
1
Configuring the Basic Settings

of an ESXi Host with PowerCLI

In this chapter, you will cover the following topics:

 Connecting to an ESXi host or vCenter instance

 Getting the VMware host object

 Joining an ESXi host into Active Directory

 Enabling services and setting security profiles

 Setting network configuration

 Creating datastores on an ESXi host

 Configuring syslog settings on a host

 Joining an ESXi host to vCenter

 Creating a configuration script to set all properties uniformly

Introduction
Initially automation doesn't save time. To really get the benefits of automation, you must

invest the time upfront to create scripts that you'll use time and again. In this chapter,

you'll take your first ESXi host that has been installed and has an IP address configured

on it and you will build continually from there. This chapter will take an administrator

through the basic configuration tasks needed to perform initial configuration, join them to

vCenter, and get it into an operational state. At the end of this chapter, all these steps

build into a scripted configuration that can be executed against new hosts in the future.

 2

Connecting to an ESXi host or vCenter instance
To begin working with PowerCLI, you must first have PowerShell installed and available

on the system you want to run PowerCLI. PowerShell is part of the Windows

Management Framework and it ships with Windows client and server versions.

PowerCLI extends PowerShell with commands to administer VMware environments.

With PowerShell installed, you will need to obtain PowerCLI from vmware.com. The

specific link is listed in the See also... section of this recipe.

Once you have installed PowerCLI, you will need an ESXi host built for this recipe. All

that is required is a fresh ESXi installation from the ISO or DVD image distributed by

VMware. Once installed, set an IP address on an accessible network using the console

screens of the new ESXi host. The network address should be accessible from your

PowerCLI workstation.

With the assumption that your ESXi host is built, the first step to administering VMware

environments in PowerCLI is to connect to the ESXi host or to a vCenter server. In this

chapter, you will focus on configuring a single ESXi host and in the next chapter you will

focus on configuring a vCenter Server and vSphere cluster of ESXi hosts.

Getting ready
To begin, you only need to launch PowerCLI from its shortcut on the desktop or from the

Start Menu. If you already had PowerCLI previously installed, you will want to check

the version number to ensure that the cmdlets references throughout the book are

available to you. Each version of PowerCLI builds additional native cmdlets and

functionality. To check the version you are running, open a PowerCLI prompt and run

Get-PowerCLIVersion.

The recipes in this book are built and tested using VMware PowerCLI version 5.5

Release 1 and have also been tested with PowerCLI version 5.8 Release 1.

How to do it...
1. At the PowerCLI prompt, you will execute the Connect-VIServer cmdlet.

Connect-viserver <hostname or IP>

2. When executed, the code will attempt to single sign-on into the ESXi host,

but unless your username is root and you set the same password locally and

on ESX, single sign-in will fail. You will be prompted with a normal

Windows login window, displayed below, and you should login with the root

username and password you specified during your ESXi installation.

 3

Insert Image 3724EN_01_01.png

3. Once you successfully log into the ESXi host, a confirmation message will

be displayed with the name or IP address of the ESXi host you connected to,

the port, and the user you've connected as shown in the following example:

Name Port User

---- ---- ----

192.168.0.241 443 root

4. At this point, the PowerCLI session is connected to a host and ready to

execute work.

How it works…
The Connect-VIServer cmdlet is the simplest kind of cmdlet in PowerCLI. The cmdlet

initiates a connection to the vCenter or ESXi web services to allow for additional

commands to be passed to the server and executed.

The Connect-VIServer cmdlet requires only the name of the host to which you want to

connect. There are additional parameters that you may pass to the cmdlet, such as the

protocol (HTTP or HTTPS), the username, and the password. If you prefer not to keep

your password in plain text, you can also pass a PSCredentials object. The

PSCredentials object contains login data to authenticate. For more information about

PSCredential objects, type get-help about_server_authentication.

Once you execute the cmdlet, a warning will be displayed in yellow like the one below.

 4

Insert Image 3724EN_01_02.png

The warning is displayed because the certificate installed on the ESXi host is self-signed

and untrusted by the computer you are connecting from. Changing SSL certificate on

ESXi hosts will be covered later in the book, but the warning may be ignored at this time.

The cmdlet will continue to execute even though the warning is displayed.

You may also prevent the invalid certificate errors by running the following PowerCLI

cmdlet, which changes the action when an invalid certificate is encountered.

Set-PowerCLIConfiguration -InvalidCertificateAction Ignore -Scope
Session -Confirm:$false

There’s more…
If you choose to join the ESXi host to Active Directory, your PowerCLI session performs

a single sign-in. PowerCLI uses the credentials of your current Windows session to login

against the ESXi host or vCenter server, if your account has access. If your account does

not have access to the server it is attempting to connect, a login box will be presented like

our example in this recipe.

See also

 Joining an ESXi host into Active Directory, Chapter 1

 Setting permissions on vCenter objects, Chapter 2

 VMware PowerCLI Documentation Center & Installation Download

https://www.vmware.com/support/developer/PowerCLI/

 5

Getting the VMware host object
After connecting to a host to manage, other cmdlets become available. The first concept

that you will need to become aware of are PowerShell objects. Objects are defined data

obtained from commands run in PowerShell and PowerCLI. To perform configuration

on an ESXi host, the commands you run will need a host object specified. In this recipe,

you will learn how to obtain a VMHost object.

Getting ready
To begin with, open a PowerCLI window and connect to an ESXi host or vCenter

instance.

How to do it...
1. To retrieve an ESXi host object, PowerCLI is straightforward.

Get-VMHost

2. After running the Get-VMHost cmdlet, an object containing one or more

ESXi hosts is returned. You are connecting to a single ESXi host in this

example, running Get-VMHost returns host object with a single host. If you

were connecting against a vCenter instance, Get-VMHost with no other

arguments would return an object containing all of the hosts managed by

vCenter. When running against vCenter, you may specify a filter with the

Get-VMHost cmdlet in order to find one or more hosts that match the

specified pattern.

Get-VMHost esxhost*

Get-VMHost VMHOST1

3. Instead of having to call the Get-VMHost cmdlet each time you need to get

the ESXi host, you can store the host object in a variable. PowerShell

variables are specified as a $ followed by a name. Below is an example for

our ESXi host:

$esxihost = Get-VMHost

How it works…
To examine more about the VMHost object, you can use the Get-Member cmdlet with the

variable you have just defined. To use Get-Member, you will call the VMHost object by

typing the $esxihost variable. Then, you pipe the object into the Get-Member cmdlet.

