Southbound API |

o | o [[ow)

[Forwarding | [Forwarding || |[Forwarding ||
Data \ Data ‘

[Fomardng |- [[Fowardng |

—Data |
Forwarding Forwarding Forwarding SDN
Devices
flows Data W‘_m /
Forwarding Forwarding

FIGURE 4.1

SDN operation overview.

pairs, VLAN endpoints, layer three tunnel endpoints, and input ports, among other things. One set of
rules describes the forwarding actions that the device should take for all packets belonging to that flow.
A flow is unidirectional in that packets flowing between the same two endpoints in the opposite direction
could each constitute a separate flow. Flows are represented on a device as a flow entry.

A flow table resides on the network device and consists of a series of flow entries and the actions
to perform when a packet matching that flow arrives at the device. When the SDN device receives a
packet, it consults its flow tables in search of a match. These flow tables had been constructed previously
when the controller downloaded appropriate flow rules to the device. If the SDN device finds a match,
it takes the appropriate configured action, which usually entails forwarding the packet. If it does not
find a match, the switch can either drop the packet or pass it to the controller, depending on the version
of OpenFlow and the configuration of the switch. We describe flow tables and this packet-matching
process in greater detail in Sections 4.3 and 5.3.

The definition of a flow is a relatively simple programming expression of what may be a very complex
control plane calculation previously performed by the controller. For the reader who is less familiar with
traditional switching hardware architecture, it is important to understand that this complexity is such that
it simply cannot be performed at line rates and instead must be digested by the control plane and reduced
to simple rules that can be processed at that speed. In Open SDN, this digested form is the flow entry.

The SDN controller is responsible for abstracting the network of SDN devices it controls and pre-
senting an abstraction of these network resources to the SDN applications running above. The controller
allows the SDN application to define flows on devices and to help the application respond to packets that
are forwarded to the controller by the SDN devices. In Figure 4.1 we see on the right side of the controller
that it maintains a view of the entire network that it controls. This permits it to calculate optimal forward-
ing solutions for the network in a deterministic, predictable manner. Since one controller can control
a large number of network devices, these calculations are normally performed on a high-performance

4.2 SDN Operation 63

machine with an order-of-magnitude performance advantage over the CPU and memory capacity than is
typically afforded to the network devices themselves. For example, a controller might be implemented
on an eight-core, 2-GHz CPU versus the single-core, 1-GHz CPU that is more typical on a switch.

SDN applications are built on top of the controller. These applications should not be confused with the
application layer defined in the seven-layer OSI model of computer networking. Since SDN applications
are really part of network layers two and three, this concept is orthogonal to that of applications in the
tight hierarchy of OSI protocol layers. The SDN application interfaces with the controller, using it to
set proactive flows on the devices and to receive packets that have been forwarded to the controller.
Proactive flows are established by the application; typically the application will set these flows when the
application starts up, and the flows will persist until some configuration change is made. This kind of
proactive flow is known as a static flow. Another kind of proactive flow is where the controller decides
to modify a flow based on the traffic load currently being driven through a network device.

In addition to flows defined proactively by the application, some flows are defined in response to a
packet forwarded to the controller. Upon receipt of incoming packets that have been forwarded to the
controller, the SDN application will instruct the controller as to how to respond to the packet and, if
appropriate, will establish new flows on the device in order to allow that device to respond locally the
next time it sees a packet belonging to that flow. Such flows are called reactive flows. In this way, it
is now possible to write software applications that implement forwarding, routing, overlay, multipath,
and access control functions, among others.

There are also reactive flows that are defined or modified as a result of stimuli from sources other
than packets from the controller. For example, the controller can insert flows reactively in response to
other data sources such as intrusion detection systems (IDS) or the NetFlow traffic analyzer [16].

Figure 4.2 depicts the OpenFlow protocol as the means of communication between the controller
and the device. Though OpenFlow is the defined standard for such communication in Open SDN, there

[[pae | [[oaa] [oaa]

[ﬂs\ [\ [IuH

[Data || [paa]

[Forwarding || [Forwarding |

Controller

Forwarding Forwarding Forwarding

flows Data W_m
Forwarding Forwarding

FIGURE 4.2

Controller-to-device communication.

64 CHAPTER 4 How SDN Works

are alternative SDN solutions, discussed later in this chapter, that may use vendor-specific proprietary
protocols. The next sections discuss SDN devices, controllers, and applications in greater detail.

4.3 SDN Devices

An SDN device is composed of an API for communication with the controller, an abstraction layer, and
a packet-processing function. In the case of a virtual switch, this packet-processing function is packet-
processing software, as shown in Figure 4.3. In the case of a physical switch, the packet-processing
function is embodied in the hardware for packet-processing logic, as shown in Figure 4.4.

The abstraction layer embodies one or more flow tables, which we discuss in Section 4.3.1. The
packet-processing logic consists of the mechanisms to take actions based on the results of evaluating
incoming packets and finding the highest-priority match. When a match is found, the incoming packet is
processed locally unless it is explicitly forwarded to the controller. When no match is found, the packet
may be copied to the controller for further processing. This process is also referred to as the controller
consuming the packet. In the case of a hardware switch, these mechanisms are implemented by the
specialized hardware we discuss in Section 4.3.3. In the case of a software switch, these same functions
are mirrored by software. Since the case of the software switch is somewhat simpler than the hardware
switch, we will present that first in Section 4.3.2. Some readers may be confused by the distinction
between a hardware switch and a software switch. The earliest routers that we described in Chapter 1
were indeed just software switches. Later, as we depicted in Figure 2.1, we explained that over time
the actual packet-forwarding logic migrated into hardware for switches that needed to process packets
arriving at ever-increasing line rates. More recently, a role has reemerged in the data center for the pure
software switch. Such a switch is implemented as a software application usually running in conjunction
with a hypervisor in a data center rack. Like a VM, the virtual switch can be instantiated or moved under
software control. It normally serves as a virtual switch and works collectively with a set of other such
virtual switches to constitute a virtual network. We discuss this concept in greater depth in Chapter 7.

