
Curated by Titus Winters,
Tom Manshreck & Hyrum Wright

Software
Engineering at
Google
Lessons Learned
from Programming
Over Time

Titus Winters, Tom Manshreck, and Hyrum Wright

Software Engineering at Google
Lessons Learned from Programming Over Time

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-08279-8

[LSI]

Software Engineering at Google
by Titus Winters, Tom Manshreck, and Hyrum Wright

Copyright © 2020 Google, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Ryan Shaw
Development Editors: Alicia Young
Production Editor: Christopher Faucher
Copyeditor: Octal Publishing, LLC
Proofreader: Holly Bauer Forsyth

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition
2020-02-28: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492082798 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Software Engineering at Google, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492082798

Table of Contents

Foreword. xvii

Preface. xix

Part I. Thesis

1. What Is Software Engineering?. 3
Time and Change 6

Hyrum’s Law 8
Example: Hash Ordering 9
Why Not Just Aim for “Nothing Changes”? 10

Scale and Efficiency 11
Policies That Don’t Scale 12
Policies That Scale Well 14
Example: Compiler Upgrade 14
Shifting Left 17

Trade-offs and Costs 18
Example: Markers 19
Inputs to Decision Making 20
Example: Distributed Builds 20
Example: Deciding Between Time and Scale 22
Revisiting Decisions, Making Mistakes 22

Software Engineering Versus Programming 23
Conclusion 24
TL;DRs 24

iii

Part II. Culture

2. How to Work Well on Teams. 27
Help Me Hide My Code 27
The Genius Myth 28
Hiding Considered Harmful 30

Early Detection 31
The Bus Factor 31
Pace of Progress 32
In Short, Don’t Hide 34

It’s All About the Team 34
The Three Pillars of Social Interaction 34
Why Do These Pillars Matter? 35
Humility, Respect, and Trust in Practice 36
Blameless Post-Mortem Culture 39
Being Googley 41

Conclusion 42
TL;DRs 42

3. Knowledge Sharing. 43
Challenges to Learning 43
Philosophy 45
Setting the Stage: Psychological Safety 46

Mentorship 46
Psychological Safety in Large Groups 47

Growing Your Knowledge 48
Ask Questions 48
Understand Context 49

Scaling Your Questions: Ask the Community 50
Group Chats 50
Mailing Lists 50
YAQS: Question-and-Answer Platform 51

Scaling Your Knowledge: You Always Have Something to Teach 52
Office Hours 52
Tech Talks and Classes 52
Documentation 53
Code 56

Scaling Your Organization’s Knowledge 56
Cultivating a Knowledge-Sharing Culture 56
Establishing Canonical Sources of Information 58

iv | Table of Contents

Staying in the Loop 61
Readability: Standardized Mentorship Through Code Review 62

What Is the Readability Process? 63
Why Have This Process? 64

Conclusion 66
TL;DRs 67

4. Engineering for Equity. 69
Bias Is the Default 70
Understanding the Need for Diversity 72
Building Multicultural Capacity 72
Making Diversity Actionable 74
Reject Singular Approaches 75
Challenge Established Processes 76
Values Versus Outcomes 77
Stay Curious, Push Forward 78
Conclusion 79
TL;DRs 79

5. How to Lead a Team. 81
Managers and Tech Leads (and Both) 81

The Engineering Manager 82
The Tech Lead 82
The Tech Lead Manager 82

Moving from an Individual Contributor Role to a Leadership Role 83
The Only Thing to Fear Is…Well, Everything 84
Servant Leadership 85

The Engineering Manager 86
Manager Is a Four-Letter Word 86
Today’s Engineering Manager 87

Antipatterns 88
Antipattern: Hire Pushovers 89
Antipattern: Ignore Low Performers 89
Antipattern: Ignore Human Issues 90
Antipattern: Be Everyone’s Friend 91
Antipattern: Compromise the Hiring Bar 92
Antipattern: Treat Your Team Like Children 92

Positive Patterns 93
Lose the Ego 93
Be a Zen Master 94
Be a Catalyst 96

Table of Contents | v

Remove Roadblocks 96
Be a Teacher and a Mentor 97
Set Clear Goals 97
Be Honest 98
Track Happiness 99

The Unexpected Question 100
Other Tips and Tricks 101
People Are Like Plants 103

Intrinsic Versus Extrinsic Motivation 104
Conclusion 105
TL;DRs 105

6. Leading at Scale. 107
Always Be Deciding 108

The Parable of the Airplane 108
Identify the Blinders 109
Identify the Key Trade-Offs 109
Decide, Then Iterate 110

Always Be Leaving 112
Your Mission: Build a “Self-Driving” Team 112
Dividing the Problem Space 113

Always Be Scaling 116
The Cycle of Success 116
Important Versus Urgent 118
Learn to Drop Balls 119
Protecting Your Energy 120

Conclusion 122
TL;DRs 122

7. Measuring Engineering Productivity. 123
Why Should We Measure Engineering Productivity? 123
Triage: Is It Even Worth Measuring? 125
Selecting Meaningful Metrics with Goals and Signals 129
Goals 130
Signals 132
Metrics 132
Using Data to Validate Metrics 133
Taking Action and Tracking Results 137
Conclusion 137
TL;DRs 137

vi | Table of Contents

Part III. Processes

8. Style Guides and Rules. 141
Why Have Rules? 142
Creating the Rules 143

Guiding Principles 143
The Style Guide 151

Changing the Rules 154
The Process 155
The Style Arbiters 156
Exceptions 156

Guidance 157
Applying the Rules 158

Error Checkers 160
Code Formatters 161

Conclusion 163
TL;DRs 163

9. Code Review. 165
Code Review Flow 166
How Code Review Works at Google 167
Code Review Benefits 170

Code Correctness 171
Comprehension of Code 172
Code Consistency 173
Psychological and Cultural Benefits 174
Knowledge Sharing 175

Code Review Best Practices 176
Be Polite and Professional 176
Write Small Changes 177
Write Good Change Descriptions 178
Keep Reviewers to a Minimum 179
Automate Where Possible 179

Types of Code Reviews 180
Greenfield Code Reviews 180
Behavioral Changes, Improvements, and Optimizations 181
Bug Fixes and Rollbacks 181
Refactorings and Large-Scale Changes 182

Conclusion 182
TL;DRs 183

Table of Contents | vii

10. Documentation. 185
What Qualifies as Documentation? 185
Why Is Documentation Needed? 186
Documentation Is Like Code 188
Know Your Audience 190

Types of Audiences 191
Documentation Types 192

Reference Documentation 193
Design Docs 195
Tutorials 196
Conceptual Documentation 198
Landing Pages 198

Documentation Reviews 199
Documentation Philosophy 201

WHO, WHAT, WHEN, WHERE, and WHY 201
The Beginning, Middle, and End 202
The Parameters of Good Documentation 202
Deprecating Documents 203

When Do You Need Technical Writers? 204
Conclusion 204
TL;DRs 205

11. Testing Overview. 207
Why Do We Write Tests? 208

The Story of Google Web Server 209
Testing at the Speed of Modern Development 210
Write, Run, React 212
Benefits of Testing Code 213

Designing a Test Suite 214
Test Size 215
Test Scope 219
The Beyoncé Rule 221
A Note on Code Coverage 222

Testing at Google Scale 223
The Pitfalls of a Large Test Suite 224

History of Testing at Google 225
Orientation Classes 226
Test Certified 227
Testing on the Toilet 227
Testing Culture Today 228

viii | Table of Contents

The Limits of Automated Testing 229
Conclusion 230
TL;DRs 230

12. Unit Testing. 231
The Importance of Maintainability 232
Preventing Brittle Tests 233

Strive for Unchanging Tests 233
Test via Public APIs 234
Test State, Not Interactions 238