$esxihost | Get-Member

PowerCLI is an extension of PowerShell that is used specifically for VMware product

management. PowerShell is an object-based language meaning that it uses the concept of

encapsulating both data and operations within an object data type, which is a familiar

 6

object-oriented programming concept. Objects have defined data areas and may include

functions that perform operations on the data in the object.

The output from the cmdlet shows all of the data contained in the Property elements in

the object. The object also includes a number of methods. The methods are used to

manipulate the data in the object.

PowerCLI> $esxihost | Get-Member

Insert Image 3724EN_01_03.png

You can call a method by using dot notation and by calling the method name followed by

parenthesis, like the example below.

PowerCLI> $esxihost.ConnectionState.ToString()

Connected

 7

In this example, the State property is an object inside of the VMHost object but the

ToString() method converts the output to a string.

Now that the ESXi host object is stored in a variable, you can proceed with other cmdlets

for configuration and run them using the host object to perform configuration.

There’s more…
Get-VMHost has other applications beyond just returning the VMHost object to use. Like

all other Get- cmdlets, this cmdlet can be used to find a host in a particular configuration

or state. You can use Get-VMHost to find hosts assigned to a particular location in

vCenter using the -Location parameter, you may want to find hosts that have been

assigned a particular Tag in vSphere using the –Tag parameter or you may want to find

the host running a particular VM with the -VM parameter. Another interesting use case is

specifying the -Datastore parameter to find all the hosts that have a particular datastore

connected.

Get-VMHost is just one of many cmdlets that work with VMHost objects. Others will be

explored in the “Configuring vCenter and computer clusters,” Chapter 2.

See also

 Setting up folders to organize objects in vCenter, Chapter 2

 Creating basic reports of VM properties from VMware Tools and PowerCLI,

Chapter 3

Joining an ESXi host into Active Directory
As mentioned in the connecting section, joining an ESXi host to Active Directory offers

the ability to connect without entering credentials for administrators. Active Directory is

a Windows implementation of Lightweight Directory Access Protocol (LDAP). Active

Directory contains accounts for users, computers, and groups. Active Directory runs on a

Windows Server that has the Active Directory role installed and that has been "promoted"

to become a domain controller. To perform this recipe, you will need at least one Active

Directory server available on the network with the ESXi host.

Seamless authentication is one of the biggest reasons to join a host to Active Directory.

But beyond single sign-on, once the ESXi host is connected to Active Directory, groups

in the directory can be leveraged to grant permissions to the ESXi host. If you do not

have Active Directory installed and do not wish to, you may skip this recipe and move on

to other topics of host configuration without any impact to future recipes.

 8

Getting ready
PowerCLI has Get-VMHostAuthentication and Set-VMHostAuthentication, two

cmdlets to deal with host authentication. To get ready to setup authentication, open a

PowerCLI window and connect to a single ESXi host.

How to do it...
1. Because the cmdlets require a VMHost object, you'll again be using the Get-

VMHost to either populate a variable or to pipe the object to the next object.

The first step is to obtain a VMHost object for our target ESXi host.

$esxihost = Get-VMHost 192.168.0.241

2. Once you have your VMHost object, you can look at setting authentication.

The Set-VMHostAuthentication cmdlet needs to be executed. The

cmdlet requires several parameters to join a ESXi host to domain. The

syntax needed is displayed follows:

$esxihost | Get-VMHostAuthentication | Set-
VMHostAuthentication -JoinDomain -Domain domain.local -user
username -password *****

3. Executing the cmdlet will prompt you to confirm that you want to join this

host to the domain specified. If you answer Y, the cmdlet will continue and

execute the operation.

Perform operation?

Joining VMHost '192.168.0.241' to Windows Domain
'domain.local'.

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend
[?] Help

(default is "Y"):Y

Domain DomainMembershipStatus TrustedDomains

------ ---------------------- --------------

DOMAIN.LOCAL Ok

How it works…
One of the first things you notice about this recipe is that there is an extra Get-

VMHostAuthentication cmdlet in the middle of the command line. Why does it need

to perform Get before performing the Set? It would seem that you can simply pipe the

VMHost object into cmdlet to specify your target host and the cmdlet will execute, but as

you try that below, PowerCLI displays an error.

$esxihost | Set-VMHostAuthentication -JoinDomain -Domain
domain.local -user username -password *****

 9

Insert Image 3724EN_01_05.png

In this case, the cmdlet is looking for a VMHostAuthentication object and not a

VMHost object, so an error is displayed. If you go back and simply execute the Set-

VMHostAuthentication cmdlet, it will prompt for a VMHostAuthentication object

and wait for input.

Set-VMHostAuthentication -JoinDomain -Domain domain.local -user
username -password *****

Insert Image 3724EN_01_06.png

This is where the Get-VMHostAuthentication cmdlet gets added – retrieving the

VMHostAuthentication object from the host you targeted since this cmdlet accepts the

VMHost object as piped input.

The Get-Help for the Set-VMHostAuthentication also shows that the cmdlet expects

a VMHostAuthentication object to be passed as a parameter for the cmdlet. By

executing the cmdlet with all of its parameters and no pipe input, you also learned that

you can debug and learn what input the cmdlet is expecting and is missing.

There’s more…
The same cmdlets can also be used to remove a host from a domain, if needed. The -

LeaveDomain parameter is a part of the Set-VMHostAuthentication cmdlet and

allows for this need.

In addition to setting an ESXi host to accept Active Directory authentication, PowerCLI

also provides a number of cmdlets to add local users, groups and permissions inside of a

single ESXi host. The New-VMHostAccount cmdlet is used to create new users on an

ESXi system. The same cmdlet previously allowed the creation of groups, but this

 10

functionality was removed with ESXi 5.1. There is a Set-VMHostAccount cmdlet to

change accounts and group memberships and a Remove-VMHostAccount cmdlet to

remove a user or group.

See also

 Setting permissions on vCenter objects, Chapter 2

Enabling services and setting security profiles
ESXi hosts enable a few services by default, but there are some additional services that

are installed but blocked. In some cases, you may want to enable SSH on the host. But

since VMware does not recommend having SSH enabled and will display a warning,

however, you can set an advanced setting to disable this warning.

Getting ready
To begin, you should open a PowerCLI prompt and connect to an ESXi or vCenter host.

You will also want to store a VMHost object in a variable called $esxihost.