A To Controller

API \ OpenFlow |

Abstraction Layer

H\ Flow Table \

SW
Packet Processing

FIGURE 4.3
SDN software switch anatomy.

4.3 SDN Devices 65

A To Controller

API | OpenFlow |

Abstraction Layer

H\ Flow Table \

W [(Fwd] [L2Fwa)

FIGURE 4.4
SDN hardware switch anatomy.

4.3.1 Flow Tables

Flow tables are the fundamental data structures in an SDN device. These flow tables allow the device
to evaluate incoming packets and take the appropriate action based on the contents of the packet that
has just been received. Packets have traditionally been received by networking devices and evaluated
based on certain fields. Depending on that evaluation, actions are taken. These actions may include
forwarding the packet to a specific port, dropping the packet, or flooding the packet on all ports, among
others. An SDN device is not fundamentally different except that this basic operation has been rendered
more generic and more programmable via the flow tables and their associated logic.

Flow tables consist of a number of prioritized flow entries, each of which typically consists of two
components: match fields and actions. Match fields are used to compare against incoming packets. An
incoming packet is compared against the match fields in priority order, and the first complete match
is selected. Actions are the instructions that the network device should perform if an incoming packet
matches the match fields specified for that flow entry.

Match fields can have wildcards for fields that are not relevant to a particular match. For example,
when matching packets based just on IP address or subnet, all other fields would be wildcarded. Similarly,
if matching on only MAC address or UDP/TCP port, the other fields are irrelevant, and consequently
those fields are wildcarded. Depending on the application needs, all fields may be important, in which
case there would be no wildcards. The flow table and flow entry constructs allow the SDN application
developer to have a wide range of possibilities for matching packets and taking appropriate actions.

Given this general description of an SDN device, we now look at two embodiments of an SDN
device: first, the more simple software SDN device and then a hardware SDN device.

4.3.2 SDN Software Switches

In Figure 4.3 we provide a graphical depiction of a purely software-based SDN device. Implementation
of SDN devices in software is the simplest means of creating an SDN device, because the flow tables,

66 CHAPTER 4 How SDN Works

flow entries, and match fields involved are easily mapped to general software data structures, such
as sorted arrays and hash tables. Consequently, it is more probable that two software SDN devices
produced by different development teams will behave consistently than will two different hardware
implementations. Conversely, implementations in software are likely to be slower and less efficient than
those implemented in hardware, since they do not benefit from any hardware acceleration. Consequently,
for network devices that must run at high speeds, such as 10 Gbps, 40 Gbps, and 100 Gbps, only hardware
implementations are feasible.

Due to the use of wildcards in matching, which poses a problem for typical hash tables, the packet-
processing function depicted in Figure 4.3 uses sophisticated software logic to implement efficient
match field lookups. Hence, in the early days of SDN, there was a wide variance in the performance of
different software implementations, based on the efficiency with which these lookups are accomplished.
Fortunately, software SDN device implementations have matured. The fact that there are two widely
recognized software reference implementations (see Section 4.3.4), both of which use sophisticated
and efficient methods of performing these lookups, has resulted in greater uniformity in software SDN
device performance.

Software device implementations also suffer less from resource constraints, since considerations
such as processing power and memory size are not an issue in typical implementations. Thus, whereas a
hardware SDN device implementation will support only a comparatively limited number of flow entries,
the ceiling on the number of flow entries on a software device may be orders of magnitude larger. As
software device implementations have more flexibility to implement more complex actions, we expect
to see a richer set of actions available on software SDN device implementations than on the hardware
SDN devices that we examine in the next section.

Software SDN device implementations are most often found in software-based network devices,
such as the hypervisors of a virtualization system. These hypervisors often incorporate a software
switch implementation that connects the various virtual machines to the virtual network. The virtual
switch working with a hypervisor is a natural fit for SDN. In fact, the whole virtualization system is
often controlled by a centralized management system, which also meshes well with the centralized
controller aspect of the SDN paradigm.

4.3.3 Hardware SDN Devices

Hardware implementations of SDN devices hold the promise of operating much faster than their soft-
ware counterparts and, thus, are more applicable to performance-sensitive environments, such as in
data centers and network cores. To understand how SDN objects such as flow tables and flow entries
can be translated into hardware, her we briefly review some of the hardware components of today’s
networking devices.

Currently, network devices utilize specialized hardware designed to facilitate the inspection of incom-
ing packets and the subsequent decisions that follow based on the packet-matching operation. We see
in Figure 4.4 that the packet-processing logic shown in Figure 4.3 has been replaced by this specialized
hardware. This hardware includes the layer two and layer three forwarding tables, usually implemented
using content-addressable memories (CAMSs) and ternary content-addressable memories (TCAMs).
The layer three forwarding table is used for making IP-level routing decisions. This is the fundamental
operation of a router. It matches the destination IP address against entries in the table and, based on the

4.3 SDN Devices 67

match, takes the appropriate routing action (e.g., forwards the packet out interface B3). The layer two
forwarding table is used for making MAC-level forwarding decisions. This is the fundamental operation
of a switch. It matches the destination MAC address against entries in the table and, based on the match,
takes the appropriate forwarding action (e.g., forwards out interface 15).