Writing Clear Tests 239
Make Your Tests Complete and Concise 240
Test Behaviors, Not Methods 241
Don’t Put Logic in Tests 246
Write Clear Failure Messages 247

Tests and Code Sharing: DAMP, Not DRY 248
Shared Values 251
Shared Setup 253
Shared Helpers and Validation 254
Defining Test Infrastructure 255

Conclusion 256
TL;DRs 256

13. Test Doubles. 257
The Impact of Test Doubles on Software Development 258
Test Doubles at Google 258
Basic Concepts 259

An Example Test Double 259
Seams 260
Mocking Frameworks 261

Techniques for Using Test Doubles 262
Faking 263
Stubbing 263
Interaction Testing 264

Real Implementations 264
Prefer Realism Over Isolation 265
How to Decide When to Use a Real Implementation 266

Faking 269
Why Are Fakes Important? 270
When Should Fakes Be Written? 270
The Fidelity of Fakes 271

Table of Contents | ix

Fakes Should Be Tested 272
What to Do If a Fake Is Not Available 272

Stubbing 272
The Dangers of Overusing Stubbing 273
When Is Stubbing Appropriate? 275

Interaction Testing 275
Prefer State Testing Over Interaction Testing 275
When Is Interaction Testing Appropriate? 277
Best Practices for Interaction Testing 277

Conclusion 280
TL;DRs 280

14. Larger Testing. 281
What Are Larger Tests? 281

Fidelity 282
Common Gaps in Unit Tests 283
Why Not Have Larger Tests? 285

Larger Tests at Google 286
Larger Tests and Time 286
Larger Tests at Google Scale 288

Structure of a Large Test 289
The System Under Test 290
Test Data 294
Verification 295

Types of Larger Tests 296
Functional Testing of One or More Interacting Binaries 297
Browser and Device Testing 297
Performance, Load, and Stress testing 297
Deployment Configuration Testing 298
Exploratory Testing 298
A/B Diff Regression Testing 299
UAT 301
Probers and Canary Analysis 301
Disaster Recovery and Chaos Engineering 302
User Evaluation 303

Large Tests and the Developer Workflow 304
Authoring Large Tests 305
Running Large Tests 305
Owning Large Tests 308

Conclusion 309
TL;DRs 309

x | Table of Contents

15. Deprecation. 311
Why Deprecate? 312
Why Is Deprecation So Hard? 313

Deprecation During Design 315
Types of Deprecation 316

Advisory Deprecation 316
Compulsory Deprecation 317
Deprecation Warnings 318

Managing the Deprecation Process 319
Process Owners 320
Milestones 320
Deprecation Tooling 321

Conclusion 322
TL;DRs 323

Part IV. Tools

16. Version Control and Branch Management. 327
What Is Version Control? 327

Why Is Version Control Important? 329
Centralized VCS Versus Distributed VCS 331
Source of Truth 334
Version Control Versus Dependency Management 336

Branch Management 336
Work in Progress Is Akin to a Branch 336
Dev Branches 337
Release Branches 339

Version Control at Google 340
One Version 340
Scenario: Multiple Available Versions 341
The “One-Version” Rule 342
(Nearly) No Long-Lived Branches 343
What About Release Branches? 344

Monorepos 345
Future of Version Control 346
Conclusion 348
TL;DRs 349

Table of Contents | xi

17. Code Search. 351
The Code Search UI 352
How Do Googlers Use Code Search? 353

Where? 353
What? 354
How? 354
Why? 354
Who and When? 355

Why a Separate Web Tool? 355
Scale 355
Zero Setup Global Code View 356
Specialization 356
Integration with Other Developer Tools 356
API Exposure 359

Impact of Scale on Design 359
Search Query Latency 359
Index Latency 360

Google’s Implementation 361
Search Index 361
Ranking 363

Selected Trade-Offs 366
Completeness: Repository at Head 366
Completeness: All Versus Most-Relevant Results 366
Completeness: Head Versus Branches Versus All History Versus

Workspaces 367
Expressiveness: Token Versus Substring Versus Regex 368

Conclusion 369
TL;DRs 370

18. Build Systems and Build Philosophy. 371
Purpose of a Build System 371
What Happens Without a Build System? 372

But All I Need Is a Compiler! 373
Shell Scripts to the Rescue? 373

Modern Build Systems 375
It’s All About Dependencies 375
Task-Based Build Systems 376
Artifact-Based Build Systems 380
Distributed Builds 386
Time, Scale, Trade-Offs 390

xii | Table of Contents

Dealing with Modules and Dependencies 390
Using Fine-Grained Modules and the 1:1:1 Rule 391
Minimizing Module Visibility 392
Managing Dependencies 392

Conclusion 397
TL;DRs 397

19. Critique: Google’s Code Review Tool. 399
Code Review Tooling Principles 399
Code Review Flow 400

Notifications 402
Stage 1: Create a Change 402

Diffing 403
Analysis Results 404
Tight Tool Integration 406

Stage 2: Request Review 406
Stages 3 and 4: Understanding and Commenting on a Change 408

Commenting 408
Understanding the State of a Change 410

Stage 5: Change Approvals (Scoring a Change) 412
Stage 6: Commiting a Change 413

After Commit: Tracking History 414
Conclusion 415
TL;DRs 416

20. Static Analysis. 417
Characteristics of Effective Static Analysis 418

Scalability 418
Usability 418

Key Lessons in Making Static Analysis Work 419
Focus on Developer Happiness 419
Make Static Analysis a Part of the Core Developer Workflow 420
Empower Users to Contribute 420

Tricorder: Google’s Static Analysis Platform 421
Integrated Tools 422
Integrated Feedback Channels 423
Suggested Fixes 424
Per-Project Customization 424
Presubmits 425
Compiler Integration 426
Analysis While Editing and Browsing Code 427

Table of Contents | xiii

Conclusion 428
TL;DRs 428

21. Dependency Management. 429
Why Is Dependency Management So Difficult? 431

Conflicting Requirements and Diamond Dependencies 431
Importing Dependencies 433

Compatibility Promises 433
Considerations When Importing 436
How Google Handles Importing Dependendencies 437

Dependency Management, In Theory 439
Nothing Changes (aka The Static Dependency Model) 439
Semantic Versioning 440
Bundled Distribution Models 441
Live at Head 442

The Limitations of SemVer 443
SemVer Might Overconstrain 444
SemVer Might Overpromise 445
Motivations 446
Minimum Version Selection 447
So, Does SemVer Work? 448

Dependency Management with Infinite Resources 449
Exporting Dependencies 452

Conclusion 456
TL;DRs 456

22. Large-Scale Changes. 459
What Is a Large-Scale Change? 460
Who Deals with LSCs? 461
Barriers to Atomic Changes 463

Technical Limitations 463
Merge Conflicts 463
No Haunted Graveyards 464
Heterogeneity 464
Testing 465
Code Review 467

LSC Infrastructure 468
Policies and Culture 469
Codebase Insight 470
Change Management 470
Testing 471

xiv | Table of Contents

Language Support 471
The LSC Process 472

Authorization 473
Change Creation 473
Sharding and Submitting 474
Cleanup 477

Conclusion 477
TL;DRs 478

23. Continuous Integration. 479
CI Concepts 481

Fast Feedback Loops 481
Automation 483
Continuous Testing 485
CI Challenges 490
Hermetic Testing 491

