
Cecil Rupp
Foreword by Manjit Singh (President and CEO, Agilious LLC)

Scaling Scrum Across
Modern Enterprises

Implement Scrum and Lean-Agile techniques across
complex products, portfolios, and programs in large
organizations

Cecil Rupp

BIRMINGHAM—MUMBAI

Scaling Scrum Across Modern Enterprises
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Alok Dhuri
Senior Editor: Rohit Singh
Content Development Editor: Kinnari Chohan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shankar Kalbhor

First published: August 2020

Production reference: 1280820

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-647-3

www.packt.com

http://www.packt.com

To my dear wife, Carolyn, who has stood by my side and patiently
supported the countless hours I have had to commit to research and writing.

Without her support, this work would not have been possible. And, to the
loving memory of my parents who instilled in me the values of human

decency, hard work, and carrying through a task to its completion.

– Cecil Rupp

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Foreword
As an agile practitioner since 2000, I have read hundreds of books on Agile and Lean:
books that talk about benefits of Agile and Lean; books that describe one or more Agile
frameworks or Lean practices. What I always found to be lacking was a single book that
presents the entire landscape of Agile and Lean methods. This book, Scaling Scrum Across
Modern Enterprises, is the answer!

Cecil "Gary" Rupp is the author of two other recently released books, SDLC Foundations
and Tools and Templates, which are part of his Building Our Digital World Series. Gary
has done it again! Gary has years of experience of using Agile and Lean methods in
information technology consulting, professional services, and executive management
roles. Scaling Scrum Across Modern Enterprises does an amazing job of presenting the
history of Agile methodologies, Lean development, and systems thinking.

As an Enterprise Agility Coach, I have helped customers improve their organizational
agility. I have led the evolution of organizations from individuals seeking better ways
to deliver products, to small cross-functional teams, to teams of teams with the same
purpose in mind.

I have seen first-hand how individuals, team members, and executives struggle with
understanding the various Lean frameworks. Further, leaders are looking for answers
and a path toward scaling agility. This book provides a comprehensive introduction to
and comparison of modern Scrum and Lean-Agile scaling strategies. It demonstrates that
modern Scrum and Lean-Agile practices are not just about improving agility in software
development, but also about achieving enterprise-wide business agility.

This book provides guidance on how modern scaled Scrum and Lean-Agile approaches
help improve business agility across the most challenging organizational structures,
product teams, portfolios, and programs. Gary articulates the most important aspects of
Agile and Lean that are often overlooked by organizations. This is definitely a must-read
for leaders in organizations that are serious about their commitment to scaling agility.

Manjit Singh

President and CEO

Agilious LLC

People.Powered.Agility.

Co-author of the book The Lean Playbook: Build a Lean Organization Yourself

Contributors

About the author
Cecil Rupp brings more than 30 years of practitioner and executive-level experience
in applying the methods and tools of information technology (IT) for software
development. His roles span IT professional services, management, business process
re-engineering consulting, product management, sales, and marketing.

In addition, Mr. Rupp has directly managed more than 30 enterprise-class IT programs
and projects, with the last 15 years focused almost exclusively on supporting large federal
and commercial health IT programs. He is also the author of the Building our Digital
World (BODW) series of books on software and systems development practices.

From the beginning, I wanted to make sure that I accurately represented
the Scrum and Lean-Agile approaches described in this book, and I

reached out to the experts to get their input. There are also permissions
that must be sought out and granted. So many folks were kind enough to

help, and I want to thank all the people who responded back to my queries,
read through the sections relevant to their respective disciplines, and who
were kind enough to help me with their permissions and to provide their

feedback. All of their efforts helped make this a better product.

Especially, I'd like to thank the following for their contributions to reviewing
and providing feedback on the content relevant to their disciplines:

Jeff Sutherland – Scrum, Scrum of Scrums, Scrum@Scale

Kurt Bittner and Patricia Kong – The Nexus Framework

Craig Larman and Bas Vodde – Large-Scale Scrum

Scott Ambler – Disciplined Agile

Michelle Stoll – Scaled Agile Framework (SAFe)®

Peter Antman and Henrik Kniberg – Minimum Viable Bureaucracy

About the reviewer
Steve Jablonski is a managing director of technology risk for a large financial services
firm. He has over 25 years of technology experience in software development, database
administration, project and program management, cybersecurity, governance, and risk
management. Steve holds a Master's in Business Administration from the University of
Colorado Denver and resides in Littleton, Colorado with his wife, Julie, their two children,
and two dogs that enjoy barking and chasing squirrels.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface
Section 1:
Scaling Lightweight Scrum into a Heavyweight Contender

1
The Origins of Agile and Lightweight Methodologies

Understanding what's wrong
with the traditional model 24
Moving away from the
traditional model 30
Adaptive Software Development (ASD) 31
Crystal Clear 32
Extreme Programming 35
Feature-Driven Development (FDD) 37
ICONIX 38
Rapid application development (RAD) 40
Scrum 41

Defining Agile's core
implementation concepts 44
Backlogs 44
Co-location 45
CI/CD pipelines 45
Continuous Integration 46
Cross-functional 48
Customer-centric 48
Iterative and Incremental

Development (IID) 48
Pair programming 49
Potentially shippable products 49
Prototyping 50
Retrospectives 50
Safety 51
Self-organizing 51
Small teams 51
Source Code Management (SCM) 52
Stories 52
Sustainable workflows 53
Testing (test-driven and automated) 53
Tools 54

Appreciating the importance of
Agile's values and principles 56
Building on a movement led by
engineers 56
Summary 57
Questions 58
Further reading 59

Table of Contents

2
Scrum Beyond Basics

Mastering Scrum 62
Applying a sports metaphor 63
Scrumming in a software development
context 64
Becoming the de facto standard 64

Requiring executive sponsorship 65
Implementing small teams 67
Establishing a proper work environment 68

Putting the focus on products 68
Forming Scrum Teams 69
Providing access to specialized skills 70
Implementing multiple Scrum Teams 71
Supporting non-development activities 71
Evolving Scrum Team formations 72

Identifying roles and
responsibilities 72
Product Owners 73
Developers 74
Scrum Masters 77

Leveraging empirical process
control theory 79

Establishing Scrum's core values 81
Partial Scrum is not Scrum 81
Revising your contracts 82
Making Scrum visible and transparent 83
Treating Scrum development as a fixed
cost 85
Thrown objects don't stick 86

Defining Scrum Events 87
Sprints 88
Sprint Planning 89
Daily Scrums 92
Sprint Reviews 93
Sprint Retrospectives 94

Implementing Scrum Artifacts 95
Product Backlog 95
Sprint Backlog 97
Increments 98

Summary 98
Questions 99
Further reading 100

3
The Scrum Approach

Scrum as a framework 102
Guiding the flow of work in
Scrum 103
Establishing the product vision 104
Implementing iterative and
Incremental
development cycles 105

Conducting Product Backlog refinement 105
Creating User Stories 106
Identifying a definition of Done 106
Establishing Sprint Goals 107
Conducting Sprint Planning meetings 108

Initiating development work 108
Conducting Daily Scrums 109
Conducting Sprint Reviews 110
Conducting Sprint Retrospectives 111
Releasing potentially shippable
products 111

Identifying how Scrum can
break down 112
Lacking executive sponsorship 112
Failing to obtain buy-in 113
Lacking an agile mindset 114
Failing to invest 116
Lacking effective communications
programs 116
Failing to educate 117

Failing implementations of
Scrum 117

Adding roles that are not part of Scrum 118
Focusing on the wrong product
backlog items 118
Allowing inappropriate priorities 119
Directing instead of leading 120
Performing non-value-added activities 122
Allowing team burnout 123
Failing to provide full transparency 124
Continuing development beyond
economic value 125
Failing to support market segment
opportunities 126
Pushing deliveries beyond capacities 128
Failing to work as a team 128
Failing to evolve the product
Incrementally 129

Summary 130
Questions 131

4
Systems Thinking

Applying systems thinking 135
Benefitting from interdisciplinary
studies 135
Understanding integrated circuit
board manufacturing 136
Adding layers increased defects 137
Evaluating the manufacturing facility
and processes as a system 137
Fixing a broken system 138
Netting out the problems 138
Addressing causes and effects 139

Thinking holistically 140
Visualizing causes and effects 142
Understanding the concepts and
vocabulary of systems thinking 142
Causal modeling of a single-element
system 144

Causal modeling of a basic Scrum
Team system 145
Implementing feedback loops 145

Supporting Agile working
through systems thinking 147
Diagramming causal linkages in Sprint
Planning 147
Modeling the requirements flow 147
Modeling Product Backlog refinement 148
Modeling design and task clarifications 149
Modeling sprint capacity assessments 150
Modeling sprint negotiations and
tradeoffs 151
Putting it all together 153

Applying systems thinking to
large, complex, and integrated
products 154
Putting the focus on products, not
projects 154

Modeling project-to-product
team transformations 156
Modeling a burning platform situation 157
Modeling Scrum scaling activities 158
Modeling the development of the
Product Backlog and rolling out Scrum
Teams 159
Modeling the rollout of Scrum in a
large product environment 160

Applying systems thinking to
enterprise implementations of
Scrum 162
Modeling the business drivers

affecting business transformation
decisions 163
Modeling the impact of resources to
remove organizational impediments 164
Modeling the impact of Scrum Team
needs assessments 164
Modeling the elements supporting
Scrum events and Scrum Team
deployments 166
Modeling the elements that close the
loop to address business drivers 167
Modeling the entire enterprise Scrum
transformation 168
Modeling delays between enterprise
Scrum transformation elements 169

Review of CLD patterns 170
Summary 170
Questions 171
Further reading 172

5
Lean Thinking

Understanding the basics of
Lean Thinking 175
Classifying types of waste 175
Introducing the foundational
principles behind
Lean Thinking 176
Profiting from Lean practices 179
Determining value 180

Understanding the value stream 182
Identifying and improving flows 184
Changing from Push to Pull 194
Seeking perfection 196

Summary 200
Questions 201
Further reading 201

6
Lean Practices in Software Development

Applying Lean principles to
software development 205
Leaning on principles 205
Adding value 207

Achieving continuous
improvements (Kaizen) 209
Developing good practices 209
Leveraging the 80/20 rule 210
Avoiding radical change 210
Documenting good practices 211
Starting with a focus on achieving
stability and predictability 212
Measuring improvements 212
Continuing to improve through
refinement 214
Applying visual controls to manage
intake and flows 214

Building in quality 216
Testing incrementally 216
Refactoring software code 217

Delaying decisions and
commitments 218
Detecting defects through
automation (Jidoka) 218
Eliminating mistakes (Poka-
Yoke) 219
Eliminating waste 219

Waiting 220
Overproducing 220
Extra or non-value-added processing 221
Transportation 223
Motion 223
Inventory 224
Defects 224

Ending multitasking/task
switching 225
Practicing Gemba 226
Implementing single-piece flows 227
Improving knowledge 228
Leveling production (Heijunka) 229

Optimizing the whole 229
Failing through suboptimization 229
Pushing software products through
development 230
Waterfalling is suboptimizing 232
Changing from project to product-
oriented development 232