The layer two forwarding table is typically implemented using regular CAM or hardware-based
hashing. These kinds of associative memories are used when there are precise indices, such as a 48-bit
MAC address. TCAMs, however, are associated with more complex matching functions. TCAMs are
used in hardware to check not only for an exact match but also for a third state, which uses a mask to treat
certain parts of the match field as wildcards. A straightforward example of this process is matching an IP
destination address against networks where a longest prefix match is performed. Depending on subnet
masks, multiple table entries may match the search key, and the goal is to determine the closest match. A
more important and innovative use of TCAMs is for potentially matching some but not all header fields of
an incoming packet. These TCAMs are thus essential for functions such as policy-based routing (PBR).

This hardware functionality allows the device to both match packets and then take actions at a very
high rate. However, it also presents a series of challenges to the SDN device developer. Specifically:

* How best to translate from flow entries to hardware entries; for example, how best to utilize the
CAMs, TCAMs, or hardware-based hash tables?

e Which of the flow entries to handle in hardware versus how many to fall back to using software?
Most implementations are able to use hardware to handle some of the lookups, but others are handed
off to software to be handled there. Obviously, hardware will handle the flow lookups much faster
than software, but hardware tables have limitations on the number of flow entries they can hold at
any time, and software tables could be used to handle the overflow.

* How to deal with hardware action limitations that may impact whether to implement the flow in
hardware versus software? For example, certain actions such as packet modification may be limited
or not available if handled in hardware.

* How to track statistics on individual flows? In using devices such as TCAMs, which may match
multiple flows, it is not possible to use those devices to count individual flows separately. Further-
more, gathering statistics across the various tables can be problematic because the tables may count
something twice or not at all.

These and other factors will impact the quality, functionality, and efficiency of the SDN device being
developed and must be considered during the design process. For example, hardware table sizes may
limit the number of flows, and hardware table capabilities may limit the breadth and depth of special
features supported. The limitations presented by a hardware SDN device might require adaptations to
SDN applications in order to interoperate with multiple heterogeneous types of SDN devices.

Although the challenges to the SDN device designer are no doubt formidable, the range of variables
confronting the SDN application developer is vast. The first-generation SDN device developer is cor-
ralled into basically retrofitting existing hardware to SDN and thus does not have many choices—and
indeed may be unable to implement all specified features. The SDN application developer, on the other
hand, must deal with inconsistencies across vendor implementations, with scaling performance on a
network-wide basis, and a host of other more nebulous issues. We discuss some of these application-
specific issues in Section 4.5.

68 CHAPTER 4 How SDN Works

This section provided an overview of the composition of SDN devices and the considerations that
must be taken into account during their development and their use as part of an SDN application. We
provide further specifics on flow tables, flow entries, and actions in Chapter 5.

4.3.4 Existing SDN Device Implementations

A number of SDN device implementations are available today, both commercial and open source.
Software SDN devices are predominantly open source. Currently, two main alternatives are available:
Open vSwitch (OVS) [4] from Nicira and Indigo [5] from Big Switch. Incumbent network equipment
manufacturers (NEMs), such as Cisco, HP, NEC, IBM, Juniper, and Extreme, have added OpenFlow
support to some of their legacy switches. Generally, these switches may operate in both legacy mode
as well as OpenFlow mode. There is also a new class of devices called white-box switches, which are
minimalist in that they are built primarily from merchant silicon switching chips and a commodity CPU
and memory by a low-cost original device manufacturer (ODM) lacking a well-known brand name. One
of the premises of SDN is that the physical switching infrastructure may be built from OpenFlow-enabled
white-box switches at far less direct cost than switches from established NEMs. Most legacy control
plane software is absent from these devices, since this functionality is largely expected to be provided
by a centralized controller. Such white-box devices often use the open source OVS or Indigo switch
code for the OpenFlow logic, then map the packet-processing part of those switch implementations to
their particular hardware.

4.3.5 Scaling the Number of Flows

The granularity of flow definitions will generally be more fine as the device holding them approaches
the edge of the network and will be more general as the device approaches the core. At the edge, flows
will permit different policies to be applied to individual users and even different traffic types of the same
user. This will imply, in some cases, multiple flow entries for a single user. This level of flow granularity
would simply not scale if it were applied closer to the network core, where large switches deal with
the traffic for tens of thousands of users simultaneously. In those core devices, the flow definitions
will be generally more coarse, with a single aggregated flow entry matching the traffic from a large
number of users whose traffic is aggregated in some way, such as a tunnel, a VLAN, or a MPLS LSP.
Policies applied deep into the network will likely not be user-centric policies but rather policies that
apply to these aggregated flows. One positive result is that there will not be an explosion in the number
of flow entries in the core switches due to handling the traffic emanating from thousands of flows in
edge switches.

4.4 SDN Controller

We have noted that the controller maintains a view of the entire network, implements policy decisions,
controls all the SDN devices that comprise the network infrastructure, and provides a northbound API
for applications. When we have said that the controller implements policy decisions regarding routing,
forwarding, redirecting, load balancing, and the like, these statements referred to both the controller and

4.4 SDN Controller 69

the applications that make use of that controller. Controllers often come with their own set of common
application modules, such as a learning switch, a router, a basic firewall, and a simple load balancer.
These are really SDN applications, but they are often bundled with the controller. Here we focus strictly
on the controller.

