
Reading Sample
Modularization involves placing specific sequences of ABAP statements in a
module, instead of placing all the statements in a single main program.
In this sample chapter, you will learn to modularize your program using
object-oriented programming, with classes, global classes, function modules
and subroutines.

Brian O‘Neill

Getting Started with ABAP
451 Pages, 2016, $49.95/€49.95
ISBN 978-1-4932-1242-2

 www.sap-press.com/3869

First-hand knowledge.

“Making Programs Modular”

Contents

Index

The Author

 © 2016 by Rheinwerk Publishing, Inc. This reading sample may be distributed free of charge. In no way must the file be altered, or
individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.

http://sap-press.com/3869

217

Making Programs Modular

So far, this book has covered a number of technical methods that
allow you to do specific things using ABAP programs. You discovered
different ways to process data, read data from a database, and work
with data in working memory. In this chapter, we will discuss how to
organize, or modularize, your program using object-oriented pro-
gramming to complete all of these tasks. We will cover modulariza-
tion using classes, global classes, function modules and subroutines.

What is
modularization?

Modularization involves placing specific sequences of ABAP state-
ments in a module, instead of placing all the statements in a single
main program. There are two very important reasons that you need
to modularize your program instead of having just one long program
that executes from the beginning to the end. First, you want to write
programs that are easy for other programmers to read and under-
stand. Second, you want to be able to reuse common functions mul-
tiple times in a single program or across multiple programs and avoid
redundancy.

In addition, modularization has the added benefit of making ABAP
programs easier to support and enhance after they have been written.

Separation of Concerns

Separation of concerns is a principal used to separate a program into
different layers, each with its own function. Imagine an ABAP pro-
gram that was created to report on some data from the database. You
could break that program into three different parts, one part to read
the data from the database, another part to process the data, and a
third part to display the results, as shown conceptually in Figure 6.1.

Making Programs Modular

218

6

Figure 6.1 Using Seperation of Concerns to Break a Program into Single-Function
Units

When you break your program into these three different sections,
you then have one place to make changes to any of those functions.

Procedural programs Back in the ancient days of computing, people would write long pro-
grams using punch cards that had to be executed from the beginning
to the end and probably scheduled to run at a certain time. Today,
applications are used by people in real time, which means that you
need to change your application to meet the user’s sometimes crazy
expectations. Programs designed to run from the beginning to end
are called procedural programs.

In a typical ABAP journey, it’s normal to see an old program written
in a procedural format—and then you’ll hear from a user that the pro-
gram is supposed to process data in some way that isn’t working.
You’ll have to go through the long process of reading the program and
debugging to figure out where the data is changed, only to find that
the data is read and changed all over the place.

REPORT ZABAP_PROGRAM

READ DATA
PROCESS DATA
DISPLAY DATA

READ DATA FROM DATABASE

PROCESS DATA

DISPLAY DATA

Separation of Concerns

219

6

Why use separation
of concerns?

In order to avoid writing procedural nightmare programs, use the
separation of concerns principal to keep each unit focused on per-
forming only one function, and name each unit based on the function
that it performs. This makes it much easier to understand the pro-
gram, fix it, and enhance it. Remember that you may write the pro-
gram once, but someone else may have to fix or change it, possibly
years later! Therefore, after using the plan in Figure 6.1, if users
returned to you and said that they wanted additional data from the
database, you would know exactly what unit to change, and if they
wanted the ability to refresh the data, you would know that you can
add the ability to call the read data from the database after displaying
the data. If you had just one long program, it would be harder to find
out exactly where you need to make changes, and you definitely
would not be able to reuse any particular unit; the program would all
be one long unit.

Of course, each person’s interpretation of a unit focused on perform-
ing only one function might be different. That’s where this concept
can become more of an art than a science. If the units are made too
small, it can be confusing because there are so many; if they are made
too large, it can be confusing because there’s so much code in a single
unit. Remember that you’re both writing a program and trying to
make it easy for the next person to fix and enhance.

Naming different
units

Figure 6.2 expands on the original conceptual drawing in Figure 6.1
to demonstrate breaking up and naming units for each function that
they perform. This example demonstrates a program that gets a list of
possible flights based on a search, calculates the price of the flight
options, and displays the results to the user. Each unit completes one
function, and each unit has a descriptive name. If a person said that
there was an issue with the price being calculated, you would know
exactly what unit of code he or she was talking about.

Making Programs Modular

220

6

Figure 6.2 Seperation of Concerns with Named Code Units

Changing units
of code

Just because you created certain units of code when the application
was created doesn’t mean that you can’t add more. It’s common to
have to add additional functionality in a single unit of code, in which
case you should determine if the additional functionality might need
to be in its own functional unit of code. If each unit is expected to per-
form one function, ask yourself if the new code is really completing
that same function or if it’s its own unit. Also, anytime the new code
is something that could be reused, then it should be in its own unit.
Once your code is completed and working, it is always good practice
to go back and see what kind of improvements you can make to your
code and find any code that is repeated and could be modularized.

Now that you understand the concept of Separation of Concerns, we
will cover how to utilize it using object-oriented programming.

Introduction to Object-Oriented Programming

OOP The recommended method for modularizing ABAP programs is to use
object-oriented programming. There are some people in the ABAP
community who are unsure about object-oriented programming and
have even posed the idea that there is ABAP and OO-ABAP (object-

REPORT ZABAP_PROGRAM

READ DATA
PROCESS DATA
DISPLAY DATA

READ DATA FROM DATABASE

PROCESS DATA

DISPLAY DATA

GET_AVAILABLE_FLIGHTS

GET_CUSTOMER_DATA

CALCULATE_TOTAL_PRICE

DISPLAY_RESULTS

Introduction to Object-Oriented Programming

221

6

oriented ABAP). The fact is that there is no ABAP versus OO-ABAP:
just ABAP with good developers and bad developers.

If you have written object-oriented programs in other languages, you
will find that there are a few ABAP quirks, but all of the concepts that
you have seen in other languages will apply in ABAP as well.

What Is an Object?
A programming object is designed around the idea of objects in the
real world. A good introductory conceptual example is that of a car.
A car has attributes that describe its current state, such as fuel level
and current speed, and attributes that describe the object, such as
manufacturer and model. There are also a few methods that describe
how we interact with the car, such as accelerate, decelerate, and
refuel. Figure 6.3 shows a conceptual drawing of this car object.

Figure 6.3 The Car Object

Each of the object’s methods is a functional unit designed to complete
one task. Each attribute of the object is a variable that all of the meth-
ods have access to. The pseudocode in Listing 6.1 shows what the
code in the accelerate method could look like.

Fuel: 100
Speed: 0

Manufacturer: Toyota
Model: Tundra

Accelerate

Decelerate

Refuel

Attributes Methods

Making Programs Modular

222

6

METHOD ACCELERATE.
SPEED = SPEED + 5.

ENDMETHOD.

Listing 6.1 Pseudocode of Accelerate Method

Classes Now, say that the example in Figure 6.3 specifically refers to a Toyota
Tundra, but you want to create additional objects for different types
of cars. This is where classes come in. Each object is actually an instan-
tiation of a class, and you can have multiple objects of the same class.
Again think back to the real-life example of a car; the Toyota Tundra
is a type of car, and all cars can accelerate, decelerate, and refuel, but
this particular car is going at a certain speed and has a certain fuel
level. When creating objects, all of the code is stored in the class, but
you can create multiple objects that use that code, and each will have
its own set of attributes to describe it, as shown conceptually in Fig-
ure 6.4. You can think of the class in this example as a mold, whereas
the objects are those items created from that mold.

Figure 6.4 Relationship between Class and Object

Modularizing with Object-Oriented Programming
Just because you are using object-oriented programming doesn’t
mean you have to use it to build multiple objects. You could also have

Car Class

Car Object 1 Car Object 2

Fuel:
Speed:
Brand:
Manfuctaurer:

Fuel: 100
Speed: 10
Brand: Toyota
Manufacturer: Tundra

Fuel: 10
Speed: 0
Brand: Nissan
Manufacturer: Sentra

Structuring Classes

223

6

one object that holds all of the logic for your program. Each method
will represent a single function, as discussed in the section on the sep-
aration of concerns principle. Looking back at Figure 6.2, each differ-
ent unit could be represented as a method in a flight finder class, as
shown in Figure 6.5.

Figure 6.5 Flight Finder Class Concept

Passing data to
methods

Each class method can be created with the ability to take and return
data. For example, when creating the method for calculating the total
price in Figure 6.5, you could pass a value containing the results from
the get available flights method.

Structuring Classes

Now that you understand some of the concepts of object-oriented
programming, you can begin to learn how to create classes and
objects in ABAP. If the object-oriented concepts do not make sense
yet, perhaps seeing the actual code in action will help. We’ll first
cover how to create a local class within a program and then how to
create a global class that can be used across multiple programs.