CI at Google 493
CI Case Study: Google Takeout 496
But I Can’t Afford CI 503

Conclusion 503
TL;DRs 503

24. Continuous Delivery. 505
Idioms of Continuous Delivery at Google 506
Velocity Is a Team Sport: How to Break Up a Deployment into Manageable

Pieces 507
Evaluating Changes in Isolation: Flag-Guarding Features 508
Striving for Agility: Setting Up a Release Train 509

No Binary Is Perfect 509
Meet Your Release Deadline 510

Quality and User-Focus: Ship Only What Gets Used 511
Shifting Left: Making Data-Driven Decisions Earlier 512
Changing Team Culture: Building Discipline into Deployment 513
Conclusion 514
TL;DRs 514

25. Compute as a Service. 517
Taming the Compute Environment 518

Automation of Toil 518
Containerization and Multitenancy 520
Summary 523

Table of Contents | xv

Writing Software for Managed Compute 523
Architecting for Failure 523
Batch Versus Serving 525
Managing State 527
Connecting to a Service 528
One-Off Code 529

CaaS Over Time and Scale 530
Containers as an Abstraction 530
One Service to Rule Them All 533
Submitted Configuration 535

Choosing a Compute Service 535
Centralization Versus Customization 537
Level of Abstraction: Serverless 539
Public Versus Private 543

Conclusion 544
TL;DRs 545

Part V. Conclusion

Afterword. 549

Index. 551

xvi | Table of Contents

1 Many of our style guides have external versions, which you can find at https://google.github.io/styleguide. We
cite numerous examples from these guides within this chapter.

CHAPTER 8

Style Guides and Rules

Written by Shaindel Schwartz
Edited by Tom Manshreck

Most engineering organizations have rules governing their codebases—rules about
where source files are stored, rules about the formatting of the code, rules about nam‐
ing and patterns and exceptions and threads. Most software engineers are working
within the bounds of a set of policies that control how they operate. At Google, to
manage our codebase, we maintain a set of style guides that define our rules.

Rules are laws. They are not just suggestions or recommendations, but strict, manda‐
tory laws. As such, they are universally enforceable—rules may not be disregarded
except as approved on a need-to-use basis. In contrast to rules, guidance provides
recommendations and best practices. These bits are good to follow, even highly advis‐
able to follow, but unlike rules, they usually have some room for variance.

We collect the rules that we define, the do’s and don’ts of writing code that must be
followed, in our programming style guides, which are treated as canon. “Style” might
be a bit of a misnomer here, implying a collection limited to formatting practices.
Our style guides are more than that; they are the full set of conventions that govern
our code. That’s not to say that our style guides are strictly prescriptive; style guide
rules may call for judgement, such as the rule to use names that are “as descriptive as
possible, within reason.” Rather, our style guides serve as the definitive source for the
rules to which our engineers are held accountable.

We maintain separate style guides for each of the programming languages used at
Google.1 At a high level, all of the guides have similar goals, aiming to steer code

141

https://google.github.io/styleguide
https://oreil.ly/xDNAn
https://oreil.ly/xDNAn

development with an eye to sustainability. At the same time, there is a lot of variation
among them in scope, length, and content. Programming languages have different
strengths, different features, different priorities, and different historical paths to
adoption within Google’s ever-evolving repositories of code. It is far more practical,
therefore, to independently tailor each language’s guidelines. Some of our style guides
are concise, focusing on a few overarching principles like naming and formatting, as
demonstrated in our Dart, R, and Shell guides. Other style guides include far more
detail, delving into specific language features and stretching into far lengthier docu‐
ments—notably, our C++, Python, and Java guides. Some style guides put a premium
on typical non-Google use of the language—our Go style guide is very short, adding
just a few rules to a summary directive to adhere to the practices outlined in the
externally recognized conventions. Others include rules that fundamentally differ
from external norms; our C++ rules disallow use of exceptions, a language feature
widely used outside of Google code.

The wide variance among even our own style guides makes it difficult to pin down
the precise description of what a style guide should cover. The decisions guiding the
development of Google’s style guides stem from the need to keep our codebase sus‐
tainable. Other organizations’ codebases will inherently have different requirements
for sustainability that necessitate a different set of tailored rules. This chapter dis‐
cusses the principles and processes that steer the development of our rules and guid‐
ance, pulling examples primarily from Google’s C++, Python, and Java style guides.

Why Have Rules?
So why do we have rules? The goal of having rules in place is to encourage “good”
behavior and discourage “bad” behavior. The interpretation of “good” and “bad”
varies by organization, depending on what the organization cares about. Such desig‐
nations are not universal preferences; good versus bad is subjective, and tailored to
needs. For some organizations, “good” might promote usage patterns that support a
small memory footprint or prioritize potential runtime optimizations. In other
organizations, “good” might promote choices that exercise new language features.
Sometimes, an organization cares most deeply about consistency, so that anything
inconsistent with existing patterns is “bad.” We must first recognize what a given
organization values; we use rules and guidance to encourage and discourage behavior
accordingly.

As an organization grows, the established rules and guidelines shape the common
vocabulary of coding. A common vocabulary allows engineers to concentrate on
what their code needs to say rather than how they’re saying it. By shaping this
vocabulary, engineers will tend to do the “good” things by default, even subcon‐
sciously. Rules thus give us broad leverage to nudge common development patterns
in desired directions.

142 | Chapter 8: Style Guides and Rules

https://oreil.ly/RHrvP

Creating the Rules
When defining a set of rules, the key question is not, “What rules should we have?”
The question to ask is, “What goal are we trying to advance?” When we focus on the
goal that the rules will be serving, identifying which rules support this goal makes it
easier to distill the set of useful rules. At Google, where the style guide serves as law
for coding practices, we do not ask, “What goes into the style guide?” but rather,
“Why does something go into the style guide?” What does our organization gain by
having a set of rules to regulate writing code?

Guiding Principles
Let’s put things in context: Google’s engineering organization is composed of more
than 30,000 engineers. That engineering population exhibits a wild variance in skill
and background. About 60,000 submissions are made each day to a codebase of more
than two billion lines of code that will likely exist for decades. We’re optimizing for a
different set of values than most other organizations need, but to some degree, these
concerns are ubiquitous—we need to sustain an engineering environment that is
resilient to both scale and time.

In this context, the goal of our rules is to manage the complexity of our development
environment, keeping the codebase manageable while still allowing engineers to work
productively. We are making a trade-off here: the large body of rules that helps us
toward this goal does mean we are restricting choice. We lose some flexibility and we
might even offend some people, but the gains of consistency and reduced conflict fur‐
nished by an authoritative standard win out.

Given this view, we recognize a number of overarching principles that guide the
development of our rules, which must:

• Pull their weight
• Optimize for the reader
• Be consistent
• Avoid error-prone and surprising constructs
• Concede to practicalities when necessary

Creating the Rules | 143

2 Tooling matters here. The measure for “too many” is not the raw number of rules in play, but how many an
engineer needs to remember. For example, in the bad-old-days pre-clang-format, we needed to remember a
ton of formatting rules. Those rules haven’t gone away, but with our current tooling, the cost of adherence has
fallen dramatically. We’ve reached a point at which somebody could add an arbitrary number of formatting
rules and nobody would care, because the tool just does it for you.

Rules must pull their weight
Not everything should go into a style guide. There is a nonzero cost in asking all of
the engineers in an organization to learn and adapt to any new rule that is set. With
too many rules,2 not only will it become harder for engineers to remember all rele‐
vant rules as they write their code, but it also becomes harder for new engineers to
learn their way. More rules also make it more challenging and more expensive to
maintain the rule set.