How to do it…
1. The first step for this process is to get the list of available services from a

VMware host. To do this, you use the Get-VMHostService cmdlet and pass

the VMHost object into the cmdlet.

$esxihost | Get-VMHostService

Insert Image 3724EN_01_07.png

2. The output of the cmdlet will show a list of the available services on the

ESXi host along with its policy (whether it is set to on or off by default) if it

 11

is running. The label is a friendly identifier to find the service you want to

configure, but the key is the piece of data you will use to return the single

service you want.

3. In this case, we're looking to configure the service with the TSM-SSH key. To

scope the results down to that one service in the object, you use a PowerShell

where clause.

$esxihost | Get-VMHostService | where { $_.key -eq "TSM-
SSH" }

Insert Image 3724EN_01_08.png

4. Now that you have it scoped down to a single service, you pass this object

into the Set-VMHostService cmdlet with the desired policy of "On".

$esxihost | Get-VMHostService | where { $_.key -eq "TSM-
SSH" } | Set-VMHostService -Policy "On"

Insert Image 3724EN_01_09.png

5. At this point, you have configured the host to autostart the service on boot,

but the service is still not running in the current boot. To do this, you will

instead use the Start-VMHostService cmdlet. Again, you have to pass in

the VMHostService object for SSH (or any other service that you choose).

$esxihost | Get-VMHostService | where { $_.key -eq "TSM-
SSH" } | Start-VMHostService

Insert Image 3724EN_01_10.png

 12

6. With the service running, vSphere displays the warning that you have

enabled SSH. This will leave your host showing in a warning state as long as

the service is running, however, VMware does allow you to suppress this

warning, but this is set through an advanced setting. To set this, you need to

execute the following cmdlet:

$esxihost | Get-AdvancedSetting –Name
UserVars.SuppressShellWarning | Set-AdvancedSetting
–value 1

7. When executed, this will prompt to confirm the settings. This confirmation

can be suppressed using the – Confirm:$false common parameter, which

is useful in scripts.

$esxihost | Get-AdvancedSetting –Name
UserVars.SuppressShellWarning | Set-AdvancedSetting
–value 1 –Confirm:$false

How it works…
For configuring host services, there native cmdlets follow the expected pattern of Get and

Set functionality in PowerCLI. Get-VMHostService expects a VMHost object as input

and this is logical since these host services exist within the scope of a host. Once you get

the host service by name and store it in a variable or pass it as an object in the pipeline,

you can easily set the settings to the desired configuration. In addition to Get and Set

cmdlets, you also have Start and Stop cmdlets. These are more specific to this use case

since we're dealing with host services and there is a specific need to start or stop them in

addition to configuring them. The Start and Stop cmdlets also accept HostService

objects as input just like the Set-VMHostService cmdlet.

In the specific use case of the SSH Server service, it causes a warning to display in the

client. To disable this warning, you used an Advanced Setting called

UserVars.SupressShellWarning to disable this from displaying. While not recommended

for production systems, there are plenty of use cases where SSH is needed and helpful in

lab environments, where you may want to configure the setting.

There's more…
The cmdlet to start the SSH service can be easily adapted beyond the illustrated use case

with the use of a ForEach loop. For troubleshooting and configuration, you may need to

enable SSH in order to tail a log file or to install a custom module. In these cases,

starting SSH in bulk may be handy. To do this, you take the code above and wrap it in

the loop. An example of this is below with a connection to a vCenter host, a variable

with multiple VMHost objects returned and a loop to step through and start SSH on each.

Connect-VIServer vcenterhost.domain.local

$esxihosts = Get-VMHost

foreach ($esxihost in $esxihosts) {

 13

$esxihost | Get-VMHostService | where { $_.key -eq

"TSM-SSH" } | Start-VMHostService

}

This quickly allows you to turn on SSH for temporary use. Following a reboot, the

service would no longer be running and you could easily change the code above to be a

Stop-VMHostService cmdlet and turn off the service in bulk.

Setting network configuration
One of the first things to be completed against a new ESXi installation is network

configuration. Network configuration consists of several things on an ESXi host – first

would be configuring the additional management interfaces of the host for VMotion,

Fault Tolerance logging, vSphere Replication, and VSAN traffic.

Getting ready
To begin this recipe, you will need to open a PowerCLI window, connect to an ESXi

host, and load a VMHost object into a variable. The example uses $esxihost as the

variable for the VMHost object.

On installation, ESXi has a single network interface card (NIC) labeled eth0 connected

to a VMware Standard vSwitch. The vSwitch has two port groups created – one labeled

"Management Network" for management traffic and one labeled "VM Network." The

"Management Network" is a vmkernel port with the IP defined at the console attached to

it.

In this example, our host contains six 10 Gigabit NICs that will connect the host with the

network. You will define two additional vSwitches with two physical ports attached to

each for redundancy. The additional vSwitches will handle storage and replication traffic

on one and VM traffic on the other.

 14

Insert Image 3742EN_01_11.png

Best practices of vSphere networking is far beyond the scope of this book. The

network layout above is not an endorsement of a particular layout and is for

illustration purposes to show the PowerCLI cmdlets used to configure

networking on ESXi.

 15

How to do it...
1. To begin, let's get an idea of the network layout that is in place by default.

From a default install, there is a single virtual switch named vSwitch0. The

first cmdlet shows you the properties of this virtual switch and the second

shows the port groups associated with that vSwitch. To do this, review the

output of two PowerCLI cmdlets:

$esxihost | Get-VirtualSwitch

$esxihost | Get-VirtualPortGroup –VirtualSwitch vSwitch0

2. The first thing to be completed is to remove the default "VM Network" port

group since it is not a best practice to have Virtual Machine traffic on the

management ports and this default port group is not part of the design you

outlined for this configuration.

$esxihost | Get-VirtualPortGroup -Name "VM Network" |
Remove-VirtualPortGroup –Confirm:$false

3. This command combines the Get-VirtualPortGroup and Remove-

VirtualPortGroup cmdlets to change the confirmation. When executed,

you will receive either a confirmation or error. If the port group is connected

to or in use by a VM, you will receive an error message. Once you remove

the "VM Network" port group, the next step is to add an additional vmkernel

port that will be used for vMotion.

While it is outside of the scope of this book, there are many different ideas for

best design of VMware networking. Most administrators agree that

Management traffic and vMotion traffic should be separated but with increasing

speeds and capabilities of NICs today, it is common to see them sharing the

same virtual switch. Administrators will set the management traffic to be active

on the first NIC and vMotion to be active on the second NIC. The two traffic

streams would only be on the same NIC in a failover situation.