Implementation vs. Definition
In ABAP, every class requires a definition and an implementation.
The definition lists the different attributes and methods of a class,

Attributes

Methods

GET_AVAILABLE_FLIGHTS

GET_CUSTOMER_DATA

CALCULATE_TOTAL_PRICE

DISPLAY_RESULTS

Making Programs Modular

224

6

whereas the implementation contains the actual code for all of the
methods. The definition must come before the implementation and
must also come before an object is created from the class. The class is
defined by using the CLASS keyword, followed by the name of the
class and then either DEFINITION or IMPLEMENTATION depending on
what you are declaring. The example in Listing 6.2 contains the defi-
nition of a class with no attributes or methods. Prefix the class name
with lcl to indicate that it’s a local class, meaning that it’s being cre-
ated inside of an ABAP Program. Since we are demonstrating local
classes, you can insert the code in this section into any ABAP program
for testing. Since both the definition and implementation are con-
tained within a CLASS and ENDCLASS keyword, they do not need to be
next to each other when being defined.

CLASS lcl_car DEFINITION.
ENDCLASS.
CLASS lcl_car IMPLEMENTATION.
ENDCLASS.

Listing 6.2 Definition and Implementation of a Class

Creating Objects
Now that you’ve created a basic class, you can create objects of that
class. Remember that a class is like a design, and you can build multi-
ple objects using that design.

Object variables There are two parts to creating an object. The first part is to define the
object variable. This is just like creating variables, which we intro-
duced in Chapter 2, except that you will use TYPE REF TO instead of
just TYPE to indicate the class to be used when creating the object. The
example in Listing 6.3 uses the prefix o_ to indicate an object.

For objects, you then use the command CREATE OBJECT followed by
the object variable to instantiate the object, as shown in Listing 6.3
Just like creating your own data types using the TYPES command, the
class definition must come before creating an object using that class.

CLASS lcl_car DEFINITION.
ENDCLASS.

DATA: o_car TYPE REF TO lcl_car.
CREATE OBJECT o_car.

Structuring Classes

225

6

CLASS lcl_car IMPLEMENTATION.
ENDCLASS.

Listing 6.3 Creating an Object from a Class

Public and Private Sections
Before adding attributes and methods to the class definition, you will
need to decide whether those attributes and methods should be pub-
lic, private, or protected.

PublicPublic attributes and methods can be used within the class or outside
of the class, from the main program, or even from another class.

PrivatePrivate attributes and methods can only be used from within the class
itself, meaning that another class or the main program is unable to
read the attributes or call the methods that are listed as private.

ProtectedProtected attributes and methods can only be used from within the
class itself, just like the private attributes and methods. The difference
with protected attributes and methods is that they can be inherited
from a subclass, unlike a private attribute or class. We will revisit pro-
tected attributes and methods when we cover inheritance later in the
chapter.

The public and private sections are defined in the class implementa-
tion using the PUBLIC SECTION and PRIVATE SECTION keywords. Listing
6.4 adds those sections to the class definition.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.
PRIVATE SECTION.
ENDCLASS.
ClASS lcl_car IMPLEMENTATION.
ENDCLASS.

Listing 6.4 Adding the Public and Private Sections to the Class Definition

AttributesNext, you can add attributes to public or private sections, by creating
variables, just like the ones discussed in Chapter 2. The variables
must be defined after a section to determine whether they’re public
or private.

These attributes will be available globally to all of your methods; if
they’re public, they’ll also be available globally outside of your

Making Programs Modular

226

6

methods. Listing 6.5 adds public attributes for fuel, speed, brand,
and manufacturer and a private attribute for the current gear.

Read Only attributes Public attributes can also be given a READ-ONLY property, which will
make them readable outside of the class and changeable only from
within the class. In Listing 6.5, the attribute d_manufacturer is set to
be read-only.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.
 DATA: d_fuel TYPE i,
 d_speed TYPE i,
 d_brand TYPE string,
 d_manufacturer TYPE string READ-ONLY.
PRIVATE SECTION.
 DATA: d_gear TYPE i.
ENDCLASS.
ClASS lcl_car IMPLEMENTATION.
ENDCLASS.

Listing 6.5 Adding Public and Private Attributes to the Car Class

Class Methods
Definition Methods are the place to store all of your code, in single units of work

designed to complete one function. Each method should have a name
describing the action that it will complete. First, you have to define
the method using the keyword METHODS in the class definition, and
then write the method’s code in the class implementation in between
the words METHOD and ENDMETHOD. Listing 6.6 expands on the car
example to add the definition and an empty implementation for the
accelerate, decelerate, and refuel methods. When adding methods,
you will get a syntax error if the method is not defined in both the
definition and implementation of the class.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_brand TYPE string,
d_manufacturer TYPE string.

 METHODS: accelerate,
 decelerate,
 refuel.
PRIVATE SECTION.

DATA: d_gear TYPE i.

Structuring Classes

227

6

ENDCLASS.
ClASS lcl_car IMPLEMENTATION.
 METHOD accelerate.
 ENDMETHOD.
 METHOD decelerate.
 ENDMETHOD.
 METHOD refuel.
 ENDMETHOD.
ENDCLASS.

Listing 6.6 Adding Public Classes to the Car Class

ImplementationNow, you can add code to the methods. The code will go in the class
implementation section, and each method will share all of the attri-
butes declared in the definition. Listing 6.7 adds some programming
logic to each of the methods, and you can see that they are all able to
access the class attributes.

Local variablesYou can also declare variables within methods, such as ld_max in the
REFUEL method shown in Figure 6.11. These variables are considered
local variables since they will not be visible or usable outside of the
methods in which they’re declared. For that reason, they are prefixed
with a ld_ meaning local data variable, instead of d_, meaning global
data variable.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate,
decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
ClASS lcl_car IMPLEMENTATION.

METHOD accelerate.
 d_speed = d_speed + 5.
 d_fuel = d_fuel – 5.

ENDMETHOD.
METHOD decelerate.

 d_speed = d_speed – 5.
 d_fuel = d_fuel – 2.

ENDMETHOD.
METHOD refuel.

Making Programs Modular

228

6

 DATA: ld_max TYPE I VALUE 100.
 d_fuel = ld_max.

ENDMETHOD.
ENDCLASS.

Listing 6.7 Adding Logic to Methods in the Car Class

Calling methods Now that you’ve defined some methods which contain some code,
you can define an object, create it, and call the methods contained in
the object. To call an object’s method, you enter the object name fol-
lowed by an arrow (->), then the method name, and then the open
and close parentheses (()), with any parameters in between the
parentheses. Table 6.1 shows how a method is called via an example
using the car object created earlier in this section.

The code for calling methods has to be included after the object has
been defined and created, but it can come before the definition of the
object, as shown in Listing 6.8.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate,
decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car.
CREATE OBJECT o_car.
o_car->accelerate().
ClASS lcl_car IMPLEMENTATION.

METHOD accelerate.
d_speed = d_speed + 5.
d_fuel = d_fuel – 5.

ENDMETHOD.
METHOD decelerate.

d_speed = d_speed – 5.
d_fuel = d_fuel – 2.

Object->method_name(parameters) o_car->accelerate()

Table 6.1 How to Call a Method

Structuring Classes

229

6

ENDMETHOD.
METHOD refuel.

DATA: d_max TYPE i VALUE 100.
d_fuel = 100.

ENDMETHOD.
ENDCLASS.

Listing 6.8 How to Call a Method in an Object

Methods in the
execution stack

Now you can set a breakpoint within the method and execute the pro-
gram and you will see the execution stack will show where the
method was called from. If you are using Eclipse, the stack should
look like what we see in Figure 6.6. The accelerate method is listed
and before that is START-OF-SELECTION, which is the ABAP event that
starts executing our code.

Figure 6.6 Execution Stack in Eclipse

Now, we can select the start-of-selection item in the stack to see
the line of code where the accelerate method was called as shown in
Figure 6.7.

Figure 6.7 Eclipse Showing Where the Start-Of-Selection Stack

We can do the same thing from the SAP GUI debugger, when your
breakpoint inside of the accelerate method is hit, you will notice the
ABAP and Screen Stack section will appear as shown in Figure 6.8.

Figure 6.8 ABAP and Screen Stack in SAP GUI

Making Programs Modular

230

6

We can then click the START-OF-SELECTION item and the debugger
will bring up the section of code that called our accelerate method as
shown in Figure 6.9.

Figure 6.9 SAP GUI Debugger Execution Stack

Importing, Returning, Exporting, and Changing
When using your car class, users do not want to accelerate at a rate of
5; they want to specify the amount of acceleration to occur, which
makes sense. There are a few ways to pass data to and from methods,
as described in Table 6.2.

Importing You can change the accelerate method to import a variable to indi-
cate the amount of speed that you want to increase by. This is handled
in Listing 6.9 by adding the IMPORTING command followed by a vari-
able definition for the variable that will be copied in to the method
and used to set the rate of acceleration for the car object. After adding
the IMPORTING variable in the definition, that variable can now be
accessed in the method implementation. The prefix ip here indicates
an IMPORTING parameter.

Now that you’ve defined the IMPORTING parameter, you also can pass
the value for that parameter within the parentheses when calling the
method, as shown in Listing 6.9.

Importing A copy of one or more variables is passed to the method.

Returning The actual variable is returned by the method. Returning can
only be used to return one variable.

Exporting A copy of one or more variables are returned from the
method.

Changing The actual variable is passed to the method, and any changes
to that variable will change the original. (Also known as
passing by reference.)

Table 6.2 Ways to Pass Data to and from a Method

Structuring Classes

231

6

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i,
decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car.
CREATE OBJECT o_car.
o_car->accelerate(5).
ClASS lcl_car IMPLEMENTATION.