To this end, we deliberately chose not to include rules expected to be self-evident.
Google’s style guide is not intended to be interpreted in a lawyerly fashion; just
because something isn’t explicitly outlawed does not imply that it is legal. For exam‐
ple, the C++ style guide has no rule against the use of goto. C++ programmers
already tend to avoid it, so including an explicit rule forbidding it would introduce
unnecessary overhead. If just one or two engineers are getting something wrong,
adding to everyone’s mental load by creating new rules doesn’t scale.

Optimize for the reader
Another principle of our rules is to optimize for the reader of the code rather than the
author. Given the passage of time, our code will be read far more frequently than it is
written. We’d rather the code be tedious to type than difficult to read. In our Python
style guide, when discussing conditional expressions, we recognize that they are
shorter than if statements and therefore more convenient for code authors. However,
because they tend to be more difficult for readers to understand than the more ver‐
bose if statements, we restrict their usage. We value “simple to read” over “simple to
write.” We’re making a trade-off here: it can cost more upfront when engineers must
repeatedly type potentially longer, descriptive names for variables and types. We
choose to pay this cost for the readability it provides for all future readers.

As part of this prioritization, we also require that engineers leave explicit evidence of
intended behavior in their code. We want readers to clearly understand what the code
is doing as they read it. For example, our Java, JavaScript, and C++ style guides man‐
date use of the override annotation or keyword whenever a method overrides a
superclass method. Without the explicit in-place evidence of design, readers can
likely figure out this intent, though it would take a bit more digging on the part of
each reader working through the code.

144 | Chapter 8: Style Guides and Rules

https://oreil.ly/ftyvG

Evidence of intended behavior becomes even more important when it might be sur‐
prising. In C++, it is sometimes difficult to track the ownership of a pointer just by
reading a snippet of code. If a pointer is passed to a function, without being familiar
with the behavior of the function, we can’t be sure what to expect. Does the caller still
own the pointer? Did the function take ownership? Can I continue using the pointer
after the function returns or might it have been deleted? To avoid this problem, our
C++ style guide prefers the use of std::unique_ptr when ownership transfer is
intended. unique_ptr is a construct that manages pointer ownership, ensuring that
only one copy of the pointer ever exists. When a function takes a unique_ptr as an
argument and intends to take ownership of the pointer, callers must explicitly invoke
move semantics:

// Function that takes a Foo* and may or may not assume ownership of
// the passed pointer.
void TakeFoo(Foo* arg);

// Calls to the function don’t tell the reader anything about what to
// expect with regard to ownership after the function returns.
Foo* my_foo(NewFoo());
TakeFoo(my_foo);

Compare this to the following:

// Function that takes a std::unique_ptr<Foo>.
void TakeFoo(std::unique_ptr<Foo> arg);

// Any call to the function explicitly shows that ownership is
// yielded and the unique_ptr cannot be used after the function
// returns.
std::unique_ptr<Foo> my_foo(FooFactory());
TakeFoo(std::move(my_foo));

Given the style guide rule, we guarantee that all call sites will include clear evidence of
ownership transfer whenever it applies. With this signal in place, readers of the code
don’t need to understand the behavior of every function call. We provide enough
information in the API to reason about its interactions. This clear documentation of
behavior at the call sites ensures that code snippets remain readable and understanda‐
ble. We aim for local reasoning, where the goal is clear understanding of what’s hap‐
pening at the call site without needing to find and reference other code, including the
function’s implementation.

Most style guide rules covering comments are also designed to support this goal of
in-place evidence for readers. Documentation comments (the block comments pre‐
pended to a given file, class, or function) describe the design or intent of the code that
follows. Implementation comments (the comments interspersed throughout the code
itself) justify or highlight non-obvious choices, explain tricky bits, and underscore
important parts of the code. We have style guide rules covering both types of

Creating the Rules | 145

https://oreil.ly/h0lFE

3 Credit to H. Wright for the real-world comparison, made at the point of having visited around 15 different
Google offices.

4 “Chunking” is a cognitive process that groups pieces of information together into meaningful “chunks” rather
than keeping note of them individually. Expert chess players, for example, think about configurations of
pieces rather than the positions of the individuals.

comments, requiring engineers to provide the explanations another engineer might
be looking for when reading through the code.

Be consistent
Our view on consistency within our codebase is similar to the philosophy we apply to
our Google offices. With a large, distributed engineering population, teams are fre‐
quently split among offices, and Googlers often find themselves traveling to other
sites. Although each office maintains its unique personality, embracing local flavor
and style, for anything necessary to get work done, things are deliberately kept the
same. A visiting Googler’s badge will work with all local badge readers; any Google
devices will always get WiFi; the video conferencing setup in any conference room
will have the same interface. A Googler doesn’t need to spend time learning how to
get this all set up; they know that it will be the same no matter where they are. It’s easy
to move between offices and still get work done.

That’s what we strive for with our source code. Consistency is what enables any engi‐
neer to jump into an unfamiliar part of the codebase and get to work fairly quickly. A
local project can have its unique personality, but its tools are the same, its techniques
are the same, its libraries are the same, and it all Just Works.

Advantages of consistency
Even though it might feel restrictive for an office to be disallowed from customizing a
badge reader or video conferencing interface, the consistency benefits far outweigh
the creative freedom we lose. It’s the same with code: being consistent may feel con‐
straining at times, but it means more engineers get more work done with less effort:3

• When a codebase is internally consistent in its style and norms, engineers writing
code and others reading it can focus on what’s getting done rather than how it is
presented. To a large degree, this consistency allows for expert chunking.4 When
we solve our problems with the same interfaces and format the code in a consis‐
tent way, it’s easier for experts to glance at some code, zero in on what’s impor‐
tant, and understand what it’s doing. It also makes it easier to modularize code
and spot duplication. For these reasons, we focus a lot of attention on consistent
naming conventions, consistent use of common patterns, and consistent format‐
ting and structure. There are also many rules that put forth a decision on a seem‐
ingly small issue solely to guarantee that things are done in only one way. For

146 | Chapter 8: Style Guides and Rules

5 See 4.2 Block indentation: +2 spaces, Spaces vs. Tabs, 4.4 Column limit:100 and Line Length.

example, take the choice of the number of spaces to use for indentation or the
limit set on line length.5 It’s the consistency of having one answer rather than the
answer itself that is the valuable part here.

• Consistency enables scaling. Tooling is key for an organization to scale, and con‐
sistent code makes it easier to build tools that can understand, edit, and generate
code. The full benefits of the tools that depend on uniformity can’t be applied if
everyone has little pockets of code that differ—if a tool can keep source files
updated by adding missing imports or removing unused includes, if different
projects are choosing different sorting strategies for their import lists, the tool
might not be able to work everywhere. When everyone is using the same compo‐
nents and when everyone’s code follows the same rules for structure and organi‐
zation, we can invest in tooling that works everywhere, building in automation
for many of our maintenance tasks. If each team needed to separately invest in a
bespoke version of the same tool, tailored for their unique environment, we
would lose that advantage.

• Consistency helps when scaling the human part of an organization, too. As an
organization grows, the number of engineers working on the codebase increases.
Keeping the code that everyone is working on as consistent as possible enables
better mobility across projects, minimizing the ramp-up time for an engineer
switching teams and building in the ability for the organization to flex and adapt
as headcount needs fluctuate. A growing organization also means that people in
other roles interact with the code—SREs, library engineers, and code janitors, for
example. At Google, these roles often span multiple projects, which means engi‐
neers unfamiliar with a given team’s project might jump in to work on that proj‐
ect’s code. A consistent experience across the codebase makes this efficient.