Producing just-in-time (JIT) 233
Rejecting unfinished work 233
Respecting people 234
Summary 235
Questions 236
Further reading 236

Section 2:
Comparative Review of Industry Scaled Agile Approaches

7
Scrum of Scrums

Original Scrum scaling concepts 242
Scaling with the SoS 243
Understanding the basics 243
Designating Ambassadors 245
Eliminating network density 245
Building on Scrum 246
Supporting Scrum of Scrums meetings 247
Coordinating and integrating work 247
Establishing useful metrics 248
Answering contextually useful
questions 249

Scaling SoS 250
Method one – building on a foundation
of success 250
Method two – starting with big things
in mind 254
Method three – Scrum CoE 264

Identifying Scrum CoE benefits 268
Building organizational skills and
expertise 268
Eliminating waste while adding value 269
Developing useful information radiators 269
Fulfilling compliance requirements 269
Providing I.T. Governance 270
Identifying and mitigating risks 271
Determining portfolio investment
strategies 271
Establishing CoPs 272

Avoiding CoE failures 272
Building effective CoEs 274
Evaluating best fits 275
Summary 276
Questions 277
Suggested reading 278

8
Scrum@Scale

Coordinating multiple Scrum
Teams 282
Defining the S@S use case 283
Overcoming Brooks's Law 283
Repeating structural patterns 284
Minimizing bureaucracy 284
Networking concepts and metaphors 285
Nothing scales 288

Implementing scale-free Scrum
architectures 288
Scaling Scrum with S@S 290
Installing SoS artifacts, roles, and
events 290
Applying an Agile operating system 291
Leveraging Scrum's team process 292

Optimizing Scrum and SoS Teams
around sets of fives 292
Leveraging pentagonal structures, ad
infinitum 294

Facilitating SoS events 295
Coordinating the what and the how 296
Intersecting the PO and SM cycles 296

Installing executive leadership 298
Executive Action Team 299
Executive MetaScrum Team 301

Building healthy organizations 303
Summary 305
Questions 306
Further reading 307

9
The Nexus Framework

Building on Scrum 310
Connecting multiple Scrum Teams 310
Scaling Scrum Teams within a Nexus 311
Establishing the Nexus foundation 311

Reviewing the Nexus
Framework 312
Defining Nexus roles 313
Creating Nexus artifacts 313
Implementing Nexus events 314
Understanding the Nexus process flow 314

Learning the basics of Nexus 316
Defining a Nexus 316
Establishing a NIT 316
Organizing and resourcing a NIT 318
Making work and value transparent 319
Creating transparency with Nexus
artifacts 321

Conducting a Nexus Sprint 323
Maintaining flow with Nexus events 323
Organizing Nexus Sprint reviews 330

Improving through Sprint
retrospectives 331
Defining "Done" in a Nexus 334

Getting into the details 334
Building products, not running projects 334

Establishing value 335
Keeping things simple 335
Staying small 335

Extending Scrum to form a
Nexus 336
Creating a Nexus 337
Planning a Nexus Sprint 340
Building products incrementally 350
Measuring and judging velocity 351
Earning continued support 354

Evaluating best fits 355
Summary 356
Questions 357
Further reading 358

10
Large-Scale Scrum (LeSS)

Introducing Large-Scale Scrum
(LeSS) 360
Focusing on systems thinking
and organizational design 362
Building on Scrum 363
Leveraging LeSS principles,
roles, guides, and
experimentation 364
Applying LeSS principles 365
Implementing LeSS rules 366
Employing LeSS guides 366
Understanding experimentation 367
Revisiting Shu-Ha-Ri 367

Implementing the LeSS and
LeSS Huge Frameworks 368

Implementing the LeSS Framework 368
Understanding LeSS roles 369
Understanding LeSS artifacts 373
Understanding LeSS events 373
Implementing the LeSS Huge
Framework 382

Adopting the LeSS Frameworks 395
LeSS adoption rules 395
LeSS adoption guides 396
LeSS Huge adoption rules 397
LeSS Huge adoption guides 398

Evaluating best fits 399
Summary 400
Questions 401
Further reading 402

11
Disciplined Agile

Determining your way of
working 404
Finding context 405
Mindset 406
People 407
Deciding life cycle flows 419
Providing industry-proven practices 428

Tooling your WOW 430
Using Process Goal Diagrams 430

Choosing your level of agility 432
Scaling Disciplined Agile 434
Building on a solid foundation 434
Installing Disciplined DevOps 435

Adding value streams 438

Putting it all together 444
Initiating your DA teams 444
Creating business value 445
Going into production 446
Sustaining and evolving your teams 447

Lean Governance and
Milestones 448
Best fits 449
Summary 451
Questions 451
Further reading 452

12
Essential Scaled Agile Framework® (SAFe®)

Becoming SAFe 455
Integrating Lean and Agile
development concepts 455
Leveraging economies of scale 456
Building cyber-physical systems 456
Building large software products with
SAFe 457
Limiting factors when scaling Scrum 457
Expanding agility on an enterprise scale 459

Improving business agility on
an enterprise scale 460
Implementing a dual operating system
for
business agility 462
Establishing a Lean-Agile mindset 463
Building on the four core values of SAFe 464
Developing the seven core
competencies 466

Taking the train 469
Building on cadence, releasing on
demand 470
Scaling small Agile teams 471
Scaling roles and responsibilities 472

Configuring SAFe® 472
Building on Essential SAFe 473
Purpose of Essential SAFe 474
Elements of Essential SAFe 474

Developing core competencies 475
Defining roles and
responsibilities 476

Conceptualizing essential team
responsibilities 476

Installing Lean-Agile practices 481
Building value with customer centricity 482
Thinking about design 482
Managing via Kanbans 483
Integrating Scrum with XP 484
Establishing backlogs 484

Maintaining flow 484
Maintaining cadence via PI 485
Planning PIs 486
Maintaining continuous delivery
pipelines 487
Riding on the ART 488
Scaling with ARTs 489
Leveraging Dunbar's Number 491
Going beyond Dunbar's Number 491

Establishing a solution context 492
Understanding the solution context 493
Developing solution intent and
solution context 494

Breaking down silos with
DevOps 495
Building in quality 495
Remaining Essential SAFe
artifacts 496
Evaluating best fits 496
Summary 497
Questions 498

13
Full Scaled Agile Framework® (SAFe®)

Scaling with Large Solution
SAFe® 501
Scaling with Solution Trains 502

Core competencies supporting
Large Solution SAFe® 503
Distinguishing Large Solution SAFe®
roles and responsibilities 503

Elements of the Large Solution
SAFe® configuration 504
Building the Solution Intent 504
Establishing and refining the Solution
Backlog 505
Weighted Shortest Jobs First 506

Riding on the Solution Train 507
Coordinating trains and teams 508

Remaining Large Scale SAFe®
artifacts 510
Managing investment risks with
Portfolio SAFe® 512
Applying Lean principles to Portfolio
Management 513

Defining Portfolio SAFe® roles
and responsibilities 513
Elements of Portfolio SAFe® 515
Connecting portfolios to strategy 516

Implementing a Portfolio Vision 516
Lean Portfolio Management (LPM) 517
Governing Lean Portfolios 517
Decentralizing Portfolio Operations 517
Leveraging portfolio-level Kanbans 518
Defining epic portfolio objectives 518

Creating Portfolio Backlogs 519
Marshaling investments across
planning horizons 519
Delivering the highest value across
program increments 520

Establishing Lean Budgets 520
Harnessing participatory budgeting
practices 521
Implementing guardrails 522

Supporting value streams 522
Monitoring value stream Key
Performance Indicators (KPIs) 524

Achieving Full SAFe® 526
Following the SAFe®
Implementation Roadmap 527
Evaluating best fits 529
Questions 531
Further reading 531

Section 3: Implementation Strategies

14
Contrasting Scrum/Lean-Agile Scaling Approaches

Assimilating capabilities 536
Maximizing value 536
Building unanimity through
options 537
Revisiting module one 538
Revisiting module two 539
Staying true to Scrum 539
Leveraging Lean-Agile practices 540

Revisiting Scrum and Lean-Agile
strategies 541
Selecting based on context 543
Implementation of the Scrum
framework 544
Implementation of Systems Thinking 545
Implementation of Lean development 545
Guidance on business drivers 547
Overcoming cultural influences 548

Software development support 549
Implementation of Portfolio
Management 550
Implementation of Product
Management 551
Implementation of DevOps 551
Generalized development-oriented
practices 553
Team integration, synchronization,
and coordination 554
Roadmaps to scaling 555
Guidance on government and highly
regulated industries 556

Side-by-side comparison of all
assessment criteria 557
Summary 558
Questions 559
Further reading 559

Assessments

Chapter 1 – Origins of Agile and
Lightweight Methodologies 561
Chapter 2 – Scrum Beyond
Basics 562
Chapter 3 – The Scrum
Approach 564
Chapter 4 – Systems Thinking 565
Chapter 5 – Lean Thinking 568
Chapter 6 – Lean Practices in
Software Development 569
Chapter 7 – Scrum of Scrums 571
Chapter 8 – Scrum@Scale 572

Chapter 9 – The Nexus
Framework 574
Chapter 10 – Large-Scale Scrum
(LeSS) 575
Chapter 11 – Disciplined Agile
(DA) 577
Chapter 12 – Essential Scaled-
Agile Framework (SAFe®) 578
Chapter 13 – Full Scaled-Agile
Framework (SAFe®) 580
Chapter 14 – Contrasting
Scrum/Lean-Agile Scaling
Approaches 581

Other Books You May Enjoy
Leave a review - let other readers know what you think 587

Index

3
The Scrum Approach

The previous chapter introduced the fundamental elements of Scrum, including the
importance of executive sponsorship, putting a focus on products, forming Scrum Teams,
and identifying Scrum roles and responsibilities, events, and artifacts. This section puts
these concepts into play across a Sprint development cycle.

As you read through this section, please refer to Figure 3.1 – Scrum-based iterative and
Incremental development cycle, which provides a graphical view of the basic flow of work
within the Scrum framework. As defined in The Scrum Guide, the Scrum events that
define a Scrum workflow include Sprint, Sprint Planning, Daily Scrum, Sprint Review,
and Sprint Retrospective. Figure 3.1 includes additional elements not included in the
Scrum Guide, but they provide useful contextual information across the Sprint cycle.

In this chapter, we're going to cover the following main topics:

• Guiding the flow of work in Scrum

• Initiating development work

• How Scrum can break down

• Identifying how Scrum can break down

• Failing implementations of Scrum

102 The Scrum Approach

Specifically, we are going to put all of the concepts you've learned in the previous
chapter together to outline the basic approach to developing a product under the Scrum
framework. In this chapter, you will learn how Scrum events enforce the iterative and
Incremental workflows of Scrum.