Figure 4.5 exposes the anatomy of an SDN controller. The figure depicts the modules that provide the
controller’s core functionality, both a northbound and a southbound API, and a few sample applications
that might use the controller. As we described earlier, the southbound API is used to interface with
the SDN devices. This API is OpenFlow in the case of Open SDN or some proprietary alternative in
other SDN solutions. It is worth noting that in some product offerings, both OpenFlow and alternatives
coexist on the same controller. Early work on the southbound API has resulted in more maturity of
that interface with respect to its definition and standardization. OpenFlow itself is the best example of
this maturity, but de facto standards such as the Cisco CLI and SNMP also represent standardization in
the southbound-facing interface. OpenFlow’s companion protocol, OF-Config [17], and Nicira’s Open
vSwitch Database Management Protocol (OVSDB) [18] are both open protocols for the southbound
interface, though these are limited to configuration roles.

Unfortunately, there is currently no northbound counterpart to the southbound OpenFlow standard
or even the de facto legacy standards. This lack of a standard for the controller-to-application interface
is considered a current deficiency in SDN, and some bodies are developing proposals to standardize it.
The absence of a standard notwithstanding, northbound interfaces have been implemented in a number of
disparate forms. For example, the Floodlight controller [2] includes a Java API and a Representational
State Transfer (RESTful) [13] API. The OpenDaylight controller [14] provides a RESTful API for
applications running on separate machines. The northbound API represents an outstanding opportunity
for innovation and collaboration among vendors and the open source community.

GUI Learnlng Router Others
Switch
Eglﬁhbo””d REST || Python Java
AP| API AP|
Modules _—— e
Disco & D;Ivice Flows
r _ ——
Topo g
Southbound
API OpenFlow |

FIGURE 4.5
SDN controller anatomy.

70 CHAPTER 4 How SDN Works

4.4.1 SDN Controller Core Modules

The controller abstracts the details of the SDN controller-to-device protocol so that the applications
above are able to communicate with those SDN devices without knowing their nuances. Figure 4.5
shows the API below the controller, which is OpenFlow in Open SDN, and the interface provided for
applications. Every controller provides core functionality between these raw interfaces. Core features
in the controller include:

e End-user device discovery. Discovery of end-user devices such as laptops, desktops, printers,
mobile devices, and so on.

* Network device discovery. Discovery of network devices that comprise the infrastructure of the
network, such as switches, routers, and wireless access points.

¢ Network device topology management. Maintain information about the interconnection details of
the network devices to each other and to the end-user devices to which they are directly attached.

* Flow management. Maintain a database of the flows being managed by the controller and perform
all necessary coordination with the devices to ensure synchronization of the device flow entries with
that database.

The core functions of the controller are device and topology discovery and tracking, flow manage-
ment, device management, and statistics tracking. These are all implemented by a set of modules internal
to the controller. As shown in Figure 4.5, these modules need to maintain local databases containing
the current topology and statistics. The controller tracks the topology by learning of the existence of
switches (SDN devices) and end-user devices and tracking the connectivity between them. It maintains
a flow cache that mirrors the flow tables on the various switches it controls. The controller locally
maintains per-flow statistics that it has gathered from its switches. The controller may be designed such
that functions are implemented via pluggable modules such that the feature set of the controller may be
tailored to an individual network’s requirements.

4.4.2 SDN Controller Interfaces

For SDN applications, a key function provided by the SDN controller is the API for accessing the
network. In some cases, this northbound API is a low-level interface, providing access to the network
devices in a common and consistent manner. In this case, that application is aware of individual devices
but is shielded from their differences. In other instances the controller may provide high-level APIs that
give an abstraction of the network itself, so that the application developer need not be concerned with
individual devices but rather with the network as a whole.

Figure 4.6 takes a closer look at how the controller interfaces with applications. The controller informs
the application of events that occur in the network. Events are communicated from the controller to the
application. Events may pertain to an individual packet that has been received by the controller or some
state change in the network topology, such as a link going down. Applications use different methods to
affect the operation of the network. Such methods may be invoked in response to a received event and
may result in a received packet being dropped, modified, and/or forwarded or the addition, deletion, or
modification of a flow. The applications may also invoke methods independently, without the stimulus
of an event from the controller, as we explain in Section 4.5.1. Such inputs are represented by the “Other
Context” box in Figure 4.6.

4.4 SDN Controller 71

Other Context
[Netflow |[DS || BGP |

|

Application

A

Events Methods
A

Controller
Northbound REST Python Java
API API AP API

FIGURE 4.6
SDN controller northbound API.

4.4.3 Existing SDN Controller Implementations

There are a number of implementations of SDN controllers available on the market today. They include
both open source SDN controllers and commercial SDN controllers. Open source SDN controllers come
in many forms, from basic C-language controllers such as NOX [7] to Java-based versions such as Beacon
[1] and Floodlight [2]. There is even a Ruby-based [8] controller called Trema [9]. Interfaces to these
controllers may be offered in the language in which the controller is written or other alternatives, such
as REST or Python. An open source controller called OpenDaylight [3] has been built by a consortium
of vendors. Other vendors offer their own commercial versions of an SDN controller. Vendors such as
NEC, IBM, and HP offer controllers that are primarily OpenFlow implementations. Most other NEMs
offer vendor-specific and proprietary SDN controllers that include some level of OpenFlow support.