4. In our design, you will set Management and vMotion to be collocated on the

same switch. To do this, use the New-VMHostNetworkAdapter cmdlet and

pass in the name of the port group, the virtual switch and IP information.

You also pass in a parameter to specify that this vmkernel port should be

used for VMotion.

$esxihost | New-VMHostNetworkAdapter -PortGroup "VMotion
Network" -VirtualSwitch vSwitch0 -IP 192.168.50.241 -
SubnetMask 255.255.255.0 -VMotionEnabled $true

5. In our design, although vMotion and Management traffic exist on the same

vSwitch, but the traffic will be separated by using active and standby links on

each port group. This is done by changing the NIC Teaming Policy with the

Set-NicTeamingPolicy cmdlet. Notice in the next two commands that the

 16

active and standby NIC assignments are opposite between the two port

groups.

$esxihost | Get-VirtualPortGroup -Name “Management Network”
| Get-NicTeamingPolicy | Set-NicTeamingPolicy –
MakeNicActive vmnic0 –MakeNicStandby vmnic1

$esxihost | Get-VirtualPortGroup -Name “VMotion Network” |
Get-NicTeamingPolicy | Set-NicTeamingPolicy –MakeNicActive
vmnic1 –MakeNicStandby vmnic0

6. The port group is automatically created and the vmkernel/host port is created

for our vMotion network, but it is on the wrong VLAN. Our vMotion traffic

is on a different VLAN, so you need to set this on the port group.

$esxihost | Get-VirtualPortGroup -Name "VMotion Network" |
Set-VirtualPortGroup –VlanID 50

7. The next step is to create a new virtual switch with its own uplinks on

vmnic2 and vmnic3, as outlined in our diagram. To confirm the physical

NICs exist, you can run the following cmdlet.

$esxihost | Get-VMHostNetworkAdapter

The Get-VMHostNetworkAdapter cmdlet displays all the vmkernel ports

along with all the physical NICs present on the host.

8. After confirming the NIC, you will run the New-VirtualSwitch cmdlet to

provision the new virtual switch. This cmdlet provisions the vSwitch with its

uplinks, but it is currently an island with no connectivity for management or

virtual servers.

$esxihost | New-VirtualSwitch -Name vSwitch1 -Nic
vmnic2,vmnic3

9. The next step is to create vmkernel ports for storage traffic and for

replication traffic. These are created the same as the VMotion Network

provisioned earlier.

$esxihost | New-VMHostNetworkAdapter -PortGroup "Storage
Network" -VirtualSwitch vSwitch1 -IP 192.168.100.241 -
SubnetMask 255.255.255.0 -VsanTrafficEnabled $true

$esxihost | Get-VirtualPortGroup -Name "Storage Network" |
Set-VirtualPortGroup –VlanID 100

$esxihost | New-VMHostNetworkAdapter -PortGroup "FT Logging
Network" -VirtualSwitch vSwitch1 -IP 192.168.200.241 -
SubnetMask 255.255.255.0 -FaultToleranceLoggingEnabled
$true

$esxihost | Get-VirtualPortGroup -Name "FT Logging Network"
| Set-VirtualPortGroup –VlanID 200

10. Again, you want to make sure that our Storage Traffic and Fault Tolerence

traffic don’t end up competing for bandwidth, so you will assign one port

 17

group to be active on one uplink and the other port group to be active on the

second uplink. This is done again with the Set-NicTeamingPolicy cmdlet.

$esxihost | Get-VirtualPortGroup -Name “Storage Network” |
Get-NicTeamingPolicy | Set-NicTeamingPolicy –MakeNicActive
vmnic2 –MakeNicStandby vmnic3

$esxihost | Get-VirtualPortGroup -Name “FT Logging Network”
| Get-NicTeamingPolicy | Set-NicTeamingPolicy
–MakeNicActive vmnic3 –MakeNicStandby vmnic2

11. The final step of our network provisioning is to create new port groups for

virtual machine traffic. You have set all the virtual machine traffic to its own

vSwitch and uplinks in the design outlined. The first step is to create the

virtual switch like you did for vSwitch1.

$esxihost | New-VirtualSwitch -Name vSwitch2 -Nic
vmnic4,vmnic5

12. Once the virtual switch is created, you can create two port groups on the

virtual switch. In this case, however, New-VirtualPortGroup doesn't allow

any pipeline input, so you will need to specify the server as a parameter

instead of passing it through the pipeline.

New-VirtualPortGroup -Name "Infrastructure Network"
-VirtualSwitch vSwitch2 -VLanId 1 -Server 192.168.0.241

New-VirtualPortGroup -Name "Application Network"
-VirtualSwitch vSwitch2 -VLanId 2 -Server 192.168.0.241

How it works…
In this example, you work with the VMHost object to enumerate and identify the existing

configuration that is put in place during the installation. From there, you remove the

default VM networking configuration, you provision new virtual switches and vmkernel

ports to segment traffic and enable certain management functions across the vmkernel

ports.

While most of the configuration covered in this section deals with the initial

configuration of a host, some of the concepts are repeated more often. For instance, if

you have a multi-node cluster and you're adding a new virtual machine network, you'll

use the New-VirtualPortGroup cmdlet often. Like you have seen in previous

examples, you can easily create an array of ESXi hosts - either by using Get-VMHost in

vCenter or by manually specifying a list of hosts - and then connect and provision the

same port group on many hosts, quickly. This would mean a big time savings and less

potential for manual error when compared to manually clicking through the GUI to

configure the new port group on each host in the cluster.

 18

By also using the Set-NicTeamingPolicy cmdlet, you can set a preferred uplink port

for each port group and put the other NIC into standby mode. This allows us to keep the

Management and vMotion separated and the Storage and Fault Tolerance traffic

separated so that they do not cause degraded performance of one another.

There’s more…
In this recipe you focus on VMware Standard vSwitches. Users with Enterprise Plus

licensing also have the option of using VMware Distributed vSwitches which have their

own set of cmdlets to manage and configure these advanced virtual switches.