• Consistency also ensures resilience to time. As time passes, engineers leave
projects, new people join, ownership shifts, and projects merge or split. Striving
for a consistent codebase ensures that these transitions are low cost and allows us
nearly unconstrained fluidity for both the code and the engineers working on it,
simplifying the processes necessary for long-term maintenance.

Creating the Rules | 147

https://oreil.ly/jaf6n
https://oreil.ly/1AMEq
https://oreil.ly/WhufW
https://oreil.ly/sLctK

6 Use of const, for example.

At Scale
A few years ago, our C++ style guide promised to almost never change style guide
rules that would make old code inconsistent: “In some cases, there might be good
arguments for changing certain style rules, but we nonetheless keep things as they are
in order to preserve consistency.”

When the codebase was smaller and there were fewer old, dusty corners, that made
sense.

When the codebase grew bigger and older, that stopped being a thing to prioritize.
This was (for the arbiters behind our C++ style guide, at least) a conscious change:
when striking this bit, we were explicitly stating that the C++ codebase would never
again be completely consistent, nor were we even aiming for that.

It would simply be too much of a burden to not only update the rules to current best
practices, but to also require that we apply those rules to everything that’s ever been
written. Our Large Scale Change tooling and processes allow us to update almost all
of our code to follow nearly every new pattern or syntax so that most old code exhib‐
its the most recent approved style (see Chapter 22). Such mechanisms aren’t perfect,
however; when the codebase gets as large as it is, we can’t be sure every bit of old code
can conform to the new best practices. Requiring perfect consistency has reached the
point where there’s too much cost for the value.

Setting the standard. When we advocate for consistency, we tend to focus on internal
consistency. Sometimes, local conventions spring up before global ones are adopted,
and it isn’t reasonable to adjust everything to match. In that case, we advocate a hier‐
archy of consistency: “Be consistent” starts locally, where the norms within a given
file precede those of a given team, which precede those of the larger project, which
precede those of the overall codebase. In fact, the style guides contain a number of
rules that explicitly defer to local conventions,6 valuing this local consistency over a
scientific technical choice.

However, it is not always enough for an organization to create and stick to a set of
internal conventions. Sometimes, the standards adopted by the external community
should be taken into account.

148 | Chapter 8: Style Guides and Rules

https://oreil.ly/p6RLR

7 Style formatting for BUILD files implemented with Starlark is applied by buildifier. See https://github.com/
bazelbuild/buildtools.

Counting Spaces
The Python style guide at Google initially mandated two-space indents for all of our
Python code. The standard Python style guide, used by the external Python commu‐
nity, uses four-space indents. Most of our early Python development was in direct
support of our C++ projects, not for actual Python applications. We therefore chose
to use two-space indentation to be consistent with our C++ code, which was already
formatted in that manner. As time went by, we saw that this rationale didn’t really
hold up. Engineers who write Python code read and write other Python code much
more often than they read and write C++ code. We were costing our engineers extra
effort every time they needed to look something up or reference external code snip‐
pets. We were also going through a lot of pain each time we tried to export pieces of
our code into open source, spending time reconciling the differences between our
internal code and the external world we wanted to join.

When the time came for Starlark (a Python-based language designed at Google to
serve as the build description language) to have its own style guide, we chose to
change to using four-space indents to be consistent with the outside world.7

If conventions already exist, it is usually a good idea for an organization to be consis‐
tent with the outside world. For small, self-contained, and short-lived efforts, it likely
won’t make a difference; internal consistency matters more than anything happening
outside the project’s limited scope. Once the passage of time and potential scaling
become factors, the likelihood of your code interacting with outside projects or even
ending up in the outside world increase. Looking long-term, adhering to the widely
accepted standard will likely pay off.

Avoid error-prone and surprising constructs
Our style guides restrict the use of some of the more surprising, unusual, or tricky
constructs in the languages that we use. Complex features often have subtle pitfalls
not obvious at first glance. Using these features without thoroughly understanding
their complexities makes it easy to misuse them and introduce bugs. Even if a con‐
struct is well understood by a project’s engineers, future project members and main‐
tainers are not guaranteed to have the same understanding.

This reasoning is behind our Python style guide ruling to avoid using power features
such as reflection. The reflective Python functions hasattr() and getattr() allow a
user to access attributes of objects using strings:

Creating the Rules | 149

https://oreil.ly/iGMoM
https://oreil.ly/iGMoM
https://oreil.ly/o7aY9
https://oreil.ly/ooqIr

if hasattr(my_object, 'foo'):
some_var = getattr(my_object, 'foo')

Now, with that example, everything might seem fine. But consider this:

some_file.py:

A_CONSTANT = [
'foo',
'bar',
'baz',
]

other_file.py:

values = []
for field in some_file.A_CONSTANT:
values.append(getattr(my_object, field))

When searching through code, how do you know that the fields foo, bar, and baz are
being accessed here? There’s no clear evidence left for the reader. You don’t easily see
and therefore can’t easily validate which strings are used to access attributes of your
object. What if, instead of reading those values from A_CONSTANT, we read them from
a Remote Procedure Call (RPC) request message or from a data store? Such obfusca‐
ted code could cause a major security flaw, one that would be very difficult to notice,
simply by validating the message incorrectly. It’s also difficult to test and verify such
code.

Python’s dynamic nature allows such behavior, and in very limited circumstances,
using hasattr() and getattr() is valid. In most cases, however, they just cause
obfuscation and introduce bugs.

Although these advanced language features might perfectly solve a problem for an
expert who knows how to leverage them, power features are often more difficult to
understand and are not very widely used. We need all of our engineers able to operate
in the codebase, not just the experts. It’s not just support for the novice software engi‐
neer, but it’s also a better environment for SREs—if an SRE is debugging a production
outage, they will jump into any bit of suspect code, even code written in a language in
which they are not fluent. We place higher value on simplified, straightforward code
that is easier to understand and maintain.

Concede to practicalities
In the words of Ralph Waldo Emerson: “A foolish consistency is the hobgoblin of lit‐
tle minds.” In our quest for a consistent, simplified codebase, we do not want to
blindly ignore all else. We know that some of the rules in our style guides will
encounter cases that warrant exceptions, and that’s OK. When necessary, we permit
concessions to optimizations and practicalities that might otherwise conflict with our
rules.

150 | Chapter 8: Style Guides and Rules

https://oreil.ly/bRFg2
https://oreil.ly/bRFg2

8 See Exceptions to Naming Rules. As an example, our open sourced Abseil libraries use snake_case naming for
types intended to be replacements for standard types. See the types defined in https://github.com/abseil/abseil-
cpp/blob/master/absl/utility/utility.h. These are C++11 implementation of C++14 standard types and therefore
use the standard’s favored snake_case style instead of Google’s preferred CamelCase form.

9 See Generated code: mostly exempt.

Performance matters. Sometimes, even if it means sacrificing consistency or readabil‐
ity, it just makes sense to accommodate performance optimizations. For example,
although our C++ style guide prohibits use of exceptions, it includes a rule that
allows the use of noexcept, an exception-related language specifier that can trigger
compiler optimizations.