METHOD accelerate.
d_speed = d_speed + ip_accel_rate.
d_fuel = d_fuel – 5.

ENDMETHOD.
METHOD decelerate.

d_speed = d_speed – 5.
d_fuel = d_fuel – 2.

ENDMETHOD.
METHOD refuel.

d_fuel = 100.
ENDMETHOD.

ENDCLASS.

Listing 6.9 Adding the Ability to Import Variables in Methods

ReturningNext, you can change the method to check if the fuel is at zero; if it is,
then the car will not accelerate. When you call the method, you want
to know if it worked or not, so return a Boolean parameter that will
be true if the method worked and false if it did not. The Boolean
parameter is defined in the class definition using the RETURNING key-
word followed by VALUE and the variable name within parentheses, as
shown in Listing 6.10, with the prefix rp indicating a returning
parameter.

Because the returning parameter is a Boolean, also create the Boolean
variable d_is_success in the main program and set it to the result of
the method call in Listing 6.10, meaning that d_is_success will be set
to the value of rp_is_success after calling the accelerate method.

Making Programs Modular

232

6

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i
RETURNING VALUE(rp_is_success)
TYPE bool,

decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.
CREATE OBJECT o_car.
d_is_succcess = o_car->accelerate(5).
ClASS lcl_car IMPLEMENTATION.

METHOD accelerate.
IF d_fuel – 5 > 0.

d_speed = d_speed + ip_accel_rate.
d_fuel = d_fuel – 5.
rp_is_success = abap_true.

ELSE.
rp_is_success = abap_false.

ENDIF.
ENDMETHOD.
METHOD decelerate.

d_speed = d_speed – 5.
d_fuel = d_fuel – 2.

ENDMETHOD.
METHOD refuel.

d_fuel = 100.
ENDMETHOD.

ENDCLASS.

Listing 6.10 Class Including Returning Parameter

Method chaining The returned variable can also be used in line with other ABAP key-
words using method chaining, which was added to the ABAP language
in ABAP 7.02. For example, you can call the accelerate method from
Listing 6.10 from within an IF statement and use the returning
parameter as part of the IF statement, as shown in Listing 6.11.

…
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.

Structuring Classes

233

6

CREATE OBJECT o_car.
IF o_car->accelerate(5) = abap_true.

WRITE: ‘It worked!’.
ENDIF.
…

Listing 6.11 Using the Returning Parameter as Part of an IF Statement

Import multiple
parameters

If you want to import multiple parameters, you can do so by includ-
ing the additional parameters after the IMPORTING command in the
class definition. When you list multiple variables, you will also need
to specify which variable you are passing within the parentheses, as
shown in Listing 6.12.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE I,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i
ip_other_param TYPE i

RETURNING VALUE(rp_is_success)
TYPE bool,

decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.
CREATE OBJECT o_car.
d_is_succcess = o_car->accelerate(ip_accel_rate = 5
ip_other_param = 1).

ClASS lcl_car IMPLEMENTATION.
..
ENDCLASS.

Listing 6.12 Adding Multiple IMPORTING Parameters

Optional parametersYou can also mark parameters as optional by adding OPTIONAL after
the parameter’s definition, which means that the parameter will have
an initial value when the method runs if a value is not entered for that
parameter. If there are multiple importing parameters but only one is
not marked as optional, you can pass only the required parameter
without identifying the parameter names, as shown in Listing 6.13.

Making Programs Modular

234

6

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i
ip_other_param TYPE i OPTIONAL

RETURNING VALUE(rp_is_success)
TYPE bool,

decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.
CREATE OBJECT o_car.
d_is_succcess = o_car->accelerate(5).
ClASS lcl_car IMPLEMENTATION.
..
ENDCLASS.

Listing 6.13 Optional Importing Parameters

Returning multiple
parameters

The RETURNING parameter only allows you to return one parameter,
but if you need to return multiple parameters, you can use EXPORTING
parameters. EXPORTING parameters are defined just like IMPORTING
parameters, but using both requires identifying which parameters are
IMPORTING and which are EXPORTING when calling the corresponding
method, as shown in Listing 6.14.

Exporting The parameters that are EXPORTING from the method will be IMPORT-
ING into the main program; note how the naming changes in Listing
6.14. You cannot use both EXPORTING and RETURNING in the same
method definition. EXPORTING parameters are always optional.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE I,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i
EXPORTING ep_is_success TYPE bool,

decelerate,
refuel.

Structuring Classes

235

6

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.
CREATE OBJECT o_car.
o_car->accelerate(EXPORTING ip_accel_rate = 5

IMPORTING ep_is_success = d_is_success).
ClASS lcl_car IMPLEMENTATION.
..
ENDCLASS.

Listing 6.14 EXPORTING Parameters

ChangingThe last option for passing variables to or from methods is CHANGING.
CHANGING parameters are passed into a method like IMPORTING
parameters but can also be changed and returned like EXPORTING
parameters. Unlike with an IMPORTING parameter, when calling a
method and using a CHANGING parameter, you will always have to
specify that it is a CHANGING parameter. Just as with EXPORTING
parameters, you can’t have both a CHANGING and a RETURNING param-
eter. The car object example has been updated to use a CHANGING
parameter in Listing 6.15.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE I,
d_brand TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i
CHANGING cp_is_success TYPE bool,

decelerate,
refuel.

PRIVATE SECTION.
DATA: d_gear TYPE i.

ENDCLASS.
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.
CREATE OBJECT o_car.
o_car->accelerate(EXPORTING ip_accel_rate = 5

CHANGING cp_is_success = d_is_success).
ClASS lcl_car IMPLEMENTATION.
..
ENDCLASS.

Listing 6.15 CHANGING Parameters

Making Programs Modular

236

6

Returning vs. Exporting/Changing

When possible, use RETURNING parameters to help write more concise,
easier-to-read code. RETURNING parameters will also make your ABAP
code look more similar to other object-oriented languages, allowing
someone who learned other languages first to more easily understand
your program. The real power of RETURNING parameters is the ability to
use method chaining with other ABAP keywords, as shown in Listing
6.11.

Constructors
Constructors are special methods used to set the state of an object
before you start calling its methods. For example, you can set the
manufacturer and model of the car object when you first create it
using a constructor.

Creating a
constructor

A constructor is created by creating a method called constructor.
This method will be called by the CREATE OBJECT keyword, and any
required parameters must be passed when using CREATE OBJECT.
The example in Listing 6.16 specifies the model and manufacturer
in the constructor, and those parameters are used to update the
class attributes.

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_model TYPE string,
d_manufacturer TYPE string.

METHODS: accelerate IMPORTING ip_accel_rate TYPE i
RETURNING VALLUE(rp_is_success)
TYPE bool,

decelerate,
refuel,
constructor
IMPORTING ip_manufacturer TYPE string

ip_model TYPE string.
PRIVATE SECTION.

DATA: d_gear TYPE i.
ENDCLASS.
DATA: o_car TYPE REF TO lcl_car,

d_is_success TYPE bool.

Structuring Classes

237

6

CREATE OBJECT o_car EXPORTING ip_manufacturer = ‘Toyota’
ip_model = ‘Tundra’.

d_is_success = o_car->accelerate(5).
ClASS lcl_car IMPLEMENTATION.
METHOD constructor.

d_manufacturer = ip_manufacturer.
d_model = ip_model.

ENDMETHOD.
..
ENDCLASS.

Listing 6.16 Car Object with a Constructor

The constructor is typically used to set variables that determine the
state of the object, but it can be used to initialize the object in any
way. For example, the constructor can read data from a database table
to fill some private or public variables. Remember that the construc-
tor will only be run once when creating the object.

Recursion
When using separation of concerns, you can use recursion to reuse a
unit of work thanks to method chaining, which we introduced in Lis-
ting 6.11. Recursion works by calling a method from inside the same
method, which can make your code much more compact and under-
standable than following a procedural approach, which may just
result in one long program with the same code repeated over and
over. Because you call a method from inside the same method using
the results of the earlier call, recursion only works when you use a
RETURNING parameter in your method.

Fibonacci sequenceTo demonstrate recursion, let’s write a method to calculate a given
number of the Fibonacci sequence. The Fibonacci sequence is an
infinite sequence starting with 0 and 1 and then adding the current
number to the last number to get the next number in the sequence.
For example: 0, 1, 1, 2, 3, 5, 8, and 13. If you are familiar with agile
scrum planning, you may have used Fibonacci numbers to estimate
work.

In Listing 6.17, to calculate the Fibonacci number you recursively call
the calculate method, meaning that we call it from within the cal-
culate method and set the returning value to its result. During this

Making Programs Modular

238

6

call, call with a value of one less than the current importing parameter
and add the result of that to the result of calling the method with a
value of two less than the current importing parameter. You don’t
want the recursive call to run forever, of course, so if the method is
called with a value of one or less, it will return the value of the param-
eter that was called. Try running the code in Listing 6.17 in debug
mode and step through the program to see the recursion in action.

CLASS lcl_fibonacci DEFINITION.
PUBLIC SECTION.

METHODS: calculate IMPORTING ip_place TYPE i
RETURNING VALUE(rp_value) TYPE i.

ENDCLASS.
DATA: o_fib TYPE REF TO lcl_fibonacci,

d_result TYPE i.
CREATE OBJECT o_fib.
d_result = o_fib->calculate(4).
CLASS lcl_fibonacci IMPLEMENTATION.
METHOD calculate.