See also

 Network Management with vSphere Distributed Switches, VMware vSphere

5.5 Documentation Center - http://bit.ly/1wJs1JP

(http://pubs.vmware.com/vsphere-

55/topic/com.vmware.powercli.ug.doc/GUID-D2C0E491-A0CB-4799-

A80D-19EA9114B682.html)

Creating datastores on an ESXi host
With networking, VMware has done a lot of work to ease administration with the

VMware Distributed Virtual Switch. In vSphere 5.5, VMware introduced Datastore

Clusters which alleviate some of the management of datastores, but from a provisioning

standpoint, the initial setup of storage is still manual and can take a lot of manual steps.

Scripting this makes a lot of sense in large environments.

Datastore and storage under vSphere is also different since some operations must be

performed on the raw storage device and these steps are not repeated on every host.

There are three types of storage connectivity that you may need to provision – NFS,

iSCSI, and Fibre Channel. For this example, you will focus on iSCSI and NFS and will

work on provisioning storage from both. Along the way, Fibre Channel will also be

discussed since its concepts overlap with iSCSI, from a vSphere perspective.

Getting ready
For this example, you will need to open a PowerCLI window and connect to an ESXi

host. You will also want to make sure you have the VMHost object stored in a variable

called $esxihost, covered in the 'Getting the VMware host object' section.

 19

How to do it…
1. The simplest of all datastores to provision is an NFS datastore. A single

PowerCLI cmdlet will provision an NFS datastore. The New-Datastore

cmdlet will take all the input needed to provision the new datastore and make

it available for use. Since NFS does not use the VMFS filesystem, there are

no filesystem properties that need to be passed. To connect NFS, you just

need to provide a name for vSphere to identify the datastore, a path (the

export) and the host that is providing the NFS.

$esxihost | New-Datastore -Nfs -Name DataStoreName -Path
/data1/export -NfsHost nfsserver.domain.local

2. With that, you've got your first datastore presented and ready to host virtual

machines. For NFS, this is all that is required.

3. iSCSI and Fibre Channel storage is a bit more complex to provision from a

PowerCLI and vSphere perspective. Provisioning storage on either of these

protocols will require additional decisions to be made when creating the

datastore. iSCSI also requires additional configuration steps that are not

needed with Fiber Channel. You will focus on iSCSI for this example and I

will note where the concepts overlap with Fibre Channel.

4. iSCSI is an IP-based storage protocol and as such, you will need to do a bit

of network configuration to set up iSCSI to work in our environment. The

first thing that needs to be done is to enable iSCSI and to create a software

iSCSI target.

$esxihost | Get-VMHostStorage

5. By default, there isn't a software iSCSI target created. To create this, you

expand upon the previous cmdlet and set this value to true.

$esxihost | Get-VMHostStorage | Set-VMHostStorage -
SoftwareIScsiEnabled $true

6. The next step is to set the iSCSI targets using the New-IscsiHbaTargets

cmdlet. This cmdlet requires that you pass in the iSCSI HBA as an object, so

first you retrieve the iSCSI HBA using Get-VMHostHba and store it in a

variable and then use it with New-IscsiHbaTargets:

$iSCSIhba = $esxihost | Get-VMHostHba -Type iScsi

New-IScsiHbaTarget -IScsiHba $iSCSIhba -Address $target
-ChapType Required -ChapName vSphere -ChapPassword
Password1

In the example, there are additional parameters for authentication. iSCSI uses

Challenge-Handshake Authentication Protocol (CHAP) to authenticate

sessions to the target storage. Authentication is not required and if the storage

system is not configured for authentication, these parameters could be omitted,

 20

however, its bad practice to deploy a production storage array without

authentication.

7. The final step of iSCSI initial configuration is to bind the iSCSI HBA to a

specific port. Since you created a "Storage Network" management port, this

is the port that you want to use. To make this change and to remove any

other ports, you have to use the ESXCLI interface within PowerCLI. There

isn't a native PowerCLI cmdlet for this function.

$esxcli = Get-ESXCLI -VMHost $esxihost

$esxcli.iscsi.networkportal.add($iscsihba, $true,"vmk2")

8. In our case, the vmkernel port assigned to the Storage Network port group is

vmk2. Using the ESXCLI interface, you can assign it to the iSCSI HBA. To

confirm the change, you can use the list() method as follows:

$esxcli.iscsi.networkportal.list()

9. If you notice there are other vmkernel ports listed, as in my case vmk0, you

can remove them with a simple remove() method.

$esxcli.iscsi.networkportal.remove($iscsihba,$true,"vmk0")

Now that the system has its targets configured, if the iSCSI array has provisioned storage

to the host, it should be visible. This is the point where iSCSI and Fibre Channel

converge. Since iSCSI uses the host bus adapter model that Fibre Channel invented, they

work the same after initial configuration. Where you must run the NFS mount on each

server and you must set up iSCSI initial configuration on each host, scanning and

formatting VMFS datastores only needs to be done from a single host for iSCSI and Fibre

Channel disks since they are shared resources. This means that when scripting the steps

on each host, the next few steps only need to be done on a single host in the cluster and

then every host needs to be a rescan.

$esxihost | Get-VMHostStorage -RescanAllHBA -RescanVmfs

Starting with a rescan is a good place so that your system recognizes all storage changes

and sees all disks that have been presented. Whether you're using software or hardware

iSCSI, Fibre Channel, or converged network adapters, this is the point where your hosts

see its SAN disks.

10. At this point, your ESXi system doesn't have iSCSI or Fibre Channel

datastores that it can use. Even though the disk is visible, it is unformatted

and not ready to host VMs. To discover your disks and to enumerate the data

you need to configure it, you will need to use the Get-ScsiLun cmdlet.

$esxihost | Get-ScsiLun

11. This returns a list of disks available to the SCSI subsystem under ESXi. The

list may contain a lot of objects. You can use various properties returned by

the ScsiLun object to identify and leverage the list for provisioning. For

instance, you can scope the list using the Vendor property or by the model.

 21

For the purposes of this example, you will assume that you have a disk

identified by the model "iSCSIDisk" and use that for scoping. To create a

new datastore on the disk, you need the canonical name, which is also a

property in the ScsiLun object.

$LUN = $esxihost | Get-ScsiLun | Where {$_.Model -like
"iSCSIDisk"}

12. In situations where you have many disks presented to a host, identification by

model may not be the best. Another method would be to use the

RuntimeName property which enumerates the HBA, controller, Target, and

LUN number. For instance, if you know the LUN number want to prepare is

LUN 8 which is represented in the RuntimeName as L8, the PowerCLI to

scope and return this would be:

$LUN = $esxihost | Get-ScsiLun | Where {$_.RuntimeName -
like "*L8"}

13. By storing the LUN in a variable, I can verify the returned value to ensure

that you have the correct object and number of objects expected before

passing it into the New-Datastore cmdlet.