Scrum as a framework
Before we start the discussion on Scrum workflows, we need to understand the
ramifications of Scrum being a framework and not an overly prescriptive methodology.
In this section, you will learn how to apply the basic Scrum approach to agile as
a framework and not an overly prescriptive methodology. By describing Scrum as
a framework, the implication is that Scrum is a container that provides only minimal
guidance on baseline practices, rules, artifacts, and events. The objective of the Scrum
philosophy is to keep the essential framework lightweight and relatively simple to
understand. Even then, Schwaber and Sutherland note, in The Scrum Guide™, that Scrum
is still challenging to master.

Since Scrum is a framework, those who implement Scrum are free to include other
business and engineering practices that support their approach to software and systems
development. The framework concept is critical to understand as the intent of Scrum is
to apply agile practices and empirical process control theories to resolve complex adaptive
problems across any type of development or operational requirement. However, each
organization and their Scrum Teams must choose the life cycle development and delivery
practices that best support their needs in the moment.

For example, your development team may use different software tools than other
development teams and therefore require a different set of lower-level activities and best
practices surrounding the use of those technologies. Likewise, your team may choose
to implement test-driven development or model-driven development concepts within the
framework of Scrum. Also, your team may implement variants for testing your software,
based on the complexity and scale of the code you are developing. More importantly,
as your team works together over time and continues to seek constant improvements,
you may develop a set of best practices within the Scrum framework that are unique
to your team.

As with any development methodology, there is a flow to working within Scrum. The
events and artifacts within the Scrum framework support empirical process control
through transparency, inspection, and adaptation. But the events and artifacts of Scrum
also provide guide rails that constrain work within the iterative and Incremental Sprints
of Scrum. The remaining sections of this chapter explain the basic flow of work across
each Sprint.

Guiding the flow of work in Scrum 103

Guiding the flow of work in Scrum
The typical flowchart for Scrum looks quite different from traditional linear-sequential
flowcharts of waterfall practices, in part due to the iterative nature of agile-based
development practices (see Figure 3.1 – Scrum-based iterative and Incremental
development cycle). Please refer to the following diagram to see the visual representation
of the flow of work within each Scrum Sprint:

Figure 3.1 - Scrum-based iterative and Incremental development cycle

At the start of a Scrum project, the Product Owner must establish the vision for the
product and create the initial product backlog of identified requirements. The vision
holds until business or market conditions change sufficiently to warrant a revision. The
Product Owner and Scrum Team continuously refine the product backlog to ensure the
development activities stay in alignment with the highest value customer priorities.

Once the Scrum project kicks off, the basic flow of work within each Sprint iteration
follows this basic pattern:

• Begin a new Sprint.

• Refine the product backlog.

• Determine the Sprint's goal.

• Plan the work.

• Develop the Sprint backlog.

104 The Scrum Approach

• Conduct Daily Scrum meetings.

• Conduct a Sprint Review.

• Conduct a Sprint Retrospective.

In the remaining sections within this chapter, we will take a deeper dive into each of these
Scrum events.

Establishing the product vision
Product development cannot begin until the vision for the product is conceived and
articulated. The vision establishes the boundaries of a product. In other words, the vision
specifies what's in and what's not in a product.

The vision of the product is not a statement of what it is but what it can be. The product
vision refines our understanding of who our customers are and what value we will
deliver to them. Moreover, the product vision represents a shared though high-level
understanding of our value proposition.

A value proposition is a powerful approach to determining whether or not a new product
or service is commercially viable. The information provided in a value proposition
typically includes the following:

• Product name and description

• Target market customers

• Challenges or needs addressed

• Capabilities delivered

• Benefits from use

• Competitive advantages

Once the Product Owner establishes the vision for a product, the Sprint iterations
can begin.

Guiding the flow of work in Scrum 105

Implementing iterative and Incremental
development cycles
Scrum implements an iterative and Incremental development process that starts with
a product concept and vision and then Incrementally adds value through a series of
iterative life cycle development workflows. Common with all agile practices, Scrum breaks
the product development life cycle into a series of very short and frequent iterations. The
objective of each Sprint iteration is to release a new Increment of functionality. Therefore,
each Sprint in Scrum represents one iterative and Incremental development cycle.

All Scrum Teams follow the same iterative development cycles. In other words, the
scheduling of Sprints across Scrum Teams should not be staggered. They are all
contributing collectively to the creation of a potentially shippable product, contributing to
the same Sprint Goals and all working toward the same definition of Done for the Sprint.

The Product Owner works with the Scrum Team members to prioritize and select
high-value items from within the product backlog that contribute to a specific goal
defined for the Sprint. This collaboration to prioritize and select items for upcoming
Sprints is called product backlog refinement.

Conducting Product Backlog refinement
Through the process of product backlog refinement, the Product Owner works with
the development team members to prioritize the development of features and functions
with the highest value. The product backlog refinement process creates and finds the
product backlog.

Product owners must determine the highest value features and functions that their
product customers and users need. They must also work with the developers to determine
the costs associated with developing and delivering new Increments of functionality. Also,
there are technical requirements that support the implementation of user requirements.
These technical considerations become part of the cost and timing factors associated with
developing new product features.

As these factors come together for the highest value features, the Product Owner is in
the position to prioritize the items in the product backlog. Following the concepts of
the 80/20 rule, the Product Owner and Scrum development team members should not
spend much time assessing the work involved to develop lower value features. Some of the
lower value items may raise in relative value with the completion of higher value items or
through emergent customer needs; but, until they do, the team should not spend much
time assessing the work or scoping the requirements.

106 The Scrum Approach

As part of the product backlog refinement process, the team must analyze each identified
requirement to the degree that is necessary to understand the scope of work. There
are many approaches to gathering, documenting, and analyzing software and systems
requirements. However, within the agile community, the typical approach is to document
requirements from the end user's perspective in a story format.

Creating User Stories
The Scrum Guide does not define User Stories as an artifact within Scrum. Kent Beck
defined the term and this approach to requirements gathering in his book, Extreme
Programming Explained.

Nevertheless, Stories are commonly used in Scrum as a natural language format to
document customer and end user requirements. Likewise, themes and epics are not
Scrum artifacts. However, Stories, themes, and epics are all commonly used within
the Scrum framework to characterize and refine items within the product backlog.
Collectively, these three classifications provide an efficient approach to documenting and
organizing requirements as items within the product backlog.

In the context of Product Backlog refinement, User Stories provide the lowest level
of abstraction necessary to define and prioritize work for an upcoming Sprint. During
the refinement process, the Scrum Team collects additional information to understand
the scope of work that's required. The refinement is complete when the Product Owner
and Scrum Team can agree on a definition of Done for each item in the backlog.

Identifying a definition of Done
Another critical element of product backlog refinement is to ensure the team establishes
a definition of Done for each product backlog item worked within the Sprint. Those who
are more familiar with the traditional development model can think of the definition
of Done as being analogous to acceptance criteria. In either case, both concepts share
common characteristics, such as the following:

• Each requirement should have clear and concise descriptions of what good looks
like when correctly implemented.

• The results of the requirement should be testable.

• Everyone on the team needs to understand the requirement.

• Requirements define capabilities that satisfy customer needs and objectives.

Guiding the flow of work in Scrum 107

The definition of Done is situational to every product backlog item, refined by the
Scrum Team members, and ultimately approved by the Product Owner. They must have
a common understanding of what good looks like when a feature or function is fully
installed and tested in the software or system. Also, there cannot be any bugs in the new
code or the integration of the new code with the existing code.

In the last three subsections, you've learned how to refine a product backlog, develop
User Stories that further refine the development team's understanding of individual
requirements, and specify definitions of Done to help to ensure fulfillment of each backlog
requirement. But we also need a method to decide what items within the product backlog
should be considered for development within an upcoming Sprint. This process starts with
the definition of a Sprint Goal.

Establishing Sprint Goals
Through the Sprint refinement and planning processes, the Product Owner and Scrum
Team establish objectives for each Sprint in terms of the implementation of items from the
product backlog. The Product Owner and the Scrum Team negotiate objectives and goals
for the Sprint. While the Product Owner is accountable for establishing priorities, only the
Scrum Team can commit to the work they can accomplish within each Sprint.

Sprint Goals are abstractions that sit above the level of User Stories and work tasks. Let's
take a closer look at what I mean by this. If we are building an ATM banking application,
we might have a Sprint Goal to build and test a set of features that allow bank withdrawals
at an ATM. In this context, we might have two primary User Stories:

• "As a user of the ATM banking application, I want to see my account balance when
I log in so that I know whether I have sufficient funds to withdraw money for my
personal needs."

• "As the user of the ATM banking application, once I see my available balance, and
assuming I have sufficient funds, I want to be able to withdraw as much as $250 from
the ATM."

The Scrum Team defines the work tasks necessary to build these two features within the
ATM application. Now the devil is always in the details, and there may be any number
of other capabilities that might logically fit and support these two user requirements, such
as having the ability to transfer funds between accounts before making a withdrawal and
the ability to review pending withdrawals.

108 The Scrum Approach

The Scrum Team negotiates with the Product Owner to determine which ancillary
capabilities are of high value and critical for this release, constrained by the amount
of work the Scrum Team can complete during the Sprint. Once they agree, the Scrum
Team commits to deliver the negotiated and agreed features and ancillary capabilities
within the Sprint.

Much of the work described so far is completed as part of the Sprint Planning event.
Also, to the maximum extent possible, most Sprint Planning work is completed within
a timeboxed Sprint Planning meeting, as described in the next section.

Conducting Sprint Planning meetings
At the start of the project and the start of each new Sprint, the development team
analyzes the highest priority items or stories in the product backlog to identify the
deliverable items within an upcoming Increment and how they will go about doing the
work. This activity is referred to as Sprint Planning and is the first event scheduled within
each Sprint.

The outputs of the Sprint Planning meeting and subsequent breakout sessions include
a subset of product backlog items consistent with the Sprint Goals. The Scrum Team
refines the agreed definition of Done and creates a list of work tasks and work assignments
that are necessary to start building a new Increment of functionality. The sum of the
identified work tasks forms the Sprint Backlog, which is necessary before development
work can begin in the Sprint.

At the end of each Sprint Planning event, the team should be able to explain the following
to both the Product Owner and Scrum Master:

• The Increment of new functionality required to support the Sprint Goal

• The scope of work the Scrum Team expects to accomplish over the Sprint

• A clear explanation of how the team intends to self-organize and allocate their work

At this point, the team is ready to begin working on developing the new Increment.

Initiating development work
All development work in Scrum must fit within timeboxed development iterations that
have consistent durations, limited to a period of 1 to 4-week cycles called Sprints. The
output of a Sprint is an Increment of functionality that meets the definition of
Done, is useable without additions or modifications, and is, therefore, a potentially
shippable product.

Initiating development work 109

With the definition and refinement of the Sprint Backlog, the development team
immediately gets to work starting to build the new Increment of functionality, consistent
with the Sprint Goals. Ideally, the teams complete all identified work before the Sprint
duration ends, and all completed work complies with the definition of Done.

Recall that Scrum is a framework that serves as a container for other engineering
processes. Therefore, test-driven development, continuous integration, and automated
testing all logically fit within the Scrum framework and help to ensure the quality of
the software.