IF ip_place <= 1.
rp_value = ip_place.

ELSE.
rp_value = calculate(ip_place –

1) + calculate(ip_place – 2).
ENDIF.

ENDMETHOD.
ENDCLASS.

Listing 6.17 Calculating a Fibonacci Number with Recursion

Figure 6.10 provides a conceptual image of what is happening during
the recursive call in Listing 6.17 when trying to find the fourth num-
ber of the Fibonacci sequence. Because the code only returns the
importing parameter value when it is 1 or less, the numbers added up
are always 1 or 0.

A need for a recursive method will not exist in every ABAP program
that you write, but when it can be used, it’s very useful and can make
your program much more understandable.

Structuring Classes

239

6

Figure 6.10 Fibonacci Recursive Call

Inheritance
When using object oriented programming, we have the ability to take
on attributes and methods from another class through the use of
inheritance. The class that we are inheriting from is called a superclass
and the class that is inheriting is called a subclass.

Inheritance, like recursion, is a powerful benefit of object-oriented
programming that we do not necessarily use with every program that
we write.

INHERITING FROMIn Listing 6.18, we added a new class, called lcl_truck which inherits
from the car class by using the INHERITING FROM keyword as part of
the class definition. Since lcl_truck inheriting from lcl_car, we can
call all of the same methods that are in lcl_car and it will execute the
code in the lcl_car implementation. This class can be defined below
the code that we have already covered.

…
CLASS lcl_truck DEFINITION
INHERITING FROM lcl_car.
ENDCLASS.

DATA: o_truck TYPE REF TO lcl_truck.

rp_value = calculate(4-1) + calculate(4-2).

rp_value = calculate(3-1) + calculate(3-2). rp_value = calculate(2-1) + calculate(2-2).

rp_value = calculate(2-1) + calculate(2-2).
Return 1 Return 1

Return 1

Return 0

Return 0 1 + 0 + 1 + 1 + 0 = 3

Making Programs Modular

240

6

CREATE OBJECT o_truck.
o_truck->accelerate(5).

CLASS lcl_truck IMPLEMENTATION.
ENDCLASS.

Listing 6.18 Demonstrating Class Inheritance

Redefining methods We also have the option of redefining a method so that we use the
code inside the lcl_truck implementation instead of the lcl_car
implementation. To do that, we need to declare the method in the
subclass without any parameters and include the REDEFINITION key-
word as shown in Listing 6.19. Notice that we still have access to the
same public variables and the returning parameter that we were able
to use in the superclass method.

…
CLASS lcl_truck DEFINITION
INHERITING FROM lcl_car.
PUBLIC SECTION.

METHODS: accelerate REDEFINITION.
ENDCLASS.

DATA: o_truck TYPE REF TO lcl_truck.
CREATE OBJECT o_truck.

o_truck->accelerate(5).

CLASS lcl_truck IMPLEMENTATION.
METHOD accelerate.

d_speed = 1.
rp_is_success = abap_true.

ENDMETHOD.
ENDCLASS.

Listing 6.19 Demonstrating Redefining a Method in a Subclass

Protected section Unlike methods in the superclass, methods in the subclass are unable
to access the private methods or attributes of the superclass. If you
want to create attributes or methods that are private but can also be
accessed from inside of a subclass, then you must define them in the
protected section. In Listing 6.20 we demonstrate this by adding a
protected variable to the lcl_car definition which we can then call
from within the lcl_truck class.

Global Classes

241

6

CLASS lcl_car DEFINITION.
PUBLIC SECTION.

DATA: d_fuel TYPE i,
d_speed TYPE i,
d_model TYPE string,
d_manufacturer TYPE string.

METHODS: …
PRIVATE SECTION.

DATA: d_gear TYPE i.
PROTECTED SECTION.

DATA: d_protected TYPE i.
ENDCLASS.
…
CLASS lcl_truck DEFINITION
INHERITING FROM lcl_car.
PUBLIC SECTION.

METHODS: accelerate REDEFINITION.
ENDCLASS.
…
CLASS lcl_truck IMPLEMENTATION.

METHOD accelerate.
d_speed = 1.
rp_is_success = abap_true.
d_protected = 1.

ENDMETHOD.
ENDCLASS.

Listing 6.20 Class Demonstrating a Protected Attribute

Global Classes

So far, you’ve learned about local classes, which are created and run
inside of a local program. However, there are many use cases in which
you’ll want to use classes across multiple programs. A common use of
global classes is to create interfaces with custom tables that you have
written. This allows for a couple of things: First, you can handle lock-
ing of tables within the methods of your class, instead of having to
lock and unlock tables in the programs that access the table. Second,
you can write methods that allow you to access the data in your cus-
tom table(s) without having to write your own SELECT statements.
How you use global classes really depends on the design of your
tables and applications and the problem that you’re trying to solve.

Making Programs Modular

242

6

Multiple views The code for creating and changing the classes is mostly the same as
what you saw for local classes. When using SAP GUI to create the
class, there are two views: a source code view and a forms view. The
resulting code will be the same, but the forms view allows the ABAP
system to write some of the code itself.

Source control One thing that is different about using global classes is the way that
they’re broken up into different pieces. Each piece has its own source
control history and must be activated on its own. The breakup of a
class into different pieces makes it possible for multiple developers to
work on the same class simultaneously.

The different pieces of a global class are the public, private, and pro-
tected sections and each method implementation. This allows you to
treat each method as an individual program in terms of source control
and activation. The public, private, and protected sections are a bit of
a special case, however. These sections are automatically generated
when using the forms view in SAP GUI, so any comments entered in
these areas will be overwritten. You can still create and edit these sec-
tions with your own code, which will be kept, but any comments will
be lost.

How to Create Global Classes in Eclipse
Using Eclipse to create classes is the preferred method and we’ll look
at that first, but we will also cover how to create them using Transac-
tion SE80 later in the section.

To begin, select File � New � ABAP Class; you’ll see the New ABAP

Class wizard appear. Select the package $TMP to save the new class
as a local object, enter “ZCL_GLOBAL_CLASS” as the class name, and
enter “Global Class” as the description, as shown in Figure 6.11. Just
as with ABAP programs, your class needs to be prefixed with a Z. You
can use the prefix ZCL to indicate that the class you’re creating is a
custom global class.

Global Classes

243

6

Figure 6.11 Creating a New Global Class in Eclipse

Global class
keywords

You’ll see your new class with the basic structure for a class laid out
for you, as shown in Figure 6.12. This should look familiar; it’s the
same structure that you saw with the local classes. The only change is
the addition of the PUBLIC keyword, indicating a global class. Addi-
tionally, FINAL keyword is optional and indicates that the class cannot
be inherited from and the CREATE PUBLIC keyword, allows an object
to be created from the class anywhere where the class is visible.

Figure 6.12 New Class Created in Eclipse

How to Create Global Classes in Transaction SE80
If you’re using Transaction SE80 as your ABAP IDE, select CLASS/

Interface from the dropdown in the center of left side of the screen,
type “ZCL_GLOBAL_CLASS” in the textbox below the dropdown in
the center left of the screen, and press (Enter).

Making Programs Modular

244

6

You will be prompted with a popup asking if you want to create ZCL_
GLOBAL_CLASS because it doesn’t exist as shown in Figure 6.13.
Click the Yes button.

Figure 6.13 Create Class/Interface Popup

In the next popup, enter “Global Class” in the Description field and
leave the rest of the options set to their defaults, as shown in Figure
6.14. The Final checkbox indicates that other classes cannot inherit
from this class. Select the Save button to continue.

Figure 6.14 Create Class Popup

In the Create Object Directory Entry popup, click the Local Object

button or enter “$TMP” for the package name, and click the Save but-
ton. For production objects, you should use a package created for
your project.

Forms view After creating the class, the editor will show the class in the default
forms view. The forms view can be used to change the structure of the
class and add attributes and methods, and it will generate the class
definition code automatically. You can also click the Source Code-

Based button (Figure 6.15) to view the entire class as code.

Global Classes

245

6

Figure 6.15 Forms View of a Class, with Source Code-Based Button Highlighted

Source code viewThe source code view shown in Figure 6.16 should look similar to
what you saw when working with local classes. Whichever method
you choose to use should be based on personal preference, but the
source code view is recommended if you are going to use Transaction
SE80 as your primary IDE.

Figure 6.16 New Class in the Source Code View

Using the Form-Based View in Transaction SE80
You can now return to the form-based view by clicking the Form-

Based button, if you are still looking at the source code view. The
form-based view will generate the code for the class definition and
add the method definitions to the class implementation. Everything
in the form-based view can be done manually in the source code
view; which you use is a matter of personal preference.

Making Programs Modular

246

6

There are many things that you can do with classes that I haven’t cov-
ered yet and things that are out of scope for this book, so don’t feel
overwhelmed by all of the tabs and options in the form-based view.
In this section, you will learn how to use the form-based view to add
methods and attributes to a class.

Creating a method First, create a new method. To do so, select the Methods tab and
enter “METHOD1” in the first row of the Method column; this will
name your new method METHOD1. Next, under Level, select Instance

Method. When you worked with local classes earlier in the chapter,
those were instance methods; static methods are out of scope for this
book and should be avoided if possible.