There are pros and cons to the proprietary alternative controllers. Although proprietary controllers are
more closed than the nominally open systems, they do offer some of the automation and programmability
advantages of SDN while providing a buck stops here level of support for the network equipment. They
permit SDN-like operation of legacy switches, obviating the need to replace older switching equipment
in order to begin the migration to SDN. They do constitute closed systems, however, which ostensibly
violates one of the original tenets of SDN. They also may do little to offload control functionality from
devices, resulting in the continued high cost of network devices. These proprietary alternative controllers
are generally a component of the alternative SDN methodologies we introduce in Section 4.6.

4.4.4 Potential Issues with the SDN Controller

In general, the Open SDN controller suffers from the birthing pains common to any new technology.
Although many important problems are addressed by the concept and architecture of the controller,
there have been comparatively few large-scale commercial deployments thus far. As more commercial
deployments scale, more real-life experience in large, demanding networks will be needed. In particular,

72 CHAPTER 4 How SDN Works

experience with a wider array of applications with a more heterogeneous mix of equipment types is
needed before widespread confidence in this architecture is established. Achieving success in these
varied deployments will require that a number of potential controller issues be adequately addressed. In
some cases, these solutions will come in multiple forms from different vendors. In other cases, a standards
body such as the ONF will have to mandate a standard. In Section 3.2.6 we stated that a centralized
control architecture needed to grapple with the issues of latency, scale, high availability, and security. In
addition to these more general issues, the centralized SDN controller will need to confront the challenges
of coordination between applications, the lack of a standard northbound API, and flow prioritization.

There may be more than one SDN application running on a single controller. When this is the case,
issues related to application prioritization and flow handling become important. Which application
should receive an event first? Should the application be required to pass along this event to the next
application in line, or can it deem the processing complete, in which case no other applications get a
chance to examine and act on the received event?

The lack of an emerging standard for the northbound API is stymieing efforts to develop applications
that will be reusable across a wide range of controllers. Early standardization efforts for OpenFlow
generally assumed that such a northbound counterpart would emerge, and much of the efficiency gain
assumed to come from a migration to SDN will be lost without it. Late in 2013 the ONF formed a
workgroup that focuses on the standardization of the northbound API (see Table 3.2).

Flows in an SDN device are processed in priority order. The first flow that matches the incoming
packet is acted upon. Within a single SDN application, it is critical for the flows on the SDN device
to be prioritized correctly. If they are not, the resulting behavior will be incorrect. For example, the
designer of an application will put more specific flows at a higher priority (e.g., match all packets
from IP address 10.10.10.2 and TCP port 80) and the most general flows at the lowest priority (e.g.,
match everything else). This is relatively easy to do for a single application. However, when there are
multiple SDN applications, flow entry prioritization becomes more difficult to manage. How does the
controller appropriately interleave the flows from all applications? This is a challenge and requires
special coordination between the applications.

4.5 SDN Applications

SDN applications run above the SDN controller, interfacing to the network via the controller’s north-
bound API. SDN applications are ultimately responsible for managing the flow entries that are pro-
grammed on the network devices using the controller’s API to manage flows. Through this API the
applications are able to (1) configure the flows to route packets through the best path between two
endpoints; (2) balance traffic loads across multiple paths or destined to a set of endpoints; (3) react to
changes in the network topology such as link failures and the addition of new devices and paths, and (4)
redirect traffic for purposes of inspection, authentication, segregation, and similar security-related tasks.

Figure 4.5 includes some standard applications, such as a graphical user interface (GUI) for managing
the controller, a learning switch, and a routing application. The reader should note that even the basic
functionality of a simple layer two learning switch is not obtained by simply pairing an SDN device with
an SDN controller. Additional logic is necessary to react to the newly seen MAC address and update
the forwarding tables in the SDN devices being controlled in such a way as to provide connectivity to
that new MAC address throughout the network while avoiding switching loops. This additional logic is

4.6 Alternate SDN Methods 73

embodied in the learning switch application in Figure 4.5. One of the perceived strengths of the SDN
architecture is the fact that switching decisions can be controlled by an ever-richer family of applications
that control the controller. In this way, the power of the SDN architecture is highly expandable. Other
applications that are well suited to this architecture are load balancers and firewalls, among many others.

These examples represent some typical SDN applications that have been developed by researchers and
vendors today. Applications such as these demonstrate the promise of SDN: being able to take complex
functionality that formerly resided in each individual network device or appliance and allowing it to
operate in an Open SDN environment.

4.5.1 SDN Application Responsibilities

The general responsibility of an SDN application is to perform whatever function for which it was
designed, whether load balancing, firewalling, or some other operation. Once the controller has finished
initializing devices and has reported the network topology to the application, the application spends
most of its processing time responding to events. The core functionality of the application will vary
from one application to another, but application behavior is driven by events coming from the controller
as well as external inputs. External inputs could include network monitoring systems such as Netflow,
IDS, or BGP peers. The application affects the network by responding to the events as modeled in
Figure 4.6. The SDN application registers as a listener for certain events, and the controller will invoke
the application’s callback method whenever such an event occurs. This invocation will be accompanied
by the appropriate details related to the event. Some examples of events handled by an SDN application
are end-user device discovery, network device discovery, and incoming packet. In the first two cases,
events are sent to the SDN application upon the discovery of a new end-user device (i.e., a MAC address)
or a new network device (e.g., a switch, router, or wireless access point), respectively. Incoming packet
events are sent to the SDN application when a packet is received from an SDN device due to either
a flow entry instructing the SDN device to forward the packet to the controller or because there is no
matching flow entry at the SDN device. When there is no matching flow entry, the default action is
usually to forward the packet to the controller, though it could be to drop the packet, depending on the
nature of the applications.