The Scrum artifacts created and refined within a Sprint include the product backlog and
Sprint Backlog discussed in previous sections of this chapter and Increments. The term
Increment represents the functionality and value of the product in its current state. An
Increment represents the backlog items from the previous Sprint but built on previous
Increments. Therefore, while the term Increments represents the current extended
functionality of the product, it's also appropriate to think of the term as implying the sum
value of the product through the implementation of product backlog items to date.

Within each Sprint are four primary Scrum events: Sprint Planning, Daily Scrum, Sprint
Review, and the Sprint Retrospective. We covered the topic of Sprint Planning in the
preceding section, so, now, let's take a look, in order, at the Daily Scrums, Sprint Reviews,
and Sprint Retrospectives.

Conducting Daily Scrums
Every 24 hours, the Scrum Team meets, ideally at the same and same place, to discuss the
progress of the team in completing the work of the Sprint. These Daily Scrum meetings
should be short and to the point, usually taking 15 minutes or less. The team does not
address any issues in these meetings. Instead, the affected team members and other
technical or domain specialists who can help to resolve the issue, take the conversation
offline in a separate meeting.

Supporting the pillars of empiricism, the Daily Scrums provide an opportunity for team
members to inspect their progress and adapt their work to address any issues. The team
can also agree to take on more work if it appears the team will accomplish their Sprint
Goals with time to spare.

In the spirit of transparency, executives, customers, end-users, and other stakeholders can
join Daily Scrum meetings. However, the Scrum Master must make sure these folks do
not interrupt the meeting. The goal of the Daily Scrum is to minimize waste in the form
of extended meetings that do not directly support the work of individual team members
in their assigned work.

110 The Scrum Approach

Daily Scrums continue through the duration of the Sprint. At the end of each Sprint, the
team conducts a Sprint Review meeting, as discussed in the next section.

Conducting Sprint Reviews
On the last day of the Sprint, the Sprint team meets with designated stakeholders and the
Product Owner to review the work of the Sprint. This meeting is called the Sprint Review.
All work is entirely transparent to the attendees of the Sprint Review. The attendees
inspect the work to see whether there are any variances from the original Sprint Goal.
The development team members may provide a demo of the new product functionality
to prospective users of the software.

The Sprint Review is another form of transparency that allows users and customers to
inspect the product to determine whether the new functionality meets their needs. If the
new Increment of functionality falls short of expectations or the users have new insights
on how the product can better serve their needs, they record that information for further
review in upcoming product backlog refinement and Sprint Planning meetings.

During the Sprint Reviews, the Product Owner discusses the work completed in the
previous Sprint and the value it provides. They also take the time to discuss current
priorities in the product backlog and their future development and release plans. The
Product Owner should address performance against the project constraints of schedule,
budgets, resources, and quality. Finally, the Product Owner should provide new insights
on market conditions, potential business, or customer opportunities and their impact on
future development priorities.

The development team reviews their work over the Sprint and explains what went well and
any issues they faced and how they addressed those issues. The development team should
also provide a demo of the new enhancements to the Sprint Review meeting attendees.

All attendees can participate in the discussions on current priorities, market conditions,
new enhancement requests, and future releases. Though no decisions should be made in
the Sprint Review, the team should update the product backlog to reflect new backlog
items and priorities. The information gathered in the meeting becomes an input into the
product backlog refinement discussions and Sprint Planning events.

Before the team meets to plan the next iteration of work, they need to take some time to
inspect the work of the previous Sprint. The Sprint Retrospective, discussed in the next
subsection, provides a scheduled opportunity for the team to discuss areas where they can
adapt to improve their work and remove impediments affecting their ability to complete
their work.

Initiating development work 111

Conducting Sprint Retrospectives
Sprint Retrospectives offer an essential opportunity to inspect and adapt the work of
the team in light of new information and issues discovered in the previous Sprints. The
team's ability to act is highly dependent on the willingness and ability of the team to be
transparent in uncovering and discussing their work.

Building strong bonds and trust among team members is critical, as is safety in terms of
not making things personal and understanding that discussed information is not ever
used to attack other team members. The team is responsible for the work they complete
as a group, and they must act and work as a team.

The Sprint Retrospective meeting should occur right after the Sprint Review meeting.
The goal of the Sprint Retrospective meeting is to analyze what went well in the previous
Sprint and what did not go so well and to discuss ways the team can improve the quality
or performance of their work in future Sprints, starting with the very next Sprint. Holding
off on scheduling this meeting will make it challenging to implement any desired changes
in time to affect the new Sprint positively.

The outputs of Sprint Retrospective meetings are agreements on opportunities to improve
the team, and action items to make those improvements. Note that it can take several
years for a Scrum Team to fully mature. In the interim, the Sprint Retrospectives help
the team to grow and improve in their joint capabilities. As they reach a high level of
operation, the Retrospectives help to keep the team from backsliding into old habits
or unproductive routines. They also help the team to recognize new opportunities for
improvement, including the development of new skills.

The Sprint Retrospective is the last scheduled event in the Sprint cycle. Assuming
the Sprint Goals were achieved, with the release of a new Increment of functionality
that conforms with the definitions of Done, the output of the Sprint is a potentially
shippable product.

Releasing potentially shippable products
At this stage of the Scrum workflow process, the team has developed a new Increment
of functionality that conforms with the agreed definition of Done and achieves the
Sprint Goals. Products at this stage are potentially shippable. When a development
team fails to produce a shippable product, they create an undesirable situation where
each new Increment accumulates additional work in progress that the teams must
eventually complete.

112 The Scrum Approach

In other words, if a development iteration has unfinished work, and the Increment does
not meet its definition of Done, the team must add the work to a future Sprint. In the
meantime, the accumulation of incomplete work makes the product more difficult to work
with, and it becomes increasingly more challenging to locate and fix identified bugs. This
lack of discipline causes a form of accumulated technical debt that delays delivery of new
functionality, slows work down, makes development work more complex, and hides bugs
and defects.

So, the objective of Scrum is to have a completed Increment of functionality every Sprint,
conforming to the definition of Done and thoroughly tested. The Product Owner, based
solely on business reasons, will determine when to release the completed Increments into
production. But in the meantime, every Sprint Increment must stand on its own, fully
deployable should the Product Owner decides to do so.

That's the end of the basic Scrum workflow. The team moves on to help the Product
Owner to refine the product backlog and plan the next Sprint. Now that you
understand the basic Scrum workflow, we'll turn our attention to understanding the
impact of systems thinking and lean development in the application of both agile and
Scrum-based practices.

Identifying how Scrum can break down
Scrum is hard, much harder than it looks from a simple review of the Scrum Guide and
memorization of its empirical process control foundations and product-oriented team
structures, events, and artifacts. It's even more challenging to scale Scrum across a large
product or as an organization-wide implementation.

In this section, you will come to understand that there are innumerable pitfalls that can
lead to Scrum implementation failures, both at the product and organizational levels,
and how to resolve these issues at the start. Each subsection addresses a particular issue
but also provides a discussion on how the organization can avoid or at least minimize
the problems.

Lacking executive sponsorship
Executive-level support is a critical success factor for any Scrum implementation.
Because Scrum is ultimately about changing the values and the principles that guide
the organization, a move to implement Scrum on any scale will run headfirst into
impediments created by the organization's culture. Only the most senior executives have
the power and authority to remove these impediments.

Identifying how Scrum can break down 113

For example, Scrum requires a movement away from functional departments
to product-oriented teams that are self-organizing, self-contained, and autonomous in
their efforts to create the highest possible value at the lowest possible cost. The effect is
that Scrum eliminates hierarchical organizational structures while changing employee
and management positions, roles, and responsibilities. Instead, fully empowered Product
Owners supported by their dedicated Scrum Teams replace the bloated bureaucracies
of the traditional bureaucratic organizational structures.

Scrum also changes product life cycle development processes to release new Increments
of customer valued functionality frequently, forcing the streamlining of all product life
cycle development and operations-oriented processes. The streamlining requires more
effective communications and collaboration between organizations that previously
operated as individual silos. The efforts to streamline all development and operations
activities will force the integration of business processes.

Other critical business processes eventually must follow suit. For example, marketing
AD campaigns and promotions will have shorter life cycles. Sales organizations must
stay current with released product capabilities, features and functions, and the specific
customers targeted with each new release. Frequent releases impact product delivery and
consulting partner programs, including training and support requirements. When the
software is part of a more extensive system, device, or equipment, the changes affect the
organization's supply chain partners and associated processes.

So, to recap, Scrum implementations at a project or product development team level
have impacts across the organization and its delivery and supply chain partners. The
impediments faced by the Scrum Team go beyond their scope of work and authority
to address, and, for that reason, executive-level sponsorship is vital. Only a chief or
Line of Business (LOB) executive has the authority to work through the many
organizational issues that will impede the effectiveness of the Scrum Team.

The chief or LOB executive may delegate their authority situationally. But they cannot
delegate their authority if they don't know what the issues and impediments are. They
must stay informed and engaged in making Scrum work, no matter the scale of the
Scrum implementation.

Failing to obtain buy-in
Just because the chief executive is supportive and directing the change to Scrum
doesn't mean everyone else in the organization has the same commitments. The lack of
organizational buy-in is likely the number one issue the enterprise Scrum implementation
team will face. A corporate mandate without proper preparation, communications, early
success, and ultimately lack of buy-in will virtually guarantee Scrum implementation
failures and delays.

114 The Scrum Approach

For one thing, organization-wide implementations of Scrum requires major
reorganizations, away from hierarchical and functional departments, and to streamlined,
product-oriented, and loosely coupled Scrum Teams. Individuals, particularly those in
middle management roles, will feel threatened if they don't see a useful role for them and
they believe their jobs and compensation are at risk. Yet these are the very people the
business needs to buy into the change. If they don't buy in, they will resist the change.

Also, change is scary. However, the odds of achieving early successes improve when
the organization stages the roll-out of Scrum through a series of pilot engagements,
implemented by the organization's most enthusiastic innovators and early adopters. The
odds of success increase, even more, when individuals in other functional groups see an
opportunity for them in the change.

There is an adage that says success breeds success. Part of the success comes from hiring
people who want to achieve great things. But another critical factor is that most people
want to be part of something successful. The successes of the innovators and early
adopters generate the enthusiasm required to move the early majority, late majority, and
laggards to change and adopt the new Scrum paradigm eventually.

Lacking an agile mindset
Individuals across the organization must develop an agile mindset. Unfortunately,
achieving an agile mindset is not all that simple. You cannot merely follow the rules of
Scrum to achieve agility. The values and principles of agile must guide decisions made
within the Scrum framework and not by the prescriptive rules of Scrum. The Scrum
Guide implements few rules and those that exist connect Scrum's roles, events, and
artifacts, guiding the relationships and interactions between them.

agile is not a prescriptive methodology with specific rules to follow. Instead, agility
is a philosophy expressed as a core set of 4 values and 12 principles. Before an agile
framework, such as Scrum, can be implemented, the organization must understand and
embrace the core values and principles of agile. Then, and only then, can they begin to
figure out how to go about achieving Agility.