Next, select Public under Visibility; this will set the method as public
by defining it in the public section of the class definition. You can also
add a description in the last column, which will only be visible from
the form-based view. The name of your method should typically be
descriptive enough on its own. The end result should look as shown
in Figure 6.17.

Figure 6.17 Adding a Method Using the Form-Based View

Parameters Next, select the method and click the Parameter button. From here,
you can add parameters for your method. The parameter name goes
in the first column; enter “ip_parameter”. The next column, Type,
indicates whether the parameter is importing, exporting, returning,
or changing. Select Importing for this parameter.

Next, there are two checkboxes, one for Pass Value and one for
Optional. You’re required to pass a value for returning parameters,
but can pass a value for any importing parameters as well. Passing a
value for a parameter means that any changes to the parameter in the
method will change the parameter that was passed into the method
instead of changing a copy of that parameter. The Optional checkbox
will make that parameter optional.

Global Classes

247

6

The next column, Typing Method, indicates whether the data type
should be created using the keyword TYPE, TYPE REF TO, or LIKE. Select
the typing method Type. Next, the Associated Type column indicates
the data type to be used for the parameter; enter “I” to indicate an
integer data type. You can also add a default value and description; as
with the method description, this description is only visible to other
developers using the form-based view.

Next, add a second parameter named “rp_value”. This parameter
should be of type returning with a typing method of TYPE and an asso-
ciated type of i for integer. Both parameters are shown in Figure 6.18.

Figure 6.18 Adding Parameters Using the Form-Based View

Method
implementation

Now, click the Methods button to return to the methods list, and
double-click your method to enter the method implementation,
where you can write your code. You will notice that the editor
restricts you to only the method you selected. From here, you can also
click the Signature button to toggle the signature display that will
show the parameters you defined for the method as shown in Figure
6.19.

Figure 6.19 Editng a Method Using the Form-Based View

AttributesNext, click Back to return to the form-based view and click on the
Attributes tab to add some attributes to your new class. Enter “D_I”

Making Programs Modular

248

6

in the first row of the Attribute column to indicate that the attribute
name will be D_I. Next, select Instance Attribute under the Level

column. Static attributes are out of scope for this book and should be
avoided if possible.

Next, set Visibility to public to indicate that this attribute will be
defined in the public section. The Read-Only checkbox will make the
attribute read-only from outside of the class, but the attribute can still
be changed within your methods. Next, set Typing to Type and Asso-

ciated Type to I for integer.

The button to the right of the Associated Type column is used to cre-
ate complex types (Figure 6.20). Clicking that button will take you to
the public, private, or protected section so that you can add your own
custom attributes that aren’t defined in the ABAP Data Dictionary.

Figure 6.20 Adding Attributes Using the Form-Based View

Now that you’ve added a method and some variables using the form-
based view, save your changes and click the Source Code-Based

View button to see the automatically generated code (Figure 6.21).
You will notice that the generated code still closely resembles what
you saw with the local classes. The only differences are some added
comments before the method and an added exclamation point (!)
before the method parameters. The exclamation point is an escape
symbol that allows you to use an ABAP keyword such as RETURNING as
the name of a variable.

Any additional class examples in this book will only include the actual
code, not the form-based view configuration. You should be familiar
enough with classes by this point to use either the form-based view
or the source code view interchangeably. We recommend using
Eclipse or the source code view exclusively.

Obsolete Modularization

249

6

Figure 6.21 Viewing the Code Generated by the Form-Based View

Obsolete Modularization

Now that you are familiar with modularizing your code using the
modern object oriented approach, we will also cover some of the
obsolete modularization techniques. You will need to be familiar with
these techniques when working with old code or may need to use
them for technical reasons.

Function Modules
Using function modules cannot be avoided in many ABAP programs,
because some of SAP’s standard functionality requires it in areas such
as database table locks; however, you should never manually create
new function modules. Any situation that calls for a function module
to be created can use a global class instead. In fact, function modules
were actually SAP’s first attempt at making ABAP object oriented.

With that said, it’s good to understand how function modules work,
because they’re prevalent in many customer systems and standard

Making Programs Modular

250

6

SAP code and may be required for technical reasons, such as creating
a remote function call (RFC).

Function groups Similar to how methods are contained inside of a class, function mod-
ules are contained inside of a function group. The function group is
created with two include files, one for global data (attributes in
classes) and one that contains all of the function modules (methods in
classes) in the group.

Any global data or function group attributes will hold the same value
until the end of the program, but variables defined in the function
module itself will only hold the same value until the end of the func-
tion call.

In your code, you call the function module itself instead of the group,
and there’s only one instance of the function group. This is unlike
class objects, which can have multiple instances, as was illustrated by
the car example in Figure 6.4.

Creating Function Groups and Modules in Eclipse
In Eclipse, you can create a new function group by selecting File �
New � Other...; then expand the ABAP folder and select the option
for ABAP Function Group in the popup as highlighted in Figure
6.22, and click Next.

Figure 6.22 Creating a New ABAP Function Group

Obsolete Modularization

251

6

ABAP function group
wizard

In the New ABAP Function Group wizard, enter the package “$TMP”
to save it as a local object and enter “ZFG_FUNCTION_GROUP” for
the function group name. The function group name will have to start
with a Z as noted previously for programs and classes to indicate a
custom function group. You can also prefix the name with “ZFG” to
indicate that it is a function group. Remember that the function
groups are like classes, so the name should indicate the type of object
that the function group will be working with. Finally, enter a descrip-
tion, which may be used by other developers trying to find your func-
tion group. An example of the correct values is shown in Figure 6.23.

Figure 6.23 New ABAP Function Group Popup

INCLUDEThe function group code displayed in Figure 6.24 shows the two
include files that make up the function group. The INCLUDE file ending
in “TOP” will contain any global data variables that will be accessible
by any of the function modules in the function group just like attri-
butes of a class are available for all of the class methods. The INCLUDE
ending in UXX will contain INCLUDEs for all of the function modules
created, which are just like class methods.

Function moduleTo create the function module, select File � New � Other..., expand
the ABAP folder, and select ABAP Function Module. You can also
right-click the function group you just created from the Eclipse proj-
ect explorer and select New � ABAP Function Module. This action
will open the New ABAP Function Module popup (Figure 6.25).

Making Programs Modular

252

6

Figure 6.24 Code of a New Function Group

Figure 6.25 New ABAP Function Module Popup

From the popup, enter “Z_NEW_FUNCTION_MODULE” for the func-
tion module name. Because the code does not call the function group
but instead calls the function module directly, the function module
name is global, and each name can only be used once. A good practice
is to prefix the function module name with something indicating the
function group name after the required “Z_” prefix.

Next, enter a description that describes what the function module
does to benefit other developers trying to find your function module.
Finally, make sure that you enter the correct function group in which

Obsolete Modularization

253

6

the new function module should be contained in the Function

Group textbox, and click Next and then the Finish button.

The new function module should open, and you can enter any code
in between the FUNCTION and ENDFUNCTION keywords.

Figure 6.26 Newly Created Function Module in Eclipse

Function module
parameters

Just like class methods, function modules have IMPORTING, EXPORTING,
and CHANGING parameters. These are defined in the function module
by entering the type of parameter followed by a declaration of the
data type, as shown in Listing 6.21.

FUNCTION ZFM_NEW_FUNCTION_MODULE.
IMPORTING

ip_param TYPE i.
EXPORTING

ep_param TYPE i.
CHANGING

cp_param TYPE i.

ENDFUNCTION.

Listing 6.21 Adding Parameters to a Function Module

You can also pass table parameters using the TABLES keyword, but this
is obsolete and unnecessary, because you can pass a parameter of a
table type instead.

Creating Function Groups in Transaction SE80
If you are using Transaction SE80 as your ABAP IDE, select Function

Group from the dropdown in the center of left side of the screen,
type “ZFG_FUNCTION_GROUP” in the textbox below the dropdown
in the center left side of the screen, and press (Enter).

Making Programs Modular

254

6

You will be prompted with a popup asking if you want to create ZFG_
FUNCTION_GROUP because it doesn’t exist (Figure 6.27). Click the
Yes Button.

Figure 6.27 Create Function Group Popup

Creating a
function group

You’ll then be prompted with the Create Function Group popup
pictured in Figure 6.28. Leave the function group name as ZFG_

FUNCTION_GROUP, and enter “New function group” in the Short

text textbox. The Short text and Function group values are used by
other developers trying to find your function group, so they should
typically describe the type of data or objects that you’re working
with.

The Person Responsible field will default to your username. You can
leave this as is or change it, depending on your company’s standards.
Next, click the Save button to continue.

Figure 6.28 Create Function Group Popup

In the Create Object Directory Entry popup, click the Local Object

button or enter “$TMP” for the package name, and click the Save but-
ton. For production function groups, you should use a package cre-
ated for your project.

Include files Your function group has now been created containing two include
files, which you should see listed on the left side of the screen (see

Obsolete Modularization

255

6

Figure 6.29). The INCLUDE files ending in TOP will contain any global
data variables that will be accessible by any of the function modules
in the function group. The INCLUDE ending in UXX will contain
INCLUDEs for all of the function modules created.