Interoperability also matters. Code that is designed to work with specific non-Google
pieces might do better if tailored for its target. For example, our C++ style guide
includes an exception to the general CamelCase naming guideline that permits use of
the standard library’s snake_case style for entities that mimic standard library fea‐
tures.8 The C++ style guide also allows exemptions for Windows programming,
where compatibility with platform features requires multiple inheritance, something
explicitly forbidden for all other C++ code. Both our Java and JavaScript style guides
explicitly state that generated code, which frequently interfaces with or depends on
components outside of a project’s ownership, is out of scope for the guide’s rules.9

Consistency is vital; adaptation is key.

The Style Guide
So, what does go into a language style guide? There are roughly three categories into
which all style guide rules fall:

• Rules to avoid dangers
• Rules to enforce best practices
• Rules to ensure consistency

Avoiding danger
First and foremost, our style guides include rules about language features that either
must or must not be done for technical reasons. We have rules about how to use static
members and variables; rules about using lambda expressions; rules about handling
exceptions; rules about building for threading, access control, and class inheritance.
We cover which language features to use and which constructs to avoid. We call out
standard vocabulary types that may be used and for what purposes. We specifically
include rulings on the hard-to-use and the hard-to-use-correctly—some language
features have nuanced usage patterns that might not be intuitive or easy to apply

Creating the Rules | 151

https://oreil.ly/AiTjH
https://github.com/abseil/abseil-cpp/blob/master/absl/utility/utility.h
https://github.com/abseil/abseil-cpp/blob/master/absl/utility/utility.h
https://oreil.ly/rGmA2
https://oreil.ly/EAgN-
https://oreil.ly/xCrwV

10 See https://google.github.io/styleguide/cppguide.html#Comments, http://google.github.io/styleguide/pyguide#38-
comments-and-docstrings, and https://google.github.io/styleguide/javaguide.html#s7-javadoc, where multiple
languages define general comment rules.

properly, causing subtle bugs to creep in. For each ruling in the guide, we aim to
include the pros and cons that were weighed with an explanation of the decision that
was reached. Most of these decisions are based on the need for resilience to time, sup‐
porting and encouraging maintainable language usage.

Enforcing best practices
Our style guides also include rules enforcing some best practices of writing source
code. These rules help keep the codebase healthy and maintainable. For example, we
specify where and how code authors must include comments.10 Our rules for com‐
ments cover general conventions for commenting and extend to include specific cases
that must include in-code documentation—cases in which intent is not always obvi‐
ous, such as fall-through in switch statements, empty exception catch blocks, and
template metaprogramming. We also have rules detailing the structuring of source
files, outlining the organization of expected content. We have rules about naming:
naming of packages, of classes, of functions, of variables. All of these rules are
intended to guide engineers to practices that support healthier, more sustainable
code.

Some of the best practices enforced by our style guides are designed to make source
code more readable. Many formatting rules fall under this category. Our style guides
specify when and how to use vertical and horizontal whitespace in order to improve
readability. They also cover line length limits and brace alignment. For some lan‐
guages, we cover formatting requirements by deferring to autoformatting tools—
gofmt for Go, dartfmt for Dart. Itemizing a detailed list of formatting requirements or
naming a tool that must be applied, the goal is the same: we have a consistent set of
formatting rules designed to improve readability that we apply to all of our code.

Our style guides also include limitations on new and not-yet-well-understood lan‐
guage features. The goal is to preemptively install safety fences around a feature’s
potential pitfalls while we all go through the learning process. At the same time,
before everyone takes off running, limiting use gives us a chance to watch the usage
patterns that develop and extract best practices from the examples we observe. For
these new features, at the outset, we are sometimes not sure of the proper guidance to
give. As adoption spreads, engineers wanting to use the new features in different ways
discuss their examples with the style guide owners, asking for allowances to permit
additional use cases beyond those covered by the initial restrictions. Watching the
waiver requests that come in, we get a sense of how the feature is getting used and
eventually collect enough examples to generalize good practice from bad. After we

152 | Chapter 8: Style Guides and Rules

https://google.github.io/styleguide/cppguide.html#Comments
http://google.github.io/styleguide/pyguide#38-comments-and-docstrings
http://google.github.io/styleguide/pyguide#38-comments-and-docstrings
https://google.github.io/styleguide/javaguide.html#s7-javadoc

11 Such discussions are really just bikeshedding, an illustration of Parkinson’s law of triviality.

have that information, we can circle back to the restrictive ruling and amend it to
allow wider use.

Case Study: Introducing std::unique_ptr
When C++11 introduced std::unique_ptr, a smart pointer type that expresses
exclusive ownership of a dynamically allocated object and deletes the object when the
unique_ptr goes out of scope, our style guide initially disallowed usage. The behavior
of the unique_ptr was unfamiliar to most engineers, and the related move semantics
that the language introduced were very new and, to most engineers, very confusing.
Preventing the introduction of std::unique_ptr in the codebase seemed the safer
choice. We updated our tooling to catch references to the disallowed type and kept
our existing guidance recommending other types of existing smart pointers.

Time passed. Engineers had a chance to adjust to the implications of move semantics
and we became increasingly convinced that using std::unique_ptr was directly in
line with the goals of our style guidance. The information regarding object ownership
that a std::unique_ptr facilitates at a function call site makes it far easier for a reader
to understand that code. The added complexity of introducing this new type, and the
novel move semantics that come with it, was still a strong concern, but the significant
improvement in the long-term overall state of the codebase made the adoption of
std::unique_ptr a worthwhile trade-off.

Building in consistency
Our style guides also contain rules that cover a lot of the smaller stuff. For these rules,
we make and document a decision primarily to make and document a decision. Many
rules in this category don’t have significant technical impact. Things like naming con‐
ventions, indentation spacing, import ordering: there is usually no clear, measurable,
technical benefit for one form over another, which might be why the technical com‐
munity tends to keep debating them.11 By choosing one, we’ve dropped out of the
endless debate cycle and can just move on. Our engineers no longer spend time dis‐
cussing two spaces versus four. The important bit for this category of rules is not what
we’ve chosen for a given rule so much as the fact that we have chosen.

Creating the Rules | 153

http://aquamarine.bikeshed.com
https://oreil.ly/L-K8F

About the Authors
Titus Winters is a Senior Staff Software Engineer at Google, where he has worked
since 2010. Today, he is the chair of the global subcommittee for the design of the
C++ standard library. At Google, he is the library lead for Google’s C++ codebase: 250
million lines of code that will be edited by 12,000 distinct engineers in a month. For
the last seven years, Titus and his teams have been organizing, maintaining, and
evolving the foundational components of Google’s C++ codebase using modern auto‐
mation and tooling. Along the way, he has started several Google projects that are
believed to be in the top-10 largest refactorings in human history. As a direct result of
helping to build out refactoring tooling and automation, Titus has encountered first‐
hand a huge swath of the shortcuts that engineers and programmers may take to “just
get something working.” That unique scale and perspective has informed all of his
thinking on the care and feeding of software systems.

Tom Manshreck is a Staff Technical Writer within Software Engineering at Google
since 2005, responsible for developing and maintaining many of Google’s core pro‐
gramming guides in infrastructure and language. Since 2011, he has been a member
of Google’s C++ Library Team, developing Google’s C++ documentation set, launch‐
ing (with Titus Winters) Google’s C++ training classes, and documenting Abseil,
Google’s open source C++ code. Tom holds a BS in Political Science and a BS in His‐
tory from the Massachusetts Institute of Technology. Before Google, Tom worked as a
Managing Editor at Pearson/Prentice Hall and various startups.