Identifying how Scrum can break down 115

agile has a widescale impact on the organization, as identified in the previous two
subsections. Ultimately, the culture must change. And since organizational culture is
driven by the collective views, objectives, and experiences of its people, culture can only
be changed by the people who make up the organization. And that process takes time and
work. If a chief executive wants to change the culture, they must generally accomplish the
following tasks in roughly this order:

1. Identify the current strengths and weaknesses of the organization's existing culture
in terms of values and behaviors.

2. Create and articulate a vision for the future, defining the business strategies, goals,
and objectives.

3. Communicate the cultural strengths that can be leveraged but also which values and
behaviors need to change and why.

4. Define and communicate the highest value of tactical priorities to meet the
organization's strategic goals and objectives.

5. Establish clearly defined goals and metrics to evaluate progress against the
tactical plans.

6. Implement the product-oriented teams of Scrum.

7. Establish co-location facilities with both team and individual work areas, plus
install development systems and tools and networking and communications
infrastructures.

8. Update employee compensation, incentive, and rewards programs to align the
progression of skills and team performance with the organization's strategic and
tactical goals.

9. Encourage open, honest, and respectful communications in support of Scrum's
empirical process control foundations and its pillars of transparency, inspection,
and adaptation.

10. Don't just mandate change; create the motivation for change by promoting
successes; providing regular feedback, coaching, and mentoring opportunities
to Scrum Teams; and recognizing people who demonstrate desired values and
behaviors of Agile and Scrum.

116 The Scrum Approach

Failing to invest
Another vital part of the Scrum implementation preparation is to ensure the organization
has the skills, infrastructure, and resources to support the products and Scrum Teams.
The implementation of Scrum involves a reinvention of organizational structures,
behaviors, and work environments. More substantial investments are required to support
enterprise-scale Scrum implementations.

The Product Owners, Scrum Masters, and Scrum Teams will take time to develop
their skills in Scrum. I'll discuss training issues in a separate subsection. However, the
organization also needs to provide access to individuals who are already trained and
skilled in Scrum. Such resources may already exist within the organization. But, in
most cases, the organization may need to hire outside consultants to help to guide them
through the implementation process.

The organization may choose to create a Scrum Center of Excellence (CoE) to support,
coach, and mentor the newly installed product development teams, Scrum Masters,
and Product Owners. An Executive-level enterprise Scrum Master (ESM), must be
installed to work through organizational issues, for example, impediments that require
executive-level decision-making and investment authorities. When multiple divisions are
involved in the enterprise Scrum implementation, each division should have a dedicated
ESM to support their efforts.

The ESMs may establish Scrum Teams solely dedicated to removing organizational-level
impediments. Each ESM creates a backlog of prioritized issues that they must address.
For example, the ESMs must address gaps in resources, product team alignments,
compensation, and incentive plans, knowledge, experience, and infrastructure needs
across the organization, both before and during the enterprise deployment of Scrum.

The Scrum Teams also need a physical place to work, ideally in a co-located facility
with room to work, conduct breakout sessions, and set up their information radiators.
The developers need network access, development and testing computers, and software
development and testing tools. These investments advance the effectiveness of the
Scrum Team.

Lacking effective communications programs
Organizations that mandate a change to Scrum without preparation are doomed to
failure. People need to know why change is required. They want to know what's in it
for them. They need to feel they are safe in the change situation, otherwise, they will
resist it. Moreover, they need to know what they have to do to be successful in the new
environment. None of this can happen overnight.

Failing implementations of Scrum 117

Start by building a communications plan. The organization likely has the skills in-house
to do this, as both marketing staff and project managers have the skills and training to
develop and execute effective communications plans. Make sure the communications plan
provides a layout of the specific details of why the change is necessary, the timelines, and
the expected organizational and personal benefits expected as outcomes of the change.

Make sure employees and managers know who to go to if they have questions or concerns.
Provide details on training opportunities and dates. The communications strategy
should include information on the staged roll-out priorities and initiation dates as that
information becomes available. Also, the communications plan should emphasize early
and continuing promotion of implementation successes and the specific accomplishments
of individual Scrum Teams.

Failing to educate
It should be evident that organizations that wish to implement Scrum need to train
their employees in advance of the implementation and then provide continuing training
opportunities as the teams form and mature. But based on my experience, too many
companies refuse to make the human and financial resources available to support an
effective training program. Even if they do provide access to training resources, how
many organizations track and provide incentives to employees who participate in training
programs that are relevant to the organization's continued success?

Going back to our discussions on Shuhari, it can take years to master a new subject. The
organization might start by providing access to online courses that cover the fundamentals
of Scrum. But the organization should also consider bringing in experts to teach Scrum
classes and directly address questions unique to the organization's implementation of
Scrum. Over time, the organization will produce its experts, and these folks should be
available to mentor other Scrum Teams.

Also, the training can't just be about agile and Scrum but should also encompass
development practices and skills and the technologies and tools used by the development
organization.

The bottom line is learning is an ongoing, never-ending requirement.

Failing implementations of Scrum
In the previous four subsections, you have learned how Scrum implementations fail from
lack of executive sponsorships, foundations, agile mindsets, and communications and
training programs. In the remainder of this section, you will learn how to resolve the
impediments that hinder the successful enterprise or product-level deployments of Scrum.

118 The Scrum Approach

I've touched on this subject before, but the empirical process control mechanisms of
Scrum provide a practical approach to resolving Scrum implementation issues. However,
the Scrum Teams cannot resolve most of the issues identified in this section as they don't
have the authority to address issues outside their direct product development-related
activities.

Therefore, the organization must establish an enterprise-level Scrum CoE or some
other type of organizational Scrum implementation resources to resolve issues that
require executive-level decisions. These decisions include issues associated with business
and organizational alignment, hiring, people management, compensation plans, and
investments in infrastructure, tools, training, facilities, and funding.

Adding roles that are not part of Scrum
Scrum Teams only employ three roles, ever. These are the Product Owner, the Scrum
Master, and the Developers. The founders of Scrum were very careful not to install
structures that would create an overly competitive environment that is not conducive
to team building. Any organization that adds additional roles is not truly practicing
Scrum. Moreover, another risk from adding roles is organizational bloat and a return
to hierarchical and bureaucratic processes.

Focusing on the wrong product backlog items
Given the product-oriented nature of Scrum, there has to be someone responsible for
making decisions and ultimately held accountable for the success of the product. To be
held accountable, they must have the authority to make decisions on product backlog
items and priorities. That is the role of the Product Manager.

There is only one Product Manager assigned to each unique product. In some of the
scaled-Scrum approaches introduced in Section 2 of this book, the Product Owner may
enlist the help of assistants or Teams of Product Owners working under a Chief Product
Owner or Product Manager. For now, let's keep things simple. The Product Owner is the
only decision-maker regarding product backlog priorities.

Not even the company's chief executive should override the decisions of the Product
Owner. For sure, Chief Executive Officers (CEOs) and LOB executives, customers,
end-users, development team members, and other stakeholders will undoubtedly have
opinions and seek to influence decisions. Still, there can only be one decision-maker,
and that is the person who ultimately has responsibility for the organization's Return
on Investment (ROI) for the product.

Failing implementations of Scrum 119

Product Owners are the voice of the customer. A successful Product Owner recognizes
the customer's interest must come first. If a prospective customer is not happy with
a product, they will not buy it. Customers have varying needs and will value different
features and functions, price points, performance, and quality uniquely. The challenge
is in identifying the right set of product features and functions and priorities to make the
product commercially viable.

A product with a large prospective customer base and multiple market segmentation
will have a larger pool of requirements options to consider for each Increment. As
mentioned in previous sections within this chapter, the Product Owner must work though
a multi-dimensional problem that evaluates the size of the market for each identified
requirement, the Incremental value to customers for each satisfying requirement, and
the cost of producing and delivering each requirement. They must resist every attempt
by outside influencers to change priorities that do not fit Scrum's value-based product
backlog prioritization model.

Allowing inappropriate priorities
You may think that surely the CEO can change the priorities in the product backlog.
However, unless the chief executive is the Product Owner, the answer is no; the CEO
cannot change the product backlog items or priorities. The Product Owner cannot allow
outside influencers to arbitrarily make decisions on product backlog items and priorities
that do not fit the highest-value/lowest-cost prioritization model described previously,
no matter who the influencers are.

Product Managers who are weak or ineffective will make bad decisions. For example,
they may add low-value items with unsubstantiated priorities within the product backlog.
Conversely, they may add items that appear to have high customer value but are not
cost-justified given what the target market is willing to pay for them. Or the Product
Owner may make an error by purposely choosing to prioritize the development of many
low-cost items that have relatively little Incremental value, instead of focusing on the
development of higher-value items.

An effective Product Owner understands the scope of knowledge and work that goes
into building and sustaining a viable product backlog. When a Product Owner fails,
it's likely the hiring chief executive or LOB executive who under-scoped the breadth
of skills and cross-functional knowledge required to perform in the role of Product
Owner successfully.

120 The Scrum Approach

For example, the Product Owners must have credible domain knowledge to understand
customer issues, capability requirements, and priorities thoroughly. To stay on top of the
market trends, the Product Owner needs to spend the bulk of their time meeting with
customers, industry analysts, end-users, and stakeholders. Ideally, the Product Owner
should seek out opportunities to speak and present at industry forums and become
a recognized thought-leader within the industry.

The Product Owner must have the business domain knowledge to assess product
pricing strategies accurately, as well as costs, and value. They must have marketing
skills and knowledge to understand how to identify target market customers and how
best to promote their products. The Product Owner must be a competent business
development specialist who can identify new market niches and product opportunities.
The Product Owner must also know about sales, including the use of inside and outside
sales organizations, and the use of channel partners such as Value-Added Resellers
(VARs), systems integrators, consultants, Managed Service Providers (MSPs), Original
Equipment Manufacturers (OEMs), and distributors.

Do the Product Owners do all of this work alone? No, of course not. They are the ultimate
decision-makers, but they must have access to functional efforts to pull the information
together they need to make the right decisions. If the Scrum implementation effort
is limited strictly to development activities, the Product Owner will access corporate
resources in the functional departments. However, if the organization is implementing
Scrum enterprise-wide, the Product Owner can establish functional Scrum Teams
to provide support across sales, marketing, partnerships, and other critical product
life cycle activities.

In short, the Product Owner must be a capable and knowledgeable jack of all trades
whose responsibilities encompass the entire scope and breadth of product management.
The Product Owner spends a relatively small amount of time directly supporting
development-oriented Scrum events, requiring somewhere on the order of only 25%
of their time. The Product Owners need time to work in parallel with functional or, more
ideally, Scrum-based teams supporting marketing, sales, partnerships, distribution, and
other business functions critical to the product's market success.