Figure 6.29 New Function Group Files in SE80

Creating a function
module

To create the function module, you can either select Function Mod-

ule from the dropdown, type “ZFM_NEW_FUNCTIONMODULE” in
the textbox, and press (Enter), or you can right-click the zfg_func-

tion_group folder and select Create � Function Group.

You will then see the Create Function Module popup pictured in
Figure 6.30. From the popup, enter “Z_NEW_FUNCTION_MODULE”
for the function module name; unlike a global class method, it must
be prefixed with Z. Because the code doesn’t call the function group
but instead calls the function module directly, the function module
name is global, and each name can only be used once. A good practice
is to prefix the function module name with something indicating the
function group name.

Next, ensure that Function group is set to the correct value; it should
be ZFG_FUNCTION_GROUP for this example. Finally, to benefit
other developers trying to find your function module, enter a descrip-
tion of what the function module does in the Short text field; for this
example, enter “Creating a new function module”. Then, click Save.

Figure 6.30 Create Function Module Popup

Making Programs Modular

256

6

Function module
parameters

You will now see a screen similar to the global class form-based view.
Just like class methods, function modules have IMPORTING, EXPORTING,
and CHANGING parameters. These are defined in the Import, Export,
and Changing tabs. Function modules also have a Tables tab used to
define parameters that are passed as tables, which is obsolete and
should be avoided. Instead of using the tables parameters, you should
pass a table type in one of the other parameters.

To add the IMPORTING parameter, select the Import tab and enter “IP_
PARAM” for the parameter name, “TYPE” for Typing and “I” for Asso-
ciated Type as shown in Figure 6.31. This will create an importing
parameter of IP_PARAM.

Figure 6.31 Adding an Import Parameter to a Function Module

Next, click on the Export tab and enter parameter “EP_PARAM” with
Typing “TYPE” and Associated Type “I” as shown in Figure 6.32.

Figure 6.32 Adding an Export Parameter to a Function Module

Finally, select the Changing tab and enter parameter “CP_PARAM”
with Typing “TYPE” and Associated Type “I”.

Figure 6.33 Adding a Changing Parameter to a Function Module

Obsolete Modularization

257

6

Now, you can select the Source Code tab, where you will be able to
make changes to the function module, just as you made changes ear-
lier to the method of a global class.

Calling Function Modules
You can call a function module using the CALL FUNCTION keyword fol-
lowed by the function module name in single quotes ('). The param-
eters are passed by indicating the type of parameter and then the
parameter name, equals sign, and the value that you want to pass to
the parameter. Like we saw with class methods, a parameter import-
ing into the function module is exporting from your code. The param-
eters importing into your program are always optional when calling
a function module. An example calling Z_NEW_FUNCTION_MODULE is
shown in Listing 6.22.

DATA: d_i TYPE i.
CALL FUNCTION 'Z_NEW_FUNCTION_MODULE'

EXPORTING
ip_param = 1

IMPORTING
ep_param = d_i

CHANGING
cp_param = d_i.

Listing 6.22 Calling a Function Module

Some function modules will return a parameter or table indicating the
results of executing the function and any errors. Some function mod-
ules use exceptions to indicate whether or not the function call was
successful. We will cover these types of exceptions in Chapter 10.

Form Subroutines
Form subroutines are probably the most commonly used way to mod-
ularize programs, even though they’ve been marked as obsolete in
ABAP documentation.

PerformSubroutines are easy to create. They use the FORM keyword followed
by the subroutine name to define the beginning of the subroutine
and ENDFORM to define the end of the subroutine. A subroutine can
be called using the PERFORM keyword followed by the subroutine
name and will execute any code within that subroutine, as shown in

Making Programs Modular

258

6

Listing 6.23. No additional code can be entered after ENDFORM, just
additional subroutines.

PERFORM my_subroutine.
FORM my_subroutine.

WRITE: ‘Hello World’.
ENDFORM.

Listing 6.23 Using a Subroutine

Declaring data in
a subroutine

As with methods, local data can be declared within the subroutine
and will only be accessible within that subroutine. Subroutines can
also import parameters with the USING keyword and change parame-
ters with the CHANGING parameter. These parameters work just like
their function module and class-based counterparts. An example of a
subroutine with parameters is shown in Listing 6.24.

DATA: d_i TYPE i.
PERFORM my_subroutine USING d_i
CHANGING d_i.
FORM my_subroutine
USING up_param TYPE i
CHANGING cp_param TYPE i.

ENDFORM.

Listing 6.24 Subroutine with USING and CHANGING Parameters

Summary

This chapter covered some modularization concepts, such as using
separation of concerns to divide code into units that each complete
only one function, and introduced object-oriented programming as a
way to modularize code to meet the separation of concerns principle.

Remember that separation of concerns and object-oriented program-
ming make your code easier to read and understand for the next
developer who will have to look at it and fix any issues.

Next, you learned how to create classes and objects in ABAP. You dis-
covered how methods can be used not only to modularize your code
but also to make it compact through options such as recursive method
calls.

Summary

259

6

We then covered global classes, which can be called by any program
in the system, and how to create them both in Eclipse and using
Transaction SE80 in SAP GUI.

The chapter concluded by looking at some obsolete code modulariza-
tion techniques using function modules and subroutines. Even
though you shouldn’t be writing new subroutines and function mod-
ules, these are important to understand in order to maintain old
ABAP systems.

In the next chapter, you will take everything you’ve learned so far in
the book and apply it to create a new custom application that will run
inside your ABAP system.

7

Contents

Introduction ... 15

PART I The Foundation

1 The History of SAP Technologies 21

From R/1 to S/4 HANA ... 21
Navigating an ABAP System .. 23

Overview of the ABAP Screen in SAP GUI 23
Overview of ABAP Screen in SAP NWBC 27
Overview of ABAP Screen in SAP Fiori 27

ABAP System Landscapes ... 28
Client/Server Architecture .. 28
Background Jobs .. 29
Sandbox, Dev, QA, PRD ... 31
Finding the Version of a System in SAP GUI 33

The Limitations of Backward Compatibility 34
Summary .. 36

2 Creating Your First Program 37

Hello, World! .. 37
Creating a New Program with Eclipse 37
Creating a New Program in Transaction SE80 40
Writing a “Hello, World!” Program 44

Data Types ... 46
The Data Keyword .. 46
Numeric Data Types ... 47
Character Data Types .. 49
Inline Data Declarations ... 51

Arithmetic and Basic Math Functions 52
Arithmetic Operations .. 52
Math Functions .. 54

Flow Control ... 56
IF Statements ... 56
CASE Statements .. 59

Contents

8

DO Loops ... 60
WHILE Loops ... 60

Formatting Code ... 61
Comments .. 63

Common Commenting Mistakes 64
Using Comments while Programming 64

Classic Selection Screen Programming 65
SELECTION-SCREEN ... 66
BLOCK ... 67
PARAMETER .. 69
SELECT-OPTIONS ... 72
Selection Texts ... 74

Program Lifecycle ... 75
AT SELECTION-SCREEN ... 75
START-OF-SELECTION ... 76

Debugging Basics .. 76
Program to Debug .. 77
Breakpoints in Eclipse ... 79
Breakpoints in the SAP GUI .. 83
Watchpoints in Eclipse ... 88
Watchpoints in SAP GUI ... 91

Tying It All Together ... 92
The Problem ... 93
The Solution ... 94

Summary .. 95

3 Creating Data Dictionary Objects 97

What Is a Data Dictionary? ... 97
What Is a Database? ... 97
Data Elements .. 99

Entity Relationship Diagrams .. 100
Database Normalization ... 101
Relationships in ERDs ... 103

The Flight Data Model .. 105
Flight Example ERD .. 105

Creating and Editing Tables .. 108
Viewing the Flight Table Configuration 109

Contents

9

Viewing the Flight Data .. 116
Setting Up the Flights Example 118
Creating an Append Structure .. 119
Creating a Custom Transparent Table 122

Data Elements .. 130
Viewing the S_BOOK_ID Data Element 130
Creating a New Data Element ... 133

Domains ... 135
Viewing the BOOLEAN Domain 136
Creating a New Domain ... 138

Documentation .. 140
Maintenance Dialogs .. 141
Structures and Table Types ... 143

Creating Structures ... 143
Creating Table Types .. 145

Summary .. 146

4 Accessing the Database ... 149

SQL Console in Eclipse .. 149
SELECT Statements ... 151

Basic SELECT Statements .. 151
SELECT SINGLE .. 153
SELECT…UP TO n ROWS ... 155
SELECT…WHERE .. 155

INSERT ... 156
MODIFY/UPDATE .. 158
DELETE ... 159
INNER JOIN ... 160
LEFT OUTER JOIN .. 163
FOR ALL ENTRIES IN .. 165
With SELECT Options ... 167
New Open SQL .. 169
Table Locks ... 170

Viewing Table Locks ... 172
Creating Table Locks ... 174
Setting Table Locks ... 175

Performance Topics .. 179

Contents

10

Obsolete Database Access Keywords 180
SELECT…ENDSELECT ... 181
Short Form Open SQL .. 181

Summary .. 181

5 Storing Data in Working Memory 183

Using ABAP Data Dictionary Data Types 183
Data Types ... 183
Creating Your Own Structures .. 185
Field Symbols ... 186

Standard Table .. 188
Defining Standard Tables .. 188
READ TABLE .. 190
LOOP AT .. 193
Inserting Rows in a Standard Table 195
Changing Rows of a Standard Table 196
Deleting Rows of a Standard Table 197