Hyrum Wright is a Staff Software Engineer at Google, where he has worked since
2012, mainly in the areas of large-scale maintenance of Google’s C++ codebase.
Hyrum has made more individual edits to Google’s codebase than any other engineer
in the history of the company, and leads Google’s automated change tooling group.
Hyrum received a PhD in Software Engineering from the University of Texas at Aus‐
tin and also holds an MS from the University of Texas and a BS from Brigham Young
University, and is an occasional visiting faculty member at Carnegie Mellon Univer‐
sity. He is an active speaker at conferences and contributor to the academic literature
on software maintenance and evolution.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Programming Over Time
	Google’s Perspective
	What This Book Isn’t
	Parting Remarks
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Thesis
	Chapter 1. What Is Software Engineering?
	Time and Change
	Hyrum’s Law
	Example: Hash Ordering
	Why Not Just Aim for “Nothing Changes”?

	Scale and Efficiency
	Policies That Don’t Scale
	Policies That Scale Well
	Example: Compiler Upgrade
	Shifting Left

	Trade-offs and Costs
	Example: Markers
	Inputs to Decision Making
	Example: Distributed Builds
	Example: Deciding Between Time and Scale
	Revisiting Decisions, Making Mistakes

	Software Engineering Versus Programming
	Conclusion
	TL;DRs

	Part II. Culture
	Chapter 2. How to Work Well on Teams
	Help Me Hide My Code
	The Genius Myth
	Hiding Considered Harmful
	Early Detection
	The Bus Factor
	Pace of Progress
	In Short, Don’t Hide

	It’s All About the Team
	The Three Pillars of Social Interaction
	Why Do These Pillars Matter?
	Humility, Respect, and Trust in Practice
	Blameless Post-Mortem Culture
	Being Googley

	Conclusion
	TL;DRs

	Chapter 3. Knowledge Sharing
	Challenges to Learning
	Philosophy
	Setting the Stage: Psychological Safety
	Mentorship
	Psychological Safety in Large Groups

	Growing Your Knowledge
	Ask Questions
	Understand Context

	Scaling Your Questions: Ask the Community
	Group Chats
	Mailing Lists
	YAQS: Question-and-Answer Platform

	Scaling Your Knowledge: You Always Have Something to Teach
	Office Hours
	Tech Talks and Classes
	Documentation
	Code

	Scaling Your Organization’s Knowledge
	Cultivating a Knowledge-Sharing Culture
	Establishing Canonical Sources of Information
	Staying in the Loop

	Readability: Standardized Mentorship Through Code Review
	What Is the Readability Process?
	Why Have This Process?

	Conclusion
	TL;DRs

	Chapter 4. Engineering for Equity
	Bias Is the Default
	Understanding the Need for Diversity
	Building Multicultural Capacity
	Making Diversity Actionable
	Reject Singular Approaches
	Challenge Established Processes
	Values Versus Outcomes
	Stay Curious, Push Forward
	Conclusion
	TL;DRs

	Chapter 5. How to Lead a Team
	Managers and Tech Leads (and Both)
	The Engineering Manager
	The Tech Lead
	The Tech Lead Manager

	Moving from an Individual Contributor Role to a Leadership Role
	The Only Thing to Fear Is…Well, Everything
	Servant Leadership

	The Engineering Manager
	Manager Is a Four-Letter Word
	Today’s Engineering Manager

	Antipatterns
	Antipattern: Hire Pushovers
	Antipattern: Ignore Low Performers
	Antipattern: Ignore Human Issues
	Antipattern: Be Everyone’s Friend
	Antipattern: Compromise the Hiring Bar
	Antipattern: Treat Your Team Like Children

	Positive Patterns
	Lose the Ego
	Be a Zen Master
	Be a Catalyst
	Remove Roadblocks
	Be a Teacher and a Mentor
	Set Clear Goals
	Be Honest
	Track Happiness

	The Unexpected Question
	Other Tips and Tricks
	People Are Like Plants
	Intrinsic Versus Extrinsic Motivation

	Conclusion
	TL;DRs

	Chapter 6. Leading at Scale
	Always Be Deciding
	The Parable of the Airplane
	Identify the Blinders
	Identify the Key Trade-Offs
	Decide, Then Iterate

	Always Be Leaving
	Your Mission: Build a “Self-Driving” Team
	Dividing the Problem Space

	Always Be Scaling
	The Cycle of Success
	Important Versus Urgent
	Learn to Drop Balls
	Protecting Your Energy

	Conclusion
	TL;DRs

	Chapter 7. Measuring Engineering Productivity
	Why Should We Measure Engineering Productivity?
	Triage: Is It Even Worth Measuring?
	Selecting Meaningful Metrics with Goals and Signals
	Goals
	Signals
	Metrics
	Using Data to Validate Metrics
	Taking Action and Tracking Results
	Conclusion
	TL;DRs

	Part III. Processes
	Chapter 8. Style Guides and Rules
	Why Have Rules?
	Creating the Rules
	Guiding Principles
	The Style Guide

	Changing the Rules
	The Process
	The Style Arbiters
	Exceptions

	Guidance
	Applying the Rules
	Error Checkers
	Code Formatters

	Conclusion
	TL;DRs

	Chapter 9. Code Review
	Code Review Flow
	How Code Review Works at Google
	Code Review Benefits
	Code Correctness
	Comprehension of Code
	Code Consistency
	Psychological and Cultural Benefits
	Knowledge Sharing

	Code Review Best Practices
	Be Polite and Professional
	Write Small Changes
	Write Good Change Descriptions
	Keep Reviewers to a Minimum
	Automate Where Possible

	Types of Code Reviews
	Greenfield Code Reviews
	Behavioral Changes, Improvements, and Optimizations
	Bug Fixes and Rollbacks
	Refactorings and Large-Scale Changes

	Conclusion
	TL;DRs

	Chapter 10. Documentation
	What Qualifies as Documentation?
	Why Is Documentation Needed?
	Documentation Is Like Code
	Know Your Audience
	Types of Audiences

	Documentation Types
	Reference Documentation
	Design Docs
	Tutorials
	Conceptual Documentation
	Landing Pages

	Documentation Reviews
	Documentation Philosophy
	WHO, WHAT, WHEN, WHERE, and WHY
	The Beginning, Middle, and End
	The Parameters of Good Documentation
	Deprecating Documents

	When Do You Need Technical Writers?
	Conclusion
	TL;DRs

	Chapter 11. Testing Overview
	Why Do We Write Tests?
	The Story of Google Web Server
	Testing at the Speed of Modern Development
	Write, Run, React
	Benefits of Testing Code

	Designing a Test Suite
	Test Size
	Test Scope
	The Beyoncé Rule
	A Note on Code Coverage

	Testing at Google Scale
	The Pitfalls of a Large Test Suite

	History of Testing at Google
	Orientation Classes
	Test Certified
	Testing on the Toilet
	Testing Culture Today

	The Limits of Automated Testing
	Conclusion
	TL;DRs

	Chapter 12. Unit Testing
	The Importance of Maintainability
	Preventing Brittle Tests
	Strive for Unchanging Tests
	Test via Public APIs
	Test State, Not Interactions

	Writing Clear Tests
	Make Your Tests Complete and Concise
	Test Behaviors, Not Methods
	Don’t Put Logic in Tests
	Write Clear Failure Messages

	Tests and Code Sharing: DAMP, Not DRY
	Shared Values
	Shared Setup
	Shared Helpers and Validation
	Defining Test Infrastructure

	Conclusion
	TL;DRs

	Chapter 13. Test Doubles
	The Impact of Test Doubles on Software Development
	Test Doubles at Google
	Basic Concepts
	An Example Test Double
	Seams
	Mocking Frameworks

	Techniques for Using Test Doubles
	Faking
	Stubbing
	Interaction Testing

	Real Implementations
	Prefer Realism Over Isolation
	How to Decide When to Use a Real Implementation

	Faking
	Why Are Fakes Important?
	When Should Fakes Be Written?
	The Fidelity of Fakes
	Fakes Should Be Tested
	What to Do If a Fake Is Not Available

	Stubbing
	The Dangers of Overusing Stubbing
	When Is Stubbing Appropriate?