Directing instead of leading
A common mistake is to place a Scrum Master into a development team based on their
technical skills, domain knowledge, or project management experience without making
sure they are adequately trained and clearly understand their role. None of those skills
are requisite justifications for hiring a Scrum Master. The potential problem is the Scrum
Master with such skills may assume authoritarian control over the Scrum Team, which
is in opposition to their role in Scrum.

https://searchitchannel.techtarget.com/definition/OEM/
https://searchitchannel.techtarget.com/definition/OEM/

Failing implementations of Scrum 121

The roles of the Scrum Masters include providing mentoring, coaching, and serving.
The Scrum Master provides mentoring and coaching on Scrum practices to the Product
Owner, development team members, and any other stakeholders whose views and actions
can affect the product development priorities and work. In this role, the Scrum Master
monitors decisions and activities, and steps in to provide guidance when the actions are
taken or proposed are inconsistent with Scrum.

Moreover, in the role of a servant leader, they help the development team to resolve any
impediments that would otherwise distract the team members form to complete the
goals of each Sprint. In other words, the authority of the Scrum Master comes not from
directives but from their knowledge, their ability to provide guidance, and their desire and
ability to serve the team as opposed to leading or directing the team's activities.

Scrum Masters who approach their job as technical leaders make the mistake of
trying to exert influence as the arbiter of technology, architecture, design, and
development decisions. Such actions fly in the face of both agile values and Scrum
practices, where the team as a whole determines the best approach to developing each
new Increment of functionality. Scrum Masters who cannot resist influencing technical
and development-related decisions should reconsider if they are better suited to working
as a development team member.

Scrum Masters coming from a project management role need to understand they are
no longer responsible for project planning, scheduling, or prioritization of work. Scrum
Masters do not monitor work to control or direct the execution of work. Only the
development team, operating as an independent, fully functional, and self-contained unit,
can decide how much work they can take on within each Sprint.

If the Scrum Master helps to create the burndown and velocity charts, it is Done in their
role to serve the team by allowing the team to stay focused on their value-added tasks. The
Scrum Master never develops charts to direct the team's activities. They develop the charts
so that the development team, its Product Manager, and other stakeholders can make
informed decisions.

When I say the development of burndown and velocity charts are non-valued added work,
I don't mean to imply the charts have no value. But the charts are measurements only and
do not directly contribute to the development of a new Increment of functionality. On the
other hand, the charts are part of the information radiators previously discussed that help
to provide transparency and facilitate inspection and adaption processes. So, the charts
have value, even though they do not directly contribute to the development of the project.

122 The Scrum Approach

An easy way to think about value-added versus non-value-added work is to ask yourself
whether the activity directly contributes to the construction of the product's Increment.
If not, then the work is not value-added from the customer's perspective. The work may
be necessary or useful as a vital information radiator item, but the development team
cannot let such activities get in the way of developing the Increment. As a Servant Leader,
the Scrum Leader steps in to help the team.

Likewise, rather than use the information from the burndown and velocity charts to
micromanage and direct the team's progress, the Scrum Master provides the information
freely and without judgment and as an aid to the team's decision-making process. The
goal of a Servant Leader is to help the team to obtain the information so they can assess
the progress of their work and their capacity as a team.

Having risks and issues are the norm and not the exception when developing large
and complex software and IT-aided systems. Risk management is the reason Scrum
implements the concepts of empirical process control. It's impossible to know or plan for
every contingency that affects a development project. In some cases, the development
team responds directly to address any issues that arise. However, the Scrum Master should
work through any issues not directly related to the act of designing and building the
Increment. They may schedule fact-finding meetings or need to resolve other issues that
affect development team member participation.

Performing non-value-added activities
The fastest way to kill an Increment is to allow the development team to get sidetracked
on non-value-added activities or work. Non-value-added work is any activity that does
not directly contribute to the development of the current Increment of functionality as
required to achieve the Sprint Goal. Activities that can take away the development team's
focus includes the attendance of non-relevant meetings, working on development tasks or
other activities not related to the current Increment, and working on issues best resolved
by the Scrum Master. Over-engineering a product beyond what is required to achieve the
Sprint Goal is another example.

The timeboxed events of Scrum (for example, Sprint Planning, Daily Scrum, Sprint
Review, and Sprint Retrospective) provide maximum transparency while minimizing time
spent in non-value-added meetings. The Scrum Master helps to ensure the teams stick
to the scope of each event and within the time boundaries. When an additional discussion
is required to resolve a development issue, the impacted development team members
should take the meeting offline and allow the other team members and meeting
participants to get back to their work.

Failing implementations of Scrum 123

In an ideal situation, the development team has a typical area in which they work
as a team. The co-location of team members facilitates the display and use of information
radiators, paired programming, and breakout sessions to discuss requirements and
architecture, design, and coding issues. The developers need access to networks,
computing systems, and software development tools. I also personally believe people
need time and space to think without distraction and to decompress. Having cubicles
or individual desks within or adjacent to the shared meeting room provides that
individual space.

Scrum development teams are self-organizing. That means they must have the
authority to evaluate the work necessary to fulfill a Sprint's goal and make individual
assignments based on priorities, time, skills, and interests. Scrum development teams are
self-contained. That means each team must have the skills necessary to complete all work.
Since Scrum development teams are limited in size, the individuals must value learning
new skills and developing competency in multiple skills. New product requirements and
new technologies and tools will expand over time the skills needed to develop the team's
assigned products. As a result, employee compensation and incentive plans must support
the multi-learning objectives of Scrum.

With all of these constraints in mind, the development teams cannot afford team
members who are specialists. Still, there will be times when the need for a new skill is
immediate, and the team may not have the expertise needed to develop a new Increment
of functionality. In those cases, the team must have access to specialists on a time-
limited basis. Those specialists may come from an internal group or hire through outside
contractors. However, in the longer term, assuming the new skills become an ongoing
requirement, the development team should build the skills in house.

Allowing team burnout
A critical issue that comes up time and again is burnout of Scrum development team
members. This issue happens when the Scrum Masters, Product Owners, chief, or LOB
executives exert too much influence on individual Scrum goals and over commit the
developers. Only the development team can make commitments on the scope of work
they can take on during each timeboxed Increment and plan the work tasks necessary
to achieve the Sprint Goal.

Executives, Product Owners, and Scrum Masters who do not recognize the development
team must have the final say on Sprint Goals and work tasks make two mistakes:

• They have not understood that value trumps functionality.

• They have not understood the importance of transparency.

124 The Scrum Approach

In the first case, Product Owners who focus on making value a priority understand that
releasing something customers want and will pay for is more important than waiting
to implement a product with the most features and functions. The 80/20 rule is a prime
consideration, as we've learned previously that ~20% of a product's features provide
approximately 80% of the product's value. The other 80% of the identified prospective
backlog items are expensive and time consuming to deliver and offer little value in return
to the customer.
In the second case, transparency is critical as it provides timely and accurate information
for accurate decision making. Transparency enables trust, which is why Scrum's three
pillars of empirical process control, transparency, inspection, and adaptation, are so
important. The organization's executives and Product Owners may question whether the
development team is putting their full effort toward meeting their target release dates.
Such concerns are reasonable and open for discussion. However, interference with a
team's decisions is not. Only the Scrum Team can adequately access the scope of work
they can take on within an Increment. But the Scrum Team also has a responsibility to
provide sufficient and accurate information to have informed conversations.

For example, if the Product Owner or executives have concerns about the team's velocity,
they can have a conversation to see whether there are external impediments that are
limiting the scope of work completed within each Increment. It also might make sense
to evaluate the economic feasibility of adding additional Scrum Teams to help to work
through the product backlog.

Failing to provide full transparency
Scrum development teams, when properly implemented, can determine the amount
of work they can complete withing an upcoming Sprint. They must have the authority
to make decisions on workloads. But they must also show accountability through the
visibility of their velocity charts and by meeting their commitments.

Besides the Scrum events, velocity and burndown charts and other useful metrics
provide evidence of the team's ability to both judge and complete the work they have
committed to complete within each Sprint and planned for future releases. Over time,
the development team builds a profile of their capabilities by estimating the work they
can complete in each Sprint, often expressed as story points, and then tracking their
performance against their estimates. The team charts this data across each completed
Sprint. The measure of their performance, expressed as story points per Sprint, is called
velocity, and the charts showing velocity over time are called velocity charts.

Failing implementations of Scrum 125

Burndown and velocity charts are not the only items that provide transparency on the
team's activities and capabilities. The team can employ any number of handwritten,
drawn, printed, or electronic displays of their work and their decisions. For example, they
may have the User Stories written on 3" by 5" index cards and posted on a Scrum Board
to show those that are in a queue, work in progress, tested, and Done. They may have
architecture and design drawings displayed on whiteboards or flip charts. They may also
draw out the screen displays, application reports, and screen navigation features. Test
scripts and test results should be displayed.

There is no limit to what can be displayed so long as the information is useful and
relevant. Such information, when publicly displayed for all to see, is referred to as an
information radiator.

Continuing development beyond economic value
We can think about this issue in another way; how many features in a mature word
processing application do you use, let alone across the entire suite of products? As an
author, there may be certain features I use more than you might in a word processor.
There may be other features you use that I do not. Other users will have different feature
sets they prefer. The question is how many features have the team implemented that do
not have sufficient economic value to justify the effort?

Figure 3.2 – Word processor application needs

One of the primary roles of the Product Owner is to look at the intersection of our needs
and other market opportunities, to determine the sweet spot for maximizing value at the
lowest production delivery costs. See Figure 3.2 on ‘Word Processor Application Needs’
as an example. The Sweet Spot identified in the graphic offers the maximal economic
return to the organization's investments in the product as it includes the subset of features
desired by all types of customers.

126 The Scrum Approach

That's not to say the sales opportunities within the author, market, or your collection
of needs might not economically justify further investments. The Product Owner needs
to gauge whether features should all go into a generalized product or whether it might be
better to offer niche variants of the product. A generalized product costs less to promote,
sustain, and sell. However, niche products may avoid turning off customers who believe
the full-featured product has become too complicated. Niche products may also support
a higher price and a higher ROI.

The Scrum Teams stay together for as long as the addition of the new features and
functions continue to add value sufficient to justify continued investments. Of course, the
product's accumulated costs continue to increase with added development activities. But
that does not matter so long as the revenues from new product sales and from existing
customers for maintenance, support, and upgrades offset the ongoing costs of continued
product development activities.

Failing to support market segment opportunities
Some products have a large and diverse customer base. The Product Owner, working with
the product's marketing staff, segments their market opportunities based on groupings of
common characteristics, such as customer demographics, interests, needs, and locations.
The Product Owners follow the same rules of prioritizing identified backlog items with
the highest-value and lowest-cost.

Take a quick look at the graphical example of Figure 3.3 – Market Segmentation
Priorities – Intersecting, which is a generalized view of the graphic presented in Figure 3.2.
You can see there is an area of overlap where the customers' needs span all three market
segments, for example, the Sweet Spot! From Increment to Increment—this is the area
where the Product Owner knows they can maximize sales opportunities:

 Figure 3.3 – Market Segmentation Priorities – Intersecting

At some point in time, the developers may complete the implementation of all features
within the intersecting needs of the three marketing segments. Now the market segments
must carry their weight to justify further development investments.

Failing implementations of Scrum 127

The reason for pointing this out is that markets are seldom this easy to segment. For
example, Figure 3.4 displays a situation where target market segment two does not
intersect the customer needs of either target market segments one and two. There is
a sweet spot among the needs of the first two market segments, and that may be a logical
place to start development.