Sorted Table ... 199
Defining Sorted Tables ... 199
Inserting, Changing, and Deleting Sorted Rows 200
BINARY SEARCH .. 202
DELETE ADJACENT DUPLICATES FROM 204

Hashed Table .. 205
Defining Hashed Tables .. 205
Reading Hashed Tables ... 206
Inserting, Changing, and Deleting Hashed Table Rows 207

Which Table Should Be Used? .. 208
Updating ABAP Data Dictionary Table Type 210
Copying Table Data .. 212
Displaying Data from Working Memory 213
Obsolete Working Memory Syntax 214

WITH HEADER LINE .. 215
OCCURS ... 215
Square Brackets ([]) .. 215
Short Form Table Access ... 215

Summary .. 216

Contents

11

6 Making Programs Modular 217

Separation of Concerns ... 217
Introduction to Object-Oriented Programming 220

What Is an Object? ... 221
Modularizing with Object-Oriented Programming 222

Structuring Classes .. 223
Implementation vs. Definition .. 223
Creating Objects ... 224
Public and Private Sections ... 225
Class Methods .. 226
Importing, Returning, Exporting, and Changing 230
Constructors ... 236
Recursion ... 237
Inheritance ... 239

Global Classes ... 241
How to Create Global Classes in Eclipse 242
How to Create Global Classes in Transaction SE80 243
Using the Form-Based View in Transaction SE80 245

Obsolete Modularization .. 249
Function Modules .. 249
Form Subroutines ... 257

Summary .. 258

7 Creating a Shopping Cart Example 261

The Design ... 262
The Database ... 263
The Global Class ... 263
The Access Programs .. 264

Database Solution ... 266
Data Elements .. 266
Transparent Tables ... 271

Accessing the Database Solution ... 280
Creating Classic Screens for the Solution 286

Product Maintenance Program 286
Shopping Cart Maintenance Program 290

Summary .. 295

Contents

12

PART II Finishing Touches

8 Working with Strings and Texts 299

String Manipulation .. 299
String Templates ... 299
String Functions ... 302

Text Symbols .. 304
Creating Text Symbols .. 304
Translating Text Symbols .. 309

Translating Data in Tables ... 311
Obsolete Strings and Text ... 316
Updating the Shopping Cart Example 316

Applying Text Symbols ... 316
Updating the Database ... 319
Using the Translation Table .. 324

Summary .. 327

9 Working with Dates, Times, Quantities,
and Currencies .. 329

Dates .. 329
Date Type Basics .. 330
Factory Calendars ... 331
Datum Date Type ... 335
System Date Fields ... 336
Date-Limited Records ... 336

Times .. 337
Calculating Time ... 338
Timestamps .. 338
SY-UZEIT (System Time vs. Local Time) 341

Quantities ... 341
Data Dictionary .. 342
Converting Quantities .. 344

Currencies .. 345
Data Dictionary .. 346
Converting Currencies .. 347

Updating the Shopping Cart Example 348
Updating the Database ... 349

Contents

13

Updating the Global Class .. 356
Updating the ABAP Programs ... 358

Summary .. 361

10 Error Handling .. 363

SY-SUBRC ... 363
Message Classes ... 364

Displaying a Message Class ... 364
Creating a Message Class .. 367
Using the MESSAGE Keyword .. 368

Exception Classes .. 372
Unhandled Exceptions .. 373
TRY/CATCH Statements .. 378
Custom Exception Classes ... 381

Obsolete Exceptions ... 386
Non-Class-Based Exceptions ... 386

Updating the Shopping Cart Example 389
Summary .. 392

Appendices .. 393

A Preparing your Development Environment 395
B Modern UI Technologies .. 431
C Other Resources ... 439
D The Author ... 443

Index ... 445

445

Index

$TMP, 43

A

ABAP
backward compatibility, 34
code updates, 34
modern syntax, 36
obsolete code support, 35
system implementation, 35

ABAP and screen stack, 86
ABAP clients, 23

SAP Fiori, 23
SAP GUI, 23
SAP NetWeaver Business Client, 23

ABAP Perspective
select, 38

ABAP systems
client/server architecture, 29
program status, 30

abap_false, 61
abap_true, 61
Activation log

warnings, 122
Aliases, 161
ALV, 213

cl_salv_table, 214
SALV_OM_OBJECTS, 214

ALV Grid Display, 117
Append Structure

create, 119
Application table, 110
Arithmetic operations, 52
AS, 161, 169
AT SELECTION-SCREEN, 75

event, 75
Attributes, 131
Authorization group, 141

B

b, 47–48
BEGIN OF SCREEN, 66
BETWEEN .. AND, 57

Binary floating point, 49
Binary logic, 56
BLOCK, 65–67

NO INTERVALS, 67
WITH FRAME, 67
WITH FRAME TITLE, 67, 287

Boolean, 61
yes/no user response, 72

Breakpoint, 77, 80
create, 84
remote, 85
remove, 80

Buffering, 179
options, 116

C

CALL SELECTION-SCREEN, 66
Cardinalities, 104, 125
CASE statements

WHEN, 59
WHEN OTHERS, 59

Chained statements, 45–46
Character-based data types, 49
Check Table, 112
Class

definition, 280
implementation, 283

Classic selection screen
programming, 65

Client, 29
Cloud application library, 395
Clustered Tables, 108
Comments, 63

", 63
*, 63
mistakes, 64
use in programming, 64

Constructor, 281, 284
Crow’s foot notation, 103
Currencies, 345

CONVERT_TO_LOCAL_
CURRENCY, 347

CUKY, 346

Index

446

Currencies (Cont.)
CURR, 346
exchange rates, 345

Currency/quantity, 114
Custom Exception classes

CX_DYNAMIC_CHECK, 383
CX_NO_CHECK, 383
CX_STATIC_CHECK, 381–382
CX_SY_ILLEGAL_HANDLER, 383
CX_SY_NO_HANDLER, 382

Customizing table, 110

D

DATA, 46, 53–54, 57–61, 63, 72, 77
Data class, 127

types, 115
Data Dictionary, 97, 99

Activation Log, 121
Data Element, 183
Data elements, 99
documentation, 140
domain, 99, 183
table field, 183
translation, 312
transparent table, 98, 184

Data element, 97, 99, 112,
130–131, 266
create new, 133
predefined type, 131
redundant, 102
search help, 132

Data type, 112, 131
numeric, 47
structure, 186

Database
definition, 98
normalization, 101–102

Date
CL_ABAP_TSTMP, 341
CONVERT TIME STAMP, 339
DATE_CONVERT_TO_

FACTORYDATE, 333
date-limited record, 336
datum, 335
Factory Calendars, 331

Date (Cont.)
FACTORYDATE_CONVERT_TO_

DATE, 334
GET TIME STAMP FIELD, 338
public holiday, 331
RP_CALC_DATE_IN_

INTERNAL, 330
sy-datum, 336
sy-fdayw, 336
sy-timlo, 341
sy-tzone, 341
sy-uzeit, 341
sy-zonlo, 341
timestamp, 338
timestampl, 338
type, 50
valid_from/valid_to, 336

Deadlock, 170
Debugging, 76

execution stack, 229
decfloat, 47–49, 53–54, 77
Decimal floating point numbers, 48
Decimal places, 48
DELETE, 159, 284, 289

FROM...WHERE, 285
DELETE ADJACENT DUPLICATES

FROM, 204
COMPARING, 204
COMPARING ALL FIELDS, 204

DELETE TABLE, 197, 210
hashed table, 208
sorted table, 202
WHERE, 199
WITH TABLE KEY, 198

Deletion anomaly, 102
Delivery and maintenance, 110
DEQUEUE, 172, 175, 178
DIV, 53
Documentation, 140
Domain, 97, 135, 268, 270, 274

BOOLEAN, 136
create new, 138
range, 137

Dynamic breakpoints, 82

Index

447

E

Eclipse
ABAP perspective, 38
Create program, 37
create project, 40
format code, 61
open project, 38
SQL console, 149, 152

E-commerce, 22
ELSE, 58
ELSEIF, 58
ENDDO, 60
Enhancement category, 120, 127
ENQUEUE, 175
Entity, 101
Entity Relationship Diagrams R ERD
Entry help/check, 127
ERD, 101, 263, 319, 348

crow’s foot notation, relationship
indication, 103

normalized, 102
Exception, 372

500 SAP internal server error, 373
CATCH BEFORE UNWIND, 381
CATCH...INTO, 379
categories, 381
CLEANUP, 380
custom exception classes, 381
function modules, 386
non-class based exceptions, 386
RAISE EXCEPTION TYPE, 380
resumable exceptions, 381
RESUME, 381
short dump, 373
ST22, 375
TRY…CATCH, 378
unhandled, 373