There are many ways in which an SDN application can respond to events that have been received from
the SDN controller. There are simple responses, such as downloading a set of default flow entries to a
newly discovered device. These default or static flows typically are the same for every class of discovered
network device, and hence little processing is required by the application. There are also more complex
responses that may require state information gathered from some other source apart from the controller.

This can result in variable responses, depending on that state information. For example, based on a
user’s state, an SDN application may decide to process the current packet in a certain manner, or it may
take some other action, such as downloading a set of user-specific flows.

4.6 Alternate SDN Methods

Thus far in this chapter we have examined what we consider the original definition of SDN, which we
distinguish from other alternatives by the term Open SDN. Open SDN most certainly has the broadest
support in the research community and among the operators of large data centers such as Google, Yahoo!,

74 CHAPTER 4 How SDN Works

and their ilk. Nevertheless, there are other proposed methods of accomplishing at least some of the goals
of SDN. These methods are generally associated with a single networking vendor or a consortium of
vendors. We define here two alternate categories of SDN implementations: SDN via existing APIs and
SDN via hypervisor-based overlay networks. The first of these consists of employing functions that exist
on networking devices that can be invoked remotely, typically via traditional methods such as SNMP
or CLI or by the newer, more flexible mechanisms provided by RESTful APIs. In SDN via hypervisor-
based overlay networks, the details of the underlying network infrastructure are not relevant. Virtualized
overlay networks are instantiated across the top of the physical network. We make the distinction that
the overlays be hypervisor-based since network overlays exist in other, non-hypervisor-based forms
as well. One early example of this sort of network virtualization is VLAN technology. Another type
of overlay network that is not related to our use of the term is the P2P/overlay network, such as
Napster and BitTorrent. We further clarify the distinction between SDN and P2P/overlay networks later
in Section 8.8.

In the following sections we provide an introduction of how these two alternate SDN methods work.
We defer a more detailed treatment of these as well as the introduction of some others to Chapter 6.

4.6.1 SDN via Existing APIs

If a basic concept of SDN is to move control functionality from devices to a centralized controller,
this can be accomplished in other ways than the OpenFlow-centric approach coupled to Open SDN.
In particular, one method is to provide a richer set of control points on the devices so that centrally
located software can manipulate those devices and provide the intelligent and predictable behavior
that is expected in an SDN-controlled network. Consequently, many vendors offer SDN solutions by
improving the means of affecting configuration changes on their network devices.

We depict SDN via existing APIs graphically in Figure 4.7. The diagram shows a controller com-
municating with devices via a proprietary API. Often with SDN via existing APIs solutions, vendors
provide an enhanced level of APIs on their devices, rather than just the traditional CLI and SNMP. The
architecture shown in the figure is reminiscent of the earlier diagrams in this chapter. As before, there is
a set of applications that use a centralized controller to affect forwarding in the physical network. The
genesis of this idea derives from the fact that legacy switches all afford some degree of control over
forwarding decisions via their existing management interfaces. By providing a simplifying abstraction
to this plethora of interfaces, some network programmability can be gained by this approach.

Since the early days of the commercial Internet, it has been possible to set configuration param-
eters on devices using methods such as the CLI and SNMP. Although these mechanisms have long
been available, they can be cumbersome and difficult to maintain. Furthermore, they are geared toward
relatively rare static management tasks, not the dynamic, frequent, and automated tasks required in
environments such as today’s data centers. Newer methods of providing the means to make remote
configuration changes have been developed in the last few years. The most common of these is
the RESTful API. REST has become the dominant method of making API calls across networks.
REST uses HyperText Transfer Protocol (HTTP), the protocol commonly used to pass web traffic.
RESTful APIs are simple and extensible and have the advantage of using a standard TCP port and thus
require no special firewall configuration to permit the API calls to pass through firewalls. We provide a
more detailed discussion of RESTful APIs in Section 6.2.3.

4.6 Alternate SDN Methods 75

App || App || App || App

Controller

RESTful or
Legacy API

_

Forwarding _

Control

FIGURE 4.7
SDN via existing APIs.

There are a number of benefits of SDN via existing APIs. One distinct advantage of this approach is
that, because it uses legacy management interfaces, it therefore works with legacy switches. Thus, this
solution does not require upgrading to OpenFlow-enabled switches. Another benefit of this approach
is that it allows for some improvement in agility and automation. These APIs also make it easier to
write software such as orchestration tools that can respond quickly and automatically to changes in the
network (e.g., the movement of a virtual machine in a data center). A third advantage is that these APIs
allow for some amount of centralized control of the devices in the network. Therefore, it is possible
to build an SDN solution using the provided APIs on the distributed network devices. Finally, there
is potential for increased openness in the SDN via existing APIs approach. Although the individual
interfaces may be proprietary to individual vendors, when they are exposed to the applications, they are
made open for exploitation by applications. The degree of openness will vary from one NEM to another.