However, what do you do if the customers in segment three will pay more for a product
than the customers in market segments one and two? Be careful here. The easy answer is
to assume we'll build the product for segment three customers. However, the needs may
be so unique and challenging that the development costs outstrip the additional revenues.

In the meantime, perhaps segment two customers will pay more for additional features,
beyond the sweet spot, that are relatively simple and inexpensive to implement. Now the
Product Owner should consider making those segment two features a higher priority,
along with those identified in the sweet spot:

Figure 3.4 - Market Segmentation Priorities – Non-Intersecting

The bottom line is that, across Increments, the product backlog may include items
that address the needs of one or more market segments. There still is only one product
backlog. Also, the Product Owner still makes the priorities based on the highest-value/
lowest-cost prioritization model.

Regardless of the situation, when producing a new release for a product with multiple
market segments and niches, your marketing and sales campaigns must be in sync for
each new release. Otherwise, your company may not achieve the sales goals that justified
the investments. In other words, the Product Owner cannot solely focus on development
priorities; they must also make sure the rest of the product marketing, sales, delivery, and
support functions are operating in sync.

128 The Scrum Approach

Pushing deliveries beyond capacities
Companies exist because there is a profit incentive to create things that customers want.
The same paradigm holds for government agencies and non-profits. Rather than profit,
legislative mandates and goodwill drive government agencies and non-profits to create
products and services their customers want. Motivation is useful in that it drives our
economies and citizen support systems.

But unbridled motivation can also destroy a company by releasing products and services
that are not ready for delivery. When we are not honest, disaster follows—usually in
missed delivery dates, cost overruns, and reduced profitability.

Here, again, the answer is transparency. Product Owners need to determine and
communicate the identified product backlog items with the highest customer-centric
value. The Scrum teams need to make visible their capacities to deliver. Executives need
to communicate to investors and their customers the organization's capacities and plans
to deliver.

Putting undue pressure on the development teams will not fix the problems of
misinformed expectations. Moreover, putting more pressure on the development
organization is likely to backfire, creating stress and long hours that hinder the team's
performance. The developers need to work at a sustainable pace or they will burn out and
mentally and emotionally check out.

The development team's primary focus must continuously remain on only providing the
highest value product features with the lowest cost, across each development iteration.
But that statement also assumes you have a legitimate market opportunity and capacity to
deliver within a competitive timeline. If your competitors beat you to the market and your
organization does not have a compelling and unique value proposition, then, most likely,
your company shouldn't be making this product or service anyway.

Failing to work as a team
This subsection discusses a catch-all area of behaviors that can hinder the success of
a Scrum Team. For example, a dominant team member may seek to lead instead of jointly
collaborating on critical decisions. The Scrum Master needs to get involved and mentor
the team member on more effective ways to work with their team members.

Some team members may not pull their weight at work. For example, a team member may
be late to Scrum events or may not adequately participate and engage in the development
work. They may also have a limited skill set and may not learn new skills that would
otherwise help the team to more efficiently self-organize, be self-sufficient, and evenly
allocate work across each Increment.

Failing implementations of Scrum 129

The team can positively address these concerns with the individual during their Sprint
Retrospective meetings, though the discussions need to remain respectful to retain the
integrity of the team. If the member is defensive or non-responsive, the Scrum Master
needs to get involved, listen to everyone's concerns, and see whether there is a resolution
that works for the individual and the team.

Failing to evolve the product Incrementally
Sometimes, a new product concept is enormous in scope and complexity, making it
difficult to immediately assess the features, functions, priorities, and architecture and
design requirements. And, in some cases, it may be difficult to refine the vision without
some experimentation. But how is the team supposed to proceed in those cases?

After all, without a solid vision and specific product goals and objectives, the development
team can't know how to get started. If they start on development, they can't know what
they need to deliver. Finally, without a complete vision, the team won't know whether they
are off track working on items that have little or no value.

Still, we have to start on something. Though it may be tempting, it's not a great idea to put
a new product out to market too quickly. It's much better to build a series of prototypes
until the functionality reaches a stage that the product has enough value to attract
customers and end-users.

I'll admit, this approach is not textbook Scrum. But as digital remove systems continue
to merge into increasingly complex products, we need to manage our risks. It takes time
to figure out what our customers want, and releasing a product before it's ready will
do more harm than good. It's better to set expectations correctly upfront with customers,
stakeholders, and investors.

Keeping the development focus on continually delivering only the highest-value
Increments allows the product to mature gracefully. It also provides that fastest path
to deliver a viable release.

The value-cost development priority model does not change. The Product Owner still
defines a prioritized list of requirements within the product backlog. The development
team works through the product backlog as expeditiously as possible, but not to the
point of exhaustion and burn out. It's the CEO's job to manage shareholder or customer
expectations. As mentioned in the Scrum Team burnout section, productivity will go
down if the work pace is not sustainable, and your best people will leave.

130 The Scrum Approach

By definition, prototypes are potentially disposable products. The reason for this is the
developers, the Product Owner, and the paying customer or executive sponsor must be
able to walk away from an early architecture or design that cannot meet the business goals
that justified the investments. Modern evolutionary architecture concepts help to address
these risks by allowing the architecture to emerge in lock-step with the product.

Prototypes also allow the customer to provide early guidance from customers and
end-users. The team should find out early on what the customers and end-users do
not like or want in the product so that they can cut their losses and remain focused on
developing the features and functions the customers do want. The development team
works through multiple development iterations until the baseline product can justify
a release of the product to customers. The Product Owner decides with input from
targeted customers when the product is ready for release.

Summary
At the beginning of this chapter, you learned some of the history and basic concepts
behind Scrum. Later, you were introduced to the roles and responsibilities, events, and
artifacts associated with Scrum. We learned that modified Scrum is no longer Scrum and
why. We also learned that enterprise Scrum is hard to implement as it requires a change
in the culture of the organization. Moreover, the changes will remove layers of middle
management, and those people must have new opportunities within the organizational
deployment of Scrum, or they will resist all efforts to make the deployment successful.

This chapter presented the basic workflow associated with the iterative and Incremental
development cycles of Scrum, which are called Sprints. In this section, you learned the use
and purpose of Scrum roles, events, and artifacts across each Sprint.

In the next chapter, you are going to learn about systems thinking. Systems thinking
is not a software development methodology. Instead, it is a way of thinking about
complex systems to understand how the collective parts work as a whole to accomplish
some purpose or function. However, it's important that you understand the fundamentals
of systems thinking as many of the scaled Scrum and Lean-agile practices you'll learn
about in Section 2 of this book employ these concepts.

Questions 131

Questions
1. Why is Scrum described as a framework?

2. How does the traditional development model most differ from the Scrum model?

3. Who has the final say on the scope of work that a Scrum Team can complete within
a Sprint?

4. Why does the Product Owner have the final say on the items and priorities
established within the product backlog?

5. What is the purpose of the Daily Scrums?

6. What is the purpose of the Sprint Reviews?

7. What is the purpose of the Sprint Retrospectives?

8. What are some of the issues that can cause a Scrum Team to fail?

9. What is the potential problem with hiring a Scrum Master based solely on their
technical skills, domain knowledge, or project management experience?

10. What is the primary issue with continuing to develop a product beyond its
economic value?

	Cover
	Title page
	Copyright
	Credits
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
Scaling Lightweight
Scrum into
a Heavyweight Contender
	Chapter 1: The Origins of Agile and Lightweight Methodologies
	Understanding what's wrong with the traditional model
	Moving away from the traditional model
	Adaptive Software Development (ASD)
	Crystal Clear
	Extreme Programming
	Feature-Driven Development (FDD)
	ICONIX
	Rapid application development (RAD)
	Scrum

	Defining Agile's core implementation concepts
	Backlogs
	Co-location
	CI/CD pipelines
	Continuous Integration
	Cross-functional
	Customer-centric
	Iterative and Incremental Development (IID)
	Pair programming
	Potentially shippable products
	Prototyping
	Retrospectives
	Safety
	Self-organizing
	Small teams
	Source Code Management (SCM)
	Stories
	Sustainable workflows
	Testing (test-driven and automated)
	Tools

	Appreciating the importance of Agile's values and principles
	Building on a movement led by engineers
	Summary
	Questions
	Further reading

	Chapter 2: Scrum Beyond Basics
	Mastering Scrum
	Applying a sports metaphor
	Scrumming in a software development context
	Becoming the de facto standard

	Requiring executive sponsorship
	Implementing small teams
	Establishing a proper work environment

	Putting the focus on products
	Forming Scrum Teams
	Providing access to specialized skills
	Implementing multiple Scrum Teams
	Supporting non-development activities
	Evolving Scrum Team formations

	Identifying roles and responsibilities
	Product Owners
	Developers
	Scrum Masters

	Leveraging empirical process control theory
	Establishing Scrum's core values
	Partial Scrum is not Scrum
	Revising your contracts
	Making Scrum visible and transparent
	Treating Scrum development as a fixed cost
	Thrown objects don't stick

	Defining Scrum Events
	Sprints
	Sprint Planning
	Daily Scrums
	Sprint Reviews
	Sprint Retrospectives

	Implementing Scrum Artifacts
	Product Backlog
	Sprint Backlog
	Increments

	Summary
	Questions
	Further reading

	Chapter 3: The Scrum Approach
	Scrum as a framework
	Guiding the flow of work in Scrum
	Establishing the product vision
	Implementing iterative and Incremental
development cycles
	Conducting Product Backlog refinement
	Creating User Stories
	Identifying a definition of Done
	Establishing Sprint Goals
	Conducting Sprint Planning meetings

	Initiating development work
	Conducting Daily Scrums
	Conducting Sprint Reviews
	Conducting Sprint Retrospectives
	Releasing potentially shippable products

	Identifying how Scrum can break down
	Lacking executive sponsorship
	Failing to obtain buy-in
	Lacking an agile mindset
	Failing to invest
	Lacking effective communications programs
	Failing to educate

	Failing implementations of Scrum
	Adding roles that are not part of Scrum
	Focusing on the wrong product backlog items
	Allowing inappropriate priorities
	Directing instead of leading
	Performing non-value-added activities
	Allowing team burnout
	Failing to provide full transparency
	Continuing development beyond economic value
	Failing to support market segment opportunities
	Pushing deliveries beyond capacities
	Failing to work as a team
	Failing to evolve the product Incrementally

	Summary
	Questions

	Chapter 4: Systems Thinking
	Applying systems thinking
	Benefitting from interdisciplinary studies
	Understanding integrated circuit board manufacturing
	Adding layers increased defects
	Evaluating the manufacturing facility and processes as a system
	Fixing a broken system
	Netting out the problems
	Addressing causes and effects

	Thinking holistically
	Visualizing causes and effects
	Understanding the concepts and vocabulary of systems thinking
	Causal modeling of a single-element system
	Causal modeling of a basic Scrum Team system
	Implementing feedback loops

	Supporting Agile working through systems thinking
	Diagramming causal linkages in Sprint Planning
	Modeling the requirements flow
	Modeling Product Backlog refinement
	Modeling design and task clarifications
	Modeling sprint capacity assessments
	Modeling sprint negotiations and tradeoffs
	Putting it all together