$esxihost | New-Datastore -Name iSCSIDatastore1 -Path
$LUN.CanonicalName -VMFS

14. This provisions the disk as a VMFS filestore and allows it to be used for VM

storage. At this point, you can initiate a rescan on all the ESXi hosts in the

cluster and they will all see the same shared storage.

How it works…
Provisioning datastores in vSphere works differently for each type of SAN storage. NFS

is simpler than iSCSI or Fibre Channel and just requires that you connect (or mount) the

datastore for use on the host. Software-based iSCSI requires that you do some additional

configuration on the host so that it can connect to the target array, but then iSCSI and

Fibre Channel both work the same with backend storage LUNs being presented to the

host for consumption.

See also

 Creating and managing a Datastore Cluster, Chapter 4

 Performing Storage vMotion, Chapter 4

Configuring syslog settings on a host
Booting your ESXi from SD or USB flash storage is a common scenario. When booting

from SD and USB, however, ESXi does not use that storage for logging and instead

keeps the logs in memory, which is non-persistent. Now that you have established

 22

shared, persistent storage, you can point the ESXi hosts syslog functions to store the logs

onto the shared disk so that it can survive a reboot or help to troubleshoot. Even hosts

booting from local spinning disk may want to redirect their syslog onto a shared SAN

drive so that it is accessible from other hosts if a host fails.

Another common use in enterprises is a centralized syslog server or to a third party log

collection and analytics service, like Splunk. Third party services offer filters, alarms,

search and other advanced features to adding context and value to the logs collected from

systems.

This section will cover setting this configuration on an ESXi host.

Getting ready
To work in this section, you will need to open a PowerCLI window, connect to an ESXi

host, and populate the $esxihost variable with a VMHost object.

How to do it…
1. PowerCLI provides the Get-AdvancedConfig cmdlet which lets us peer

into the advanced settings of the ESXi host. Even in the GUI, the syslog

settings for an ESXi host are set within the Advanced Configuration setting.

If you enumerate all of the advanced settings and then scope for items with

syslog.global, you will see the settings you want to adjust to set centralize

logging.

$esxihost | Get-AdvancedSetting | Where {$_.Name -like
"syslog.global*"}

Insert Image 3724EN_01_12.png

The two settings you want to adjust are logDirUnique, which sets a subdirectory for

each host in the cluster, and logDir which sets the centralized location.

2. The logDirUnique setting is an easy one. First, you will need to scope

down to retrieve just that setting and then pipe it into the Set-

AdvancedSetting cmdlet.

 23

$esxihost | Get-AdvancedSetting | Where {$_.Name -like
"Syslog.global.logDirUnique"} | Set-AdvancedSetting -value
$true -Confirm:$false

3. The second directory takes a bit more configuration. The logDir setting is a

string that defines a storage path, so in our case, you need to figure out what

datastore we're going to locate the syslog files onto. The VMFS datastore is

identified as a bracketed name with a path following. In the earlier example,

you created a datastore called iSCSIDatastore1 and you will now use it as our

syslog global directory.

$esxihost | Get-AdvancedSetting | Where {$_.Name -like
"Syslog.global.logDirUnique"} | Set-AdvancedSetting -value
"[iSCSIDatastore1] syslog" -Confirm:$false

Alternatively, if you want to direct all log files to a centralized syslog server, you may set

this setting the Syslog.global.logHost value.

4. To set the syslog host value, you will use the same cmdlet used to set the

previous values for syslog, except you will alter the advanced setting used in

the Where statement. The value should be Syslog.global.logHost to

locate the correct value to be set.

$esxihost | Get-AdvancedSetting | Where {$_.Name -like
"Syslog.global.logHost"} | Set-AdvancedSetting -value "
tcp://syslogserver:514 " -Confirm:$false

How it works…
The vSphere Advanced Settings control the syslog functions. There are properties in the

advanced settings that control how often and at what frequency to roll the log files and in

this example, where to store the global syslog directory, and whether to make a unique

subdirectory for this host's log files.

The Get-AdvancedSetting and Set-AdvancedSetting cmdlets expose and allow us

to set these Advanced Settings from PowerCLI.

Setting the global log directory requires the administrator to choose a datastore and

subdirectory on which to create these log files. The format of the path is set by using the

bracketed datastore name and then a relative path inside of the datastore. This is a path

definition that vSphere understands, but it is also specific to vSphere. It uses a Linux-like

path definition but begins inside of the datastore location.

There’s more…
In general, it's best to leave vSphere advanced settings with their default values unless

instructed to make changes by VMware support. The vSphere advanced settings can alter

the behavior of ESXi significantly and should be done with caution.

 24

Joining an ESXi host to vCenter
Joining an ESXi host to vCenter is done from vCenter. The cmdlets for adding a host to

a vCenter installation all require communication with vCenter to add the host. In this

section, we'll connect to vCenter and add the host into inventory. All additional

configuration to vCenter from PowerCLI will be covered in the next chapter.

Getting ready
Open a new PowerCLI window. This will ensure that no variables are populated and no

open connection to an ESXi may be lingering.

How to do it…
In this example, you will connect to a vCenter Server instead of directly connecting to an

ESXi host. Our vCenter server has a hostname of vcentersrv.domain.local.

1. To connect to vCenter, use the same cmdlet that you used in the "Connecting

to an ESXi host or vCenter instance" recipe.

$vcenter = connect-viserver vcentersrv.domain.local

The same certificate warning may be displayed and you may be prompted to

login if your computer cannot single sign-in to the vCenter instance.

2. Once connected to vCenter, you can use the Add-VMHost to add the host into

inventory.

Add-VMHost -Server $vcenter -Name esxsrv1.domain.local
-Location "Primary"

For the purposes of this section, the Location is assumed to be a datacenter

object already created in vCenter. In the next chapter, you'll see code how to

create this datacenter object.

3. When prompted, enter the administrative account credentials for the ESXi to

perform the join operation.

4. The host is now added to vCenter Server and may be administered by the

server.

How it works…
Joining an ESXi to vCenter is a simple cmdlet to configure and complete. It simply links

the ESXi into vCenter so that all additional configuration and control will be directed

from the vCenter host.