Of course, the API-based SDN methods have their limitations. First, in most cases there is no
controller at all. The network programmer needs to interact directly with each switch. Second, even
when there is a controller, it does not provide an abstract, network-wide view to the programmer.
Instead, the programmer needs to think in terms of individual switches. Third, since there is still a
control plane operating on each switch, the controller and, more important, the programmer developing
applications on top of that controller must synchronize with what the distributed control plane is doing.
Another drawback is that the solution is proprietary. Since these APIs are nonstandard (as opposed to a
protocol such as OpenFlow), SDN-like software applications using this type of API-based approach will
only work with devices from that specific vendor or a small group of compatible vendors. This limitation
is sometimes circumvented by extending this approach to provide support for multiple vendors’ APIs.

76 CHAPTER 4 How SDN Works

This masks the differences between the device APIs to the application developer, who will see a single
northbound API despite the incompatible device interfaces on the southbound side. Obviously, this
homogeneity on the northbound interface is achieved by increased complexity within the controller.

In addition, the SDN precept of moving control off the switch onto a common controller was in
part intended to create simpler, less expensive switches. The SDN via existing APIs approach relies on
the same complicated, expensive switches as before. Admittedly, this is a double-edged sword, since a
company that already has the expensive switches may find it more expensive to change to less expensive
switches, considering they already have made the investment in the legacy devices.

Finally, though the SDN via existing APIs approach does allow some control over forwarding, in
particular with VLANSs and VPN, it does not allow the same degree of fine-grained control of individual
flows afforded by OpenFlow.

In summary, SDN via existing APIs is a step in the right direction, moving toward the goal of
centralized, software-based network control. It is possible to view SDN via existing APIs as a practical
extension of current functionality that is useful when the more radical OpenFlow solution is not yet
available or is otherwise inappropriate.

4.6.2 SDN via Hypervisor-Based Overlay Networks

Another more innovative alternate SDN method is what we refer to as hypervisor-based overlay net-
works. Under this concept the current physical network is left as it is, with networking devices and
their configurations remaining unchanged. Above that network, however, hypervisor-based virtualized
networks are erected. The systems at the edges of the network interact with these virtual networks,
which obscure the details of the physical network from the devices that connect to the overlays.

We depict such an arrangement in Figure 4.8, where we see the virtualized networks overlaying the
physical network infrastructure. The SDN applications making use of these overlay network resources

(2]

%‘ Physical Server | | Physical Server | | Physical Server

2

)

P4

©

iy Hypervisor Hypervisor Hypervisor
N Y
4 « N

g ‘ Network Device ’—4 Network Device ‘

)

Z

3

3 ‘ Network Device ‘ Network Device ‘ Network Device ‘

e

o

. /

FIGURE 4.8
Virtualized networks.

4.6 Alternate SDN Methods 77

MAC header| IP header |UDP header Payload
Tunnel header | IMAC header| IP header |UDP header Payload
FIGURE 4.9

Encapsulated frames.

are given access to virtualized networks and ports, which are abstract in nature and do not necessarily
relate directly to their physical counterparts below.

As shown in Figure 4.8, conceptually the virtual network traffic runs above the physical network
infrastructure. The hypervisors inject traffic into the virtual network and receive traffic from it. The
traffic of the virtual networks is passed through those physical devices, but the endpoints are unaware of
the details of the physical topology, the way routing occurs, or other basic network functions. Since these
virtual networks exist above the physical infrastructure, they can be controlled entirely by the devices
at the very edge of the network. In data centers, these would typically be the hypervisors of the VMs
that are running on each server.

The mechanism that makes this possible is tunneling, which uses encapsulation. When a packet
enters the edge of the virtual network at the source, the networking device (usually the hypervisor) will
take the packet in its entirety and encapsulate it within another frame. This is shown in Figure 4.9. Note
that the edge of the virtual network is called a funnel endpoint or virtual tunnel endpoint (VTEP).

The hypervisor then takes this encapsulated packet and, based on information programmed by the
controller, sends it to the destination’s VTEP. This VTEP decapsulates the packet and forwards it to
the destination host. As the encapsulated packet is sent across the physical infrastructure, it is being
sent from the source’s VTEP to the destination’s VTEP. Consequently, the IP addresses are those of
the source and destination VTEP. Normally, in network virtualization, the VTEPs are associated with
hypervisors.

This tunneling mechanism is referred to as MAC-in-IP tunneling because the entire frame, from
MAC address inward, is encapsulated within this unicast IP frame, as shown in Figure 4.9. Different
vendors have established their own proprietary methods for MAC-in-IP tunneling. Specifically, Cisco
offers VXLAN [10], Microsoft uses NVGRE [11], and Nicira’s is called STT [12].

This approach mandates that a centralized controller be in charge of making sure there is always a
mapping from the actual destination host to the destination hypervisor that serves that host.

Figure 4.10 shows the roles of these VTEPs as they serve the source and destination host devices.
The virtual network capability is typically added to a hypervisor by extending it with a virtual switch.
We introduced the notion of virtual switch in Section 4.3.2, and it is well suited to the overlay network
concept. The virtual network has a virtual topology consisting of the virtual switches interconnected
by virtual point-to-point links. The virtual switches are depicted as the VTEPs in Figure 4.10, and the
virtual links are the tunnels interconnecting them. All the traffic on each virtual network is encapsulated
as shown in Figure 4.9 and sent VTEP-to-VTEP. The reader should note that the tunnels depicted in

78 CHAPTER 4 How SDN Works

FIGURE 4.10
Virtual tunnel endpoints.

Figure 4.10 are the same as the links interconnecting hypervisors in Figure 4.8. As Figure 4.8 indicates,
multiple overlay networks can exist independently and simultaneously over the same physical network.