	Interaction Testing
	Prefer State Testing Over Interaction Testing
	When Is Interaction Testing Appropriate?
	Best Practices for Interaction Testing

	Conclusion
	TL;DRs

	Chapter 14. Larger Testing
	What Are Larger Tests?
	Fidelity
	Common Gaps in Unit Tests
	Why Not Have Larger Tests?

	Larger Tests at Google
	Larger Tests and Time
	Larger Tests at Google Scale

	Structure of a Large Test
	The System Under Test
	Test Data
	Verification

	Types of Larger Tests
	Functional Testing of One or More Interacting Binaries
	Browser and Device Testing
	Performance, Load, and Stress testing
	Deployment Configuration Testing
	Exploratory Testing
	A/B Diff Regression Testing
	UAT
	Probers and Canary Analysis
	Disaster Recovery and Chaos Engineering
	User Evaluation

	Large Tests and the Developer Workflow
	Authoring Large Tests
	Running Large Tests
	Owning Large Tests

	Conclusion
	TL;DRs

	Chapter 15. Deprecation
	Why Deprecate?
	Why Is Deprecation So Hard?
	Deprecation During Design

	Types of Deprecation
	Advisory Deprecation
	Compulsory Deprecation
	Deprecation Warnings

	Managing the Deprecation Process
	Process Owners
	Milestones
	Deprecation Tooling

	Conclusion
	TL;DRs

	Part IV. Tools
	Chapter 16. Version Control and Branch Management
	What Is Version Control?
	Why Is Version Control Important?
	Centralized VCS Versus Distributed VCS
	Source of Truth
	Version Control Versus Dependency Management

	Branch Management
	Work in Progress Is Akin to a Branch
	Dev Branches
	Release Branches

	Version Control at Google
	One Version
	Scenario: Multiple Available Versions
	The “One-Version” Rule
	(Nearly) No Long-Lived Branches
	What About Release Branches?

	Monorepos
	Future of Version Control
	Conclusion
	TL;DRs

	Chapter 17. Code Search
	The Code Search UI
	How Do Googlers Use Code Search?
	Where?
	What?
	How?
	Why?
	Who and When?

	Why a Separate Web Tool?
	Scale
	Zero Setup Global Code View
	Specialization
	Integration with Other Developer Tools
	API Exposure

	Impact of Scale on Design
	Search Query Latency
	Index Latency

	Google’s Implementation
	Search Index
	Ranking

	Selected Trade-Offs
	Completeness: Repository at Head
	Completeness: All Versus Most-Relevant Results
	Completeness: Head Versus Branches Versus All History Versus Workspaces
	Expressiveness: Token Versus Substring Versus Regex

	Conclusion
	TL;DRs

	Chapter 18. Build Systems and Build Philosophy
	Purpose of a Build System
	What Happens Without a Build System?
	But All I Need Is a Compiler!
	Shell Scripts to the Rescue?

	Modern Build Systems
	It’s All About Dependencies
	Task-Based Build Systems
	Artifact-Based Build Systems
	Distributed Builds
	Time, Scale, Trade-Offs

	Dealing with Modules and Dependencies
	Using Fine-Grained Modules and the 1:1:1 Rule
	Minimizing Module Visibility
	Managing Dependencies

	Conclusion
	TL;DRs

	Chapter 19. Critique: Google’s Code Review Tool
	Code Review Tooling Principles
	Code Review Flow
	Notifications

	Stage 1: Create a Change
	Diffing
	Analysis Results
	Tight Tool Integration

	Stage 2: Request Review
	Stages 3 and 4: Understanding and Commenting on a Change
	Commenting
	Understanding the State of a Change

	Stage 5: Change Approvals (Scoring a Change)
	Stage 6: Commiting a Change
	After Commit: Tracking History

	Conclusion
	TL;DRs

	Chapter 20. Static Analysis
	Characteristics of Effective Static Analysis
	Scalability
	Usability

	Key Lessons in Making Static Analysis Work
	Focus on Developer Happiness
	Make Static Analysis a Part of the Core Developer Workflow
	Empower Users to Contribute

	Tricorder: Google’s Static Analysis Platform
	Integrated Tools
	Integrated Feedback Channels
	Suggested Fixes
	Per-Project Customization
	Presubmits
	Compiler Integration
	Analysis While Editing and Browsing Code

	Conclusion
	TL;DRs

	Chapter 21. Dependency Management
	Why Is Dependency Management So Difficult?
	Conflicting Requirements and Diamond Dependencies

	Importing Dependencies
	Compatibility Promises
	Considerations When Importing
	How Google Handles Importing Dependendencies

	Dependency Management, In Theory
	Nothing Changes (aka The Static Dependency Model)
	Semantic Versioning
	Bundled Distribution Models
	Live at Head

	The Limitations of SemVer
	SemVer Might Overconstrain
	SemVer Might Overpromise
	Motivations
	Minimum Version Selection
	So, Does SemVer Work?

	Dependency Management with Infinite Resources
	Exporting Dependencies

	Conclusion
	TL;DRs

	Chapter 22. Large-Scale Changes
	What Is a Large-Scale Change?
	Who Deals with LSCs?
	Barriers to Atomic Changes
	Technical Limitations
	Merge Conflicts
	No Haunted Graveyards
	Heterogeneity
	Testing
	Code Review

	LSC Infrastructure
	Policies and Culture
	Codebase Insight
	Change Management
	Testing
	Language Support

	The LSC Process
	Authorization
	Change Creation
	Sharding and Submitting
	Cleanup

	Conclusion
	TL;DRs

	Chapter 23. Continuous Integration
	CI Concepts
	Fast Feedback Loops
	Automation
	Continuous Testing
	CI Challenges
	Hermetic Testing

	CI at Google
	CI Case Study: Google Takeout
	But I Can’t Afford CI

	Conclusion
	TL;DRs

	Chapter 24. Continuous Delivery
	Idioms of Continuous Delivery at Google
	Velocity Is a Team Sport: How to Break Up a Deployment into Manageable Pieces
	Evaluating Changes in Isolation: Flag-Guarding Features
	Striving for Agility: Setting Up a Release Train
	No Binary Is Perfect
	Meet Your Release Deadline

	Quality and User-Focus: Ship Only What Gets Used
	Shifting Left: Making Data-Driven Decisions Earlier
	Changing Team Culture: Building Discipline into Deployment
	Conclusion
	TL;DRs

	Chapter 25. Compute as a Service
	Taming the Compute Environment
	Automation of Toil
	Containerization and Multitenancy
	Summary

	Writing Software for Managed Compute
	Architecting for Failure
	Batch Versus Serving
	Managing State
	Connecting to a Service
	One-Off Code

	CaaS Over Time and Scale
	Containers as an Abstraction
	One Service to Rule Them All
	Submitted Configuration

	Choosing a Compute Service
	Centralization Versus Customization
	Level of Abstraction: Serverless
	Public Versus Private

	Conclusion
	TL;DRs

	Part V. Conclusion
	Afterword
	Index
	About the Authors
	Colophon