 25

At this point, connecting to the ESXi host will display a message in the GUI clients that

shows its being managed by vCenter and that all changes should be made through

vCenter. That is mostly the case from PowerCLI, too, but there may be additional times

when configuration needs to be made directly against a host. One example would be

changing multipathing settings for storage.

See also

 Creating a virtual datacenter in vCenter

 Creating a cluster and adding ESXi hosts into the cluster

 Setting cluster settings, including HA, DRS, FT and EVC

Creating a configuration script to set all properties
uniformly
In this section, you are going to cover bringing all the cmdlets you have covered in this

chapter together into a single script. This script will allow us to take an array of ESXi

hosts identified by either their hostname or IP address and to run the full scripted

configuration against them.

In many ways, this PowerCLI script will function much like a Host Profile in vSphere.

Host Profiles are a configuration definition that can be created from an existing,

configured host and applied on hosts to establish a desired configuration state. If hosts

deviate from the configuration, the profile may be reapplied to remediate any undesired

changes.

Unfortunately, Host Profiles are only available to customers with Enterprise Plus

licensing. But this PowerCLI solution would work for any vSphere customer with

Essentials, Essentials Plus, Standard, or Enterprise licensing.

Getting ready
For this last recipe of the chapter, you'll most likely want to open something like

PowerShell ISE. PowerShell ISE provides you with additional tools to edit larger scripts,

color code the cmdlets, and ensure no syntax errors. Alternatively, you may want a text

editing tool such as NotePad, NoteTab Light, Sublime Text, or NotePad++.

How to do it…
1. First things first, let's begin with pseduocode/documentation of what you

want to accomplish. In between each of these sections, you will insert the

 26

code you have previously developed individually and put them into a full

file.

Script to mass configure ESXi hosts

Step 1 - Store credentials for ESXi hosts

Step 2 – Set a list of target ESXi hosts and IP settings

Step 3 – Write a ForEach loop to iterate through hosts

Step 4 – Connect to ESXi host

Step 5 – Obtain a VMHost object to use for configuration

Step 6 – Join the ESXi system to Active Directory

Step 7 – Enable services on the ESXi host & set firewall

Step 8 – Configure the network settings

Step 9 – Configure NFS & iSCSI settings

Step 10 - Join hosts to vCenter

Step 11 - Rescan for storage changes

Step 12 – Configure persistent syslog storage

2. Since you want this script to do as much without any manual intervention,

you want to try and eliminate as many prompts as possible. Since you will

be connecting to and executing commands on multiple ESXi hosts, you

would normally get prompted to login each time you connect to a host. To

avoid this, you can store the credentials in a variable and pass them to each

connect-viserver cmdlet.

Step 1 - Store credentials for ESXi hosts

$esxiCreds = Get-Credential

When you first covered connecting to ESXi servers from PowerCLI, you

experienced the login box for the host. The Get-Credentials cmdlet causes

the same action but returns a credentials object that can be reused. For now,

you'll proceed with the stored credentials and you will use them at a later step.

3. You're going to use an array of hostnames to connect to individual ESXi

hosts for configuration. To create the array, you set a variable and store a

comma separated list of addresses to connect to. The addresses can either be

hostnames or IP addresses. For this example, you will use IP addresses, but

they could easily be fully qualified domain names.

Step 2 - Set a list of target ESXi hosts and IP settings

$esxiTargets = "192.168.0.241","192.168.0.242",
"192.168.0.243", "192.168.0.244"

4. For the network configuration settings, you will need to setup some

additional settings. Since each host has 3 additional vmkernel ports

configured, you need to build a different address for each of these to be used

in Step 8. To allow for this, you will create 3 additional variables containing

the first 3 octets of the network for each vmkernel port.

 27

$vMotionNetwork = "192.168.50."

$storageNetwork = "192.168.100."

$ftlogNetwork = "192.168.200."

5. The next step with this is to go back and pull in all of the code you have

previously written in one form or another. For this, you will reuse the

ForEach loop to execute the cmdlets on multiple ESXi hosts.

Step 3 - Write a ForEach loop to iterate through hosts

ForEach ($hostname in $esxiTargets) {

6. The curly brace marks the beginning of the ForEach loop. You will close

the loop with a right curly brace later in the script. Inside of the loop, you're

going to include Steps 4 – 9 from the outline.

7. For the next step, you're going to use our stored credentials to connect to an

ESXi host. Immediately after, you will store our VMHost object for use

throughout the rest of the loop.

Step 4 - Connect to ESXi host

$connectedHost = connect-viserver $hostname -Credential
$esxiCreds

Step 5 – Obtain a VMHost object to use for configuration

$esxihost = Get-VMHost $hostname

8. For the next several steps, you're just going to pull code you have already

developed. Since each step was covered in depth, you will just bring over

the code.

Step 6 – Join the ESXi system to Active Directory

$esxihost | Get-VMHostAuthentication |

Set-VMHostAuthentication -JoinDomain -Domain domain.local -
user username -password ***** -Confirm:$false

Step 7 – Enable services on the ESXi host & set firewall

$esxihost | Get-VMHostService | where { $_.key -eq "TSM-
SSH" } | Set-VMHostService -Policy "On" -Confirm:$false

$esxihost | Get-VMHostService | where { $_.key -eq "TSM-
SSH" } | Start-VMHostService -Confirm:$false

Step 8 – Configure the network settings

$esxihost | Get-VirtualPortGroup -Name "VM Network" |
Remove-VirtualPortGroup –Confirm:$false

9. For the network settings, you will need 3 additional IP addresses for the

vMotion, Storage and FT Logging vmkernel ports. You will compute these

addresses using the last octet of the service console IP. To do this, you will

first retrieve the IP address of the host.

$esxihost_ipaddress = $esxihost | Get-VMHostNetworkAdapter
-name vmk0

 28

10. Next, you will split the string based on the period between octets, then take

the last octet of the IP address and store it as a variable. The IP is in a

property called IP. To split that IP into an array, you use the Split()

method, which is a built-in PowerShell method that transforms a string into

an array by separating characters with the character passed into the method.

For instance, you want to separate the string at the periods of the IP address,

so you pass "." into the Split() method. Since the Split() turns it into

an array, you can then reference the element you want to return - the fourth

element, but remember arrays begin count at 0, so you return element 3 using

square brackets.

$lastOctet = $esxihost_ipaddress.IP.Split(".")[3]

Because data is stored in Objects, objects have both properties and methods.