In summary, SDN via hypervisor-based overlay networks is well suited to environments such as data
centers already running compute and storage virtualization software for their servers. It does address a
number of the needs of an SDN solution. First, it addresses MAC address explosion in data centers and
cloud environments because all those host MAC addresses are hidden within the encapsulated frame.
Second, it addresses VLAN limitations because all traffic is tunneled and VLANSs are not required for
supporting the isolation of multiple tenants. Third, it addresses agility and automation needs because it
is implemented in software, and these virtual networks can be constructed and taken down in a fraction
of the time that would be required to change the physical network infrastructure.

Nevertheless, these overlay networks do not solve all the problems that can be addressed by an Open
SDN solution. In particular, they do not address existing issues within the physical infrastructure, which
still requires manual configuration and maintenance. Moreover, they fail to address traffic prioritization
and efficiency in the physical infrastructure, so confronting STP’s blocked links and QoS settings
continues to challenge the network engineer. Finally, hypervisor-based overlays do not address the
desire to open up network devices for innovation and simplification, since those physical network
devices have not changed at all.

4.7 Conclusion

This chapter has described the basic functionality related to the manner in which an SDN solution
actually works. It is important to realize that there is no fundamental incompatibility between the
hypervisor-based overlay network approach to SDN and Open SDN. In fact, some implementations
use OpenFlow to create and utilize the tunnels required in this kind of network virtualization. It is
not unreasonable to think of these overlay networks as stepping stones toward a more complete SDN

References 79

solution that includes SDN and OpenFlow for addressing the virtual as well as the physical needs of
the network. In Chapter 6 we delve more deeply into the SDN alternatives introduced in this chapter
as well as other alternatives not yet discussed. First, though, in the next chapter we provide a detailed
overview of the OpenFlow specification.

References

[1] Erikson D. Beacon, OpenFlow @ Stanford; February 2013. Retrieved from <openflow.stanford.edu/display/
Beacon/Home>.

[2] Wang K. Floodlight documentation. Project floodlight; December 2013. Retrieved from <docs.projectflood
light.org/display/floodlightcontroller>.

[3] LawsonS. Network heavy hitters to pool SDN efforts in OpenDaylight project. Network World; April 8,2013.
Retrieved from <www.networkworld.com/news/2013/040813-network-heavy-hitters-to-pool-268479.
html>.

[4] Production quality, multilayer open virtual switch. Open vSwitch; December 15, 2013. Retrieved from
<openvswitch.org>.

[5] Open thin switching, open for business. Big switch networks; June 27, 2013. Retrieved from <www.
bigswitch.com/topics/introduction-of-indigo-virtual-switch-and-switch-light-beta>.

[6] Industry leaders collaborate on OpenDaylight project, donate key technologies to accelerate software-defined
networking. OpenDaylight; April 2013. Retrieved from <www.opendaylight.org/announcements/2013/04/
industry-leaders-collaborate-opendaylight-project-donate-key-technologies>.

[7] NOX; December 15, 2013. Retrieved from <www.noxrepo.org>.

[8] Ruby: a programmer’s best friend; December 15, 2013. Retrieved from <www.ruby-lang.org>.

[9] Trema: full-stack OpenFlow framework in Ruby and C; December 15, 2013. Retrieved from <trema.github.
io/trema>.

[10] Mahalingam M, Dutt D, Duda K, Agarwal P, Kreeger L, Sridhar T, et al. VXLAN: a framework for overlaying
virtualized layer 2 networks over layer 3 networks. Internet Engineering Task Force; August 26, 2011
[internet draft].

[11] Sridharan M, etal. NVGRE: network virtualization using generic routing encapsulation. Internet Engineering
Task Force; September 2011 [internet draft].

[12] Davie B, Gross J. STT: a stateless transport tunneling protocol for network virtualization (STT). Internet
Engineering Task Force; March 2012 [internet draft].

[13] Learn REST: a RESTful tutorial; December 15, 2013. Retrieved from <www.restapitutorial.com>.

[14] Open Daylight technical overview; December 15, 2013. Retrieved from <www.opendaylight.org/project/
technical-overview>.

[15] Shenker S. The future of networking, and the past of protocols. Open networking summit. Palo Alto, CA,
USA: Stanford University; October 2011.

[16] NetFlow traffic analyzer, solarwinds; December 15, 2013. Retrieved from <www.solarwinds.com/
netflow-traffic-analyzer.aspx>.

[17] OpenFlow management and configuration protocol(OF-Config 1.1.1). Open Networking Foundation;
March 23, 2013. Retrieved from <www.opennetworking.org/sdn-resources/onf-specifications>.

[18] Pfaff B, Davie B. The open vSwitch database management protocol. Internet Engineering Task Force;
October 2013 [internet draft].

openflow.stanford.edu/display/Beacon/Home
docs.projectfloodlight.org/display/floodlightcontroller
http://www.networkworld.com/news/2013/040813-network-heavy-hitters-to-pool-268479.html
http://openvswitch.org
http://www.bigswitch.com/topics/introduction-of-indigo-virtual-switch-and-switch-light-beta
http://www.opendaylight.org/announcements/2013/04/industry-leaders-collaborate-opendaylight-project-donate-key-technologies
http://www.noxrepo.org
http://www.ruby-lang.org
www.trema.github.io/trema
http://www.restapitutorial.com
http://http:\www.opendaylight.org/project/technical-overview
http://www.solarwinds.com/netflow-traffic-analyzer.aspx
www.opennetworking.org/sdn-resources/onf-specifications

This page is intentionally left blank