	Applying systems thinking to large, complex, and integrated products
	Putting the focus on products, not projects

	Modeling project-to-product team transformations
	Modeling a burning platform situation
	Modeling Scrum scaling activities
	Modeling the development of the Product Backlog and rolling out Scrum Teams
	Modeling the rollout of Scrum in a large product environment

	Applying systems thinking to enterprise implementations of Scrum
	Modeling the business drivers affecting business transformation decisions
	Modeling the impact of resources to remove organizational impediments
	Modeling the impact of Scrum Team needs assessments
	Modeling the elements supporting Scrum events and Scrum Team deployments
	Modeling the elements that close the loop to address business drivers
	Modeling the entire enterprise Scrum transformation
	Modeling delays between enterprise Scrum transformation elements

	Review of CLD patterns
	Summary
	Questions
	Further reading

	Chapter 5: Lean Thinking
	Understanding the basics of Lean Thinking
	Classifying types of waste
	Introducing the foundational principles behind
Lean Thinking
	Profiting from Lean practices
	Determining value
	Understanding the value stream
	Identifying and improving flows
	Changing from Push to Pull
	Seeking perfection

	Summary
	Questions
	Further reading

	Chapter 6: Lean Practices in Software Development
	Applying Lean principles to software development
	Leaning on principles
	Adding value

	Achieving continuous improvements (Kaizen)
	Developing good practices
	Leveraging the 80/20 rule
	Avoiding radical change
	Documenting good practices
	Starting with a focus on achieving stability and predictability
	Measuring improvements
	Continuing to improve through refinement
	Applying visual controls to manage intake and flows

	Building in quality
	Testing incrementally
	Refactoring software code

	Delaying decisions and commitments
	Detecting defects through automation (Jidoka)
	Eliminating mistakes (Poka-Yoke)
	Eliminating waste
	Waiting
	Overproducing
	Extra or non-value-added processing
	Transportation
	Motion
	Inventory
	Defects

	Ending multitasking/task switching
	Practicing Gemba
	Implementing single-piece flows
	Improving knowledge
	Leveling production (Heijunka)

	Optimizing the whole
	Failing through suboptimization
	Pushing software products through development
	Waterfalling is suboptimizing
	Changing from project to product-oriented development

	Producing just-in-time (JIT)
	Rejecting unfinished work
	Respecting people
	Summary
	Questions
	Further reading

	Section 2:
Comparative Review of Industry Scaled Agile Approaches
	Chapter 7: Scrum of Scrums
	Original Scrum scaling concepts
	Scaling with the SoS
	Understanding the basics
	Designating Ambassadors
	Eliminating network density
	Building on Scrum
	Supporting Scrum of Scrums meetings
	Coordinating and integrating work
	Establishing useful metrics
	Answering contextually useful questions

	Scaling SoS
	Method one – building on a foundation of success
	Method two – starting with big things in mind
	Method three – Scrum CoE

	Identifying Scrum CoE benefits
	Building organizational skills and expertise
	Eliminating waste while adding value
	Developing useful information radiators
	Fulfilling compliance requirements
	Providing I.T. Governance
	Identifying and mitigating risks
	Determining portfolio investment strategies
	Establishing CoPs

	Avoiding CoE failures
	Building effective CoEs
	Evaluating best fits
	Summary
	Questions
	Suggested reading

	Chapter 8: Scrum@Scale
	Coordinating multiple Scrum Teams
	Defining the S@S use case
	Overcoming Brooks's Law
	Repeating structural patterns
	Minimizing bureaucracy
	Networking concepts and metaphors
	Nothing scales

	Implementing scale-free Scrum architectures
	Scaling Scrum with S@S
	Installing SoS artifacts, roles, and events
	Applying an Agile operating system
	Leveraging Scrum's team process
	Optimizing Scrum and SoS Teams around sets of fives
	Leveraging pentagonal structures, ad infinitum

	Facilitating SoS events
	Coordinating the what and the how
	Intersecting the PO and SM cycles

	Installing executive leadership
	Executive Action Team
	Executive MetaScrum Team

	Building healthy organizations
	Summary
	Questions
	Further reading

	Chapter 9: The Nexus Framework
	Building on Scrum
	Connecting multiple Scrum Teams
	Scaling Scrum Teams within a Nexus
	Establishing the Nexus foundation

	Reviewing the Nexus Framework
	Defining Nexus roles
	Creating Nexus artifacts
	Implementing Nexus events
	Understanding the Nexus process flow

	Learning the basics of Nexus
	Defining a Nexus
	Establishing a NIT
	Organizing and resourcing a NIT
	Making work and value transparent
	Creating transparency with Nexus artifacts

	Conducting a Nexus Sprint
	Maintaining flow with Nexus events
	Organizing Nexus Sprint reviews
	Improving through Sprint retrospectives
	Defining "Done" in a Nexus

	Getting into the details
	Building products, not running projects

	Establishing value
	Keeping things simple
	Staying small

	Extending Scrum to form a Nexus
	Creating a Nexus
	Planning a Nexus Sprint
	Building products incrementally
	Measuring and judging velocity
	Earning continued support

	Evaluating best fits
	Summary
	Questions
	Further reading

	Chapter 10: Large-Scale Scrum (LeSS)
	Introducing Large-Scale Scrum (LeSS)
	Focusing on systems thinking and organizational design
	Building on Scrum
	Leveraging LeSS principles, roles, guides, and experimentation
	Applying LeSS principles
	Implementing LeSS rules
	Employing LeSS guides
	Understanding experimentation
	Revisiting Shu-Ha-Ri

	Implementing the LeSS and LeSS Huge Frameworks
	Implementing the LeSS Framework
	Understanding LeSS roles
	Understanding LeSS artifacts
	Understanding LeSS events
	Implementing the LeSS Huge Framework

	Adopting the LeSS Frameworks
	LeSS adoption rules
	LeSS adoption guides
	LeSS Huge adoption rules
	LeSS Huge adoption guides

	Evaluating best fits
	Summary
	Questions
	Further reading

	Chapter 11: Disciplined Agile
	Determining your way of working
	Finding context
	Mindset
	People
	Deciding life cycle flows
	Providing industry-proven practices

	Tooling your WOW
	Using Process Goal Diagrams

	Choosing your level of agility
	Scaling Disciplined Agile
	Building on a solid foundation
	Installing Disciplined DevOps
	Adding value streams

	Putting it all together
	Initiating your DA teams
	Creating business value
	Going into production
	Sustaining and evolving your teams

	Lean Governance and Milestones
	Best fits
	Summary
	Questions
	Further reading

	Chapter 12: Essential Scaled Agile Framework® (SAFe®)
	Becoming SAFe
	Integrating Lean and Agile development concepts
	Leveraging economies of scale
	Building cyber-physical systems
	Building large software products with SAFe
	Limiting factors when scaling Scrum
	Expanding agility on an enterprise scale

	Improving business agility on an enterprise scale
	Implementing a dual operating system for
business agility
	Establishing a Lean-Agile mindset
	Building on the four core values of SAFe
	Developing the seven core competencies

	Taking the train
	Building on cadence, releasing on demand
	Scaling small Agile teams
	Scaling roles and responsibilities

	Configuring SAFe®
	Building on Essential SAFe
	Purpose of Essential SAFe
	Elements of Essential SAFe

	Developing core competencies
	Defining roles and responsibilities
	Conceptualizing essential team responsibilities

	Installing Lean-Agile practices
	Building value with customer centricity
	Thinking about design
	Managing via Kanbans
	Integrating Scrum with XP
	Establishing backlogs

	Maintaining flow
	Maintaining cadence via PI
	Planning PIs
	Maintaining continuous delivery pipelines
	Riding on the ART
	Scaling with ARTs
	Leveraging Dunbar's Number
	Going beyond Dunbar's Number

	Establishing a solution context
	Understanding the solution context
	Developing solution intent and solution context

	Breaking down silos with DevOps
	Building in quality
	Remaining Essential SAFe artifacts
	Evaluating best fits
	Summary
	Questions

	Chapter 13: Full Scaled Agile Framework® (SAFe®)
	Scaling with Large Solution SAFe®
	Scaling with Solution Trains

	Core competencies supporting Large Solution SAFe®
	Distinguishing Large Solution SAFe® roles and responsibilities

	Elements of the Large Solution SAFe® configuration
	Building the Solution Intent
	Establishing and refining the Solution Backlog
	Weighted Shortest Jobs First

	Riding on the Solution Train
	Coordinating trains and teams

	Remaining Large Scale SAFe® artifacts
	Managing investment risks with Portfolio SAFe®
	Applying Lean principles to Portfolio Management

	Defining Portfolio SAFe® roles and responsibilities
	Elements of Portfolio SAFe®
	Connecting portfolios to strategy
	Implementing a Portfolio Vision
	Lean Portfolio Management (LPM)
	Governing Lean Portfolios
	Decentralizing Portfolio Operations
	Leveraging portfolio-level Kanbans
	Defining epic portfolio objectives

	Creating Portfolio Backlogs
	Marshaling investments across planning horizons
	Delivering the highest value across program increments

	Establishing Lean Budgets
	Harnessing participatory budgeting practices
	Implementing guardrails

	Supporting value streams
	Monitoring value stream Key Performance Indicators (KPIs)

	Achieving Full SAFe®
	Following the SAFe® Implementation Roadmap
	Evaluating best fits
	Questions
	Further reading

	Section 3: Implementation Strategies
	Chapter 14: Contrasting
Scrum/Lean-Agile Scaling Approaches
	Assimilating capabilities
	Maximizing value
	Building unanimity through options
	Revisiting module one
	Revisiting module two
	Staying true to Scrum
	Leveraging Lean-Agile practices

	Revisiting Scrum and Lean-Agile strategies
	Selecting based on context
	Implementation of the Scrum framework
	Implementation of Systems Thinking
	Implementation of Lean development
	Guidance on business drivers
	Overcoming cultural influences
	Software development support
	Implementation of Portfolio Management
	Implementation of Product Management
	Implementation of DevOps
	Generalized development-oriented practices
	Team integration, synchronization, and coordination
	Roadmaps to scaling
	Guidance on government and highly regulated industries

	Side-by-side comparison of all assessment criteria
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 – Origins of Agile and Lightweight Methodologies
	Chapter 2 – Scrum Beyond Basics
	Chapter 3 – The Scrum Approach
	Chapter 4 – Systems Thinking
	Chapter 5 – Lean Thinking
	Chapter 6 – Lean Practices in Software Development
	Chapter 7 – Scrum of Scrums
	Chapter 8 – Scrum@Scale
	Chapter 9 – The Nexus Framework
	Chapter 10 – Large-Scale Scrum (LeSS)
	Chapter 11 – Disciplined Agile (DA)
	Chapter 12 – Essential Scaled-Agile Framework (SAFe®)
	Chapter 13 – Full Scaled-Agile Framework (SAFe®)
	Chapter 14 – Contrasting Scrum/Lean-Agile Scaling Approaches

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