Methods perform operations on the data of the object and properties contain the

data of the object. In subsequent recipes throughout the book, you will look at

and use other methods to gain more experience using built-in PowerShell

functionality to manipulate data stored in objects.

11. Last step in building the address for this host in the ForEach loop, you need

to concatenate the final octet with the network strings to build a full IP

address.

$vmotionIP = $vMotionNetwork + $lastOctet

$storageIP = $storageNetwork + $lastOctet

$ftlogIP = $ftlogNetwork + $lastOctet

12. Now that your unique IP addresses are created on the 3 additional networks,

you may use them with the cmdlets you wrote in the "Setting network

configuration" recipe.

$esxihost | New-VMHostNetworkAdapter -PortGroup "VMotion
Network" -VirtualSwitch vSwitch0 -IP $vmotionIP -SubnetMask
255.255.255.0 -VMotionEnabled $true

$esxihost | Get-VirtualPortGroup -Name "VMotion Network" |
Set-VirtualPortGroup –VlanID 50

Create new virtual switch for Storage and FT Logging

$esxihost | New-VirtualSwitch -Name vSwitch1 -Nic
vmnic2,vmnic3

Create vmkernel ports for Storage and FT Logging

$esxihost | New-VMHostNetworkAdapter -PortGroup "Storage
Network" -VirtualSwitch vSwitch1 -IP $storageIP -SubnetMask
255.255.255.0 -VsanTrafficEnabled $true

 29

$esxihost | Get-VirtualPortGroup -Name "Storage Network" |
Set-VirtualPortGroup –VlanID 100

$esxihost | New-VMHostNetworkAdapter -PortGroup "FT Logging
Network" -VirtualSwitch vSwitch1 -IP $ftlogIP -SubnetMask
255.255.255.0 -FaultToleranceLoggingEnabled $true

$esxihost | Get-VirtualPortGroup -Name "FT Logging Network"
| Set-VirtualPortGroup –VlanID 200

Create new Virtual Switch for Virtual Machines

$esxihost | New-VirtualSwitch -Name vSwitch2 -Nic
vmnic4,vmnic5

Create Port Groups for Virtual Machines

New-VirtualPortGroup -Name "Infrastructure Network"
-VirtualSwitch vSwitch2 -VLanId 1 -Server $esxihost

New-VirtualPortGroup -Name "Application Network"
-VirtualSwitch vSwitch2 -VLanId 2 -Server $esxihost

Step 9 – Configure NFS & iSCSI settings

Connect NFS datastore

$esxihost | New-Datastore -Nfs -Name DataStoreName -Path
/data1/export -NfsHost nfsserver.domain.local

Configure iSCSI Settings

$esxihost | Get-VMHostStorage | Set-VMHostStorage -
SoftwareIScsiEnabled $true$iSCSIhba = $esxihost | Get-
VMHostHba -Type iScsi

New-IScsiHbaTarget -IScsiHba $iSCSIhba -Address $target
-ChapType Required -ChapName vSphere -ChapPassword
Password1

$esxcli = Get-ESXCLI -VMHost $esxihost

$esxcli.iscsi.networkportal.add($iscsihba, $true,"vmk2")

13. The final part of the ESXi host configuration is closing the ForEach loop

and disconnecting from this host so that you can connect to the next host.

Disconnect-VIServer -Server $connectedHost -Confirm:$false

}

At this point in the initial configuration, you would want to format your datastores on

iSCSI or Fibre Channel arrays, but this is not really a repeatable set of steps. I would

suggest one of the two things - either configure the datastore manually from PowerCLI or

from the GUI and then come back and run the remainder of the script. Since the focus of

 30

this example to making a repeatable configuration script, the datastore formatting doesn't

fit since it is a one-time command.

14. The next step is to take our hosts and connect them to vCenter. The easiest

way to do this is to connect to vCenter and then use Add-VMHost to add them

into inventory. While in the same ForEach loop to accomplish this, you can

set central syslog and rescan the hosts for all storage changes.

$vcenter = connect-viserver vcentersrv.domain.local

$datacenter = Get-Datacenter "Primary"

For the purpose of this script, you are going to assume that vCenter already has a

datacenter created and named "Primary." You will use this location to place the

ESXi host into vCenter.

15. Next, you will run through an additional ForEach loop to add the hosts and

set their settings in vCenter.

ForEach ($hostname in $esxTarget) {

16. Now, you are ready to add the host into vCenter, from the "Joining an ESXi

host to vCenter" recipe.

Step 10 - Join hosts to vCenter

Add-VMHost -Server $vcenter -Name $hostname l -Location
$datacenter -Credential $esxiCreds

17. After adding the host to vCenter, you want to store a VMHost object pointing

to the host to use with later cmdlets in this loop.

$esxihost = Get-VMHost $hostname

18. For the next few steps, you will pull the host settings related to rescanning

for datastores and setting the syslog settings.

Step 11 - Rescan for storage changes

$esxihost | Get-VMHostStorage -RescanAllHBA -RescanVmfs

Step 12 – Configure persistent syslog storage

$esxihost | Get-AdvancedSetting | Where {$_.Name -like
"Syslog.global.logDirUnique"} | Set-AdvancedSetting -value
$true -Confirm:$false

$esxhost | Get-AdvancedSetting | Where {$_.Name -like
"logDir"} | Set-AdvancedSetting -value "[iSCSIDatastore1]
syslog" -Confirm:$false

19. Finally, you close the loop with a right curly brace.

}

 31

With connect-viserver, you may have to login a second time in the script

with different credentials to vCenter versus to individual hosts. Afterwards, the

hosts should be populated into vCenter.

Finally, your settings and desired state should be fully transferred to the ESXi host by the

script.

How it works…
In this example, you wrap up all the code you have developed throughout the chapter.

You bring together the pieces of code that achieve specific tasks into a full scripted

configuration that you can apply towards a number of ESXi hosts. The script gives us

repeatability, so when you need to extend the cluster with a new ESXi or when you

rebuild the host because you've replace or upgraded the hardware, you can run this script

against it and be back to the same working condition as before replacement.

The basis of the script is a ForEach loop. Because you define the ESXi hosts in an array,

you can connect to each of them and run all the commands and then move the next entry

in the array. The script also suppresses confirmation dialogs so that it can continue to

issue cmdlets against the host. You also stored the login credentials, meaning that you

only have to login once and the script will use the same credentials to connect and

configure all the hosts in the defined array.

See also...

 VMware vSphere Host Profiles

http://www.vmware.com/products/vsphere/features/host-profiles