Exclusive lock, 171
Execution stack, 81
EXIT, 60

F

Field, 111
label, 132, 134
symbols, ASSIGN, 187

Flight data
model, 105
view, 116

Flight model
load data, 118

FLUSH_ENQUEUE, 177
FOR ALL ENTRIES IN, 165
Foreign key, 103, 112, 273

cardinality, 125
create, 125
set, 124

Format your code, 61
Fully Buffered, 180
Function

ceil, 55
floor, 55
frac, 55
ipow, 55–56
sign, 55
trunc, 55

Function group, 141, 250, 254
Function modules, 249, 255

CALL FUNCTION, 257
parameters, 253

G

Generic area buffered, 180
GETWA_NOT_ASSIGNED, 187
Global class, 262

H

Hash board, 205, 210
Hello World

add user input, 71
chained statements, 45

I

Identifying relationship, 103
IF Statement Operators, 56

AND, 57–58
OR, 57, 59

Initial value, 46, 111, 156
INITIALIZATION, 75

Index

448

Inline data declaration, 51, 153,
289, 293

INNER JOIN, 160, 163, 285
INSERT, 156, 195, 210

hashed table, 207
INDEX, 195
LINES FROM, 195
sorted table, 201

Insert anomaly, 102
Integrated development

environments, 395
Internal tables, 183, 208

hashed table, 205, 209
key, 189
SORT, 200
sorted table, 199, 208
standard table, 188, 208

INTO, 170
IS NULL, 156
ITAB_ILLEGAL_SORT_ORDER, 200

J

Joins, 179
Junction Table, 105

K

Key, 111
Key fields/candidate, 125

L

LEFT OUTER JOIN, 163
LENGTH, 50, 68–69
Lifecycle event, 75
LIKE, 184, 189

LINE OF, 184
LOAD-OF-PROGRAM, 75
Lock

mode, 172
objects, 174
parameter, 173

Log data options, 116
Logical storage parameters, 115

Loop, 60
infinite, 60

LOOP AT, 193
BINARY SEARCH, 202
hashed table, 207
WHERE, 194

M

Maintenance dialog, 141
MANDT, 106, 124, 126, 157, 189
Many-to-many relationship, 105
Message class, 364, 371, 392

&, 371
create, 367
long text, 369
MESSAGE, 368
WITH, 371

Method, 300
MOD, 53
Modalities, 104
MODIFY, 158, 210, 284, 289

hashed table, 207
sorted table, 201

MODIFY TABLE, 196
INDEX, 197
WHERE, 196

Modularize ABAP, 217
MOVE, 52
MOVE-CORRESPONDING, 212

N

New Open SQL, 169
Nonidentifying relationship, 104
NoSQL, 100
NULL, 111
Numeric data types, 47

O

Object, 293
Object-oriented programming, 220

attributes, 225
CHANGING, 230, 235
class, 222–224

Index

449

Object-oriented programming (Cont.)
class definition, 223–224
class implementation, 223–224
CONSTRUCTOR, 236
CREATE OBJECT, 224
CREATE PUBLIC, 243
EXPORTING, 230, 234
FINAL, 243
global classes, 241–242, 263
IMPORTING, 230, 233
INHERITING FROM, 239
method, 221, 226, 228
method chaining, 232
object, 221
OO-ABAP, 220
OPTIONAL, 233
private section, 225
protected section, 225, 240
public section, 225
READ-ONLY attributes, 226
recursion, 237
REDEFINITION, 240
RETURNING, 230–231
returning parameters, 236
subclass, 239
superclass, 239
TYPE REF TO, 224

One-to-many relationship, 104
One-to-one relationship, 104
Open SQL, 149

MODIFY, 184
Optimistic lock, 171
Origin of the input help, 112

P

Package, 109
Packed numbers, 48
PARAMETER, 65–66, 69

AS CHECKBOX, 70
AS LISTBOX VISIBLE LENGTH, 70
LOWER CASE, 287
OBLIGATORY, 70, 291
RADIOBUTTON GROUP, 70,

287, 291

Parameter ID, 132
Pooled tables, 108
Primary key, 101, 111, 282
Procedural programming, 218
Program attributes

authorization group, 42
editor lock, 42
fixed point arithmetic, 42
logical database, 42
selection screen, 42
start using variant, 42
status, 42
unicode checks active, 42

Program lifecycle events, 75
Promote optimistic lock, 171
Pseudocode, 283

Q

Quantities, 341
QUAN, 342
UNIT, 342
UNIT_CONVERSION_SIMPLE, 344

R

RAISE, 387
RAISING, 381–382
Ranges, 168
READ TABLE, 190, 210

ASSIGNING, 190–191
BINARY SEARCH, 202
hashed table, 206
INDEX, 191
INTO, 190–191
WITH KEY, 207
WITH TABLE KEY, 192

Relational Database Management
System (RDBMS), 100

REPORT, 40, 44, 75, 77

S

S/4 HANA, 22
SAIRPORT, 106

Index

450

SAP BASIS, 28, 34
SAP Cloud Application Library, 396

Amazon Web Services, 396
Microsoft Azure, 396
trial system, 395

SAP ERP, 21
SAP Fiori, 27
SAP GUI, 23

application toolbar, 24
breakpoints, 83
developer user menu, 26
favorites menu, 25
system information, 26
toolbar, 24

SAP HANA, 22, 27
SAP NetWeaver, 22
SAP NetWeaver Business

Client, 23, 27
SAP Transport Management

System, 31
SAPBC_DATA_GENERATOR, 118
SAPBC_DATAMODEL, 106
SBOOK, 107
SCARR, 107
Scope, 171
SCUSTOM, 106
Search help, 113
SELECT, 151, 179, 285

*, 152
INTO TABLE, 151

SELECT SINGLE, 153
SELECT...UP TO n ROWS, 155
SELECT…ENDSELECT, 181
Selection screen, 167, 291
Selection screen keywords, 65
Selection text, 74, 287, 292
SELECTION-SCREEN, 65

BLOCK…WITH FRAME TITLE, 291
SELECT-OPTIONS, 65–66, 72, 112,

167
High, 168
Low, 168
Option, 168

Separation of concerns, 217
Sessions, 24

SFLIGHT, 107, 109
append structure, 119
primary key, 111
view data, 116

Shared lock, 171
Short form

[], 215
LOOP AT, 215
OCCURS, 215
READ TABLE, 215
WITH HEADER LINE, 215

Short form open SQL, 181
Sign, 168
Single quotes, 44
Single records buffered, 179
Size category, 127
Space category, 116
SPFLI, 107
START-OF-SELECTION, 75

Event, 76
String, 49–51, 66, 68–72, 75

ALIGN, 301
chaining strings, 301
concat_lines_of, 303
CONCATENATE, 316
CONDENSE, 303
DECIMALS, 302
SIGN, 301
string functions, 302
string literals, 299, 305
string template, 300
strlen, 302
substring, 303, 330
substring_before, 303
substring_from, 303
substring_to, 303
timestamp formatting, 340
WIDTH, 301

Structure, 143, 156, 188–189
Subroutines, 257

Form, 257
parameters, 258
PERFORM, 257

sy-subrc, 193, 363, 387
sy-tabix, 193–194

Index

451

T

Table
custom transparent, 122
normalized, 107
technical settings, 114
view single row, 153

Table column, 111
Table configuration, 109
Table locks, 170
Table type, 143, 153, 186, 210
TABLES, 181
Technical settings, 115, 127, 274, 279
Text symbols, 67, 287, 292, 304, 317

comparison, 305
translation, 309, 318

Third normal form, 102
table, 103

Transactions, 24
OB08, 345, 347
OY03, 345
SE11, 109, 117, 122, 136, 138, 141,

143, 145, 172, 174, 210, 266,
268, 271, 274, 276, 319–320,
342, 346, 349

SE16, 116
SE38, 118
SE63, 322
SE63 Translation editor, 312
SE80, 280
SE80 ABAP Workbench, 40
SE80, create new program, 40
SE80, create program, 40
SE80, format code, 62
SE80, form-based view, 245
SE80, IDE settings, 44
SE80, source code view, 245
SE91, 364
SM30, 141, 143
SM37, background job selection, 30
ST22, 375

Transactions (Cont.)
STMS, transport management

system, 32
Transparent Table, 97–98, 101, 108,

122, 156, 188–189, 262–263
create data element, 133
Currency/Quanity Fields, 342, 346
data elements, 130

TYPE, 46, 53–54, 57–61, 63, 66,
68–72, 75, 77, 185

U

UML, 264, 280
UPDATE, 158
User Interface (UI), 65

V

Value range, 137, 139
Variable, 46

assign value to, 52
chain together, 46
naming, 47

W

Watchpoints, 77, 88
WHERE, 155, 165
WHERE IS NULL, 165
WHERE..IN, 167
WHILE Loops, 60
Whitespace, 53
Wireframe, 264, 286, 290
WRITE, 44, 57–61, 72, 76, 78

Hello World, 44

Z

ZBOOK, 107
Zero-to-many Relationship, 104
Zero-to-one Relationship, 104
ZSBOOK_SFLIGHT, 107

First-hand knowledge.

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

Brian O‘Neill is an ABAP developer with experience
working across different SAP ERP modules and custom
applications. He has worked in a variety of IT positions,
from business analyst to ABAP developer. He is cur-
rently writing applications that can connect to an SAP
backend using SAP Gateway. He holds a bachelor’s
degree in Computer Information Systems from Califor-

 nia State University.

Brian O‘Neill

Getting Started with ABAP
451 Pages, 2016, $49.95/€49.95
ISBN 978-1-4932-1242-2

 www.sap-press.com/3869
 © 2016 by Rheinwerk Publishing, Inc. This reading sample may be distributed free of charge. In no way must the file be alte-
red, or individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.

http://www.sap-press.com/3869

