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1 Many of our style guides have external versions, which you can find at https://google.github.io/styleguide. We
cite numerous examples from these guides within this chapter.

CHAPTER 8

Style Guides and Rules

Written by Shaindel Schwartz
Edited by Tom Manshreck

Most engineering organizations have rules governing their codebases—rules about
where source files are stored, rules about the formatting of the code, rules about nam‐
ing and patterns and exceptions and threads. Most software engineers are working
within the bounds of a set of policies that control how they operate. At Google, to
manage our codebase, we maintain a set of style guides that define our rules.

Rules are laws. They are not just suggestions or recommendations, but strict, manda‐
tory laws. As such, they are universally enforceable—rules may not be disregarded
except as approved on a need-to-use basis. In contrast to rules, guidance provides
recommendations and best practices. These bits are good to follow, even highly advis‐
able to follow, but unlike rules, they usually have some room for variance.

We collect the rules that we define, the do’s and don’ts of writing code that must be
followed, in our programming style guides, which are treated as canon. “Style” might
be a bit of a misnomer here, implying a collection limited to formatting practices.
Our style guides are more than that; they are the full set of conventions that govern
our code. That’s not to say that our style guides are strictly prescriptive; style guide
rules may call for judgement, such as the rule to use names that are “as descriptive as
possible, within reason.” Rather, our style guides serve as the definitive source for the
rules to which our engineers are held accountable.

We maintain separate style guides for each of the programming languages used at
Google.1 At a high level, all of the guides have similar goals, aiming to steer code
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development with an eye to sustainability. At the same time, there is a lot of variation
among them in scope, length, and content. Programming languages have different
strengths, different features, different priorities, and different historical paths to
adoption within Google’s ever-evolving repositories of code. It is far more practical,
therefore, to independently tailor each language’s guidelines. Some of our style guides
are concise, focusing on a few overarching principles like naming and formatting, as
demonstrated in our Dart, R, and Shell guides. Other style guides include far more
detail, delving into specific language features and stretching into far lengthier docu‐
ments—notably, our C++, Python, and Java guides. Some style guides put a premium
on typical non-Google use of the language—our Go style guide is very short, adding
just a few rules to a summary directive to adhere to the practices outlined in the
externally recognized conventions. Others include rules that fundamentally differ
from external norms; our C++ rules disallow use of exceptions, a language feature
widely used outside of Google code.

The wide variance among even our own style guides makes it difficult to pin down
the precise description of what a style guide should cover. The decisions guiding the
development of Google’s style guides stem from the need to keep our codebase sus‐
tainable. Other organizations’ codebases will inherently have different requirements
for sustainability that necessitate a different set of tailored rules. This chapter dis‐
cusses the principles and processes that steer the development of our rules and guid‐
ance, pulling examples primarily from Google’s C++, Python, and Java style guides.

Why Have Rules?
So why do we have rules? The goal of having rules in place is to encourage “good”
behavior and discourage “bad” behavior. The interpretation of “good” and “bad”
varies by organization, depending on what the organization cares about. Such desig‐
nations are not universal preferences; good versus bad is subjective, and tailored to
needs. For some organizations, “good” might promote usage patterns that support a
small memory footprint or prioritize potential runtime optimizations. In other
organizations, “good” might promote choices that exercise new language features.
Sometimes, an organization cares most deeply about consistency, so that anything
inconsistent with existing patterns is “bad.” We must first recognize what a given
organization values; we use rules and guidance to encourage and discourage behavior
accordingly.

As an organization grows, the established rules and guidelines shape the common
vocabulary of coding. A common vocabulary allows engineers to concentrate on
what their code needs to say rather than how they’re saying it. By shaping this
vocabulary, engineers will tend to do the “good” things by default, even subcon‐
sciously. Rules thus give us broad leverage to nudge common development patterns
in desired directions.
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Creating the Rules
When defining a set of rules, the key question is not, “What rules should we have?”
The question to ask is, “What goal are we trying to advance?” When we focus on the
goal that the rules will be serving, identifying which rules support this goal makes it
easier to distill the set of useful rules. At Google, where the style guide serves as law
for coding practices, we do not ask, “What goes into the style guide?” but rather,
“Why does something go into the style guide?” What does our organization gain by
having a set of rules to regulate writing code?

Guiding Principles
Let’s put things in context: Google’s engineering organization is composed of more
than 30,000 engineers.  That engineering population exhibits a wild variance in skill
and background. About 60,000 submissions are made each day to a codebase of more
than two billion lines of code that will likely exist for decades. We’re optimizing for a
different set of values than most other organizations need, but to some degree, these
concerns are ubiquitous—we need to sustain an engineering environment that is
resilient to both scale and time.

In this context, the goal of our rules is to manage the complexity of our development
environment, keeping the codebase manageable while still allowing engineers to work
productively. We are making a trade-off here: the large body of rules that helps us
toward this goal does mean we are restricting choice. We lose some flexibility and we
might even offend some people, but the gains of consistency and reduced conflict fur‐
nished by an authoritative standard win out.

Given this view, we recognize a number of overarching principles that guide the
development of our rules, which must:

• Pull their weight
• Optimize for the reader
• Be consistent
• Avoid error-prone and surprising constructs
• Concede to practicalities when necessary
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2 Tooling matters here. The measure for “too many” is not the raw number of rules in play, but how many an
engineer needs to remember. For example, in the bad-old-days pre-clang-format, we needed to remember a
ton of formatting rules. Those rules haven’t gone away, but with our current tooling, the cost of adherence has
fallen dramatically. We’ve reached a point at which somebody could add an arbitrary number of formatting
rules and nobody would care, because the tool just does it for you.

Rules must pull their weight
Not everything should go into a style guide. There is a nonzero cost in asking all of
the engineers in an organization to learn and adapt to any new rule that is set. With
too many rules,2 not only will it become harder for engineers to remember all rele‐
vant rules as they write their code, but it also becomes harder for new engineers to
learn their way. More rules also make it more challenging and more expensive to
maintain the rule set.

To this end, we deliberately chose not to include rules expected to be self-evident.
Google’s style guide is not intended to be interpreted in a lawyerly fashion; just
because something isn’t explicitly outlawed does not imply that it is legal. For exam‐
ple, the C++ style guide has no rule against the use of goto. C++ programmers
already tend to avoid it, so including an explicit rule forbidding it would introduce
unnecessary overhead. If just one or two engineers are getting something wrong,
adding to everyone’s mental load by creating new rules doesn’t scale.

Optimize for the reader
Another principle of our rules is to optimize for the reader of the code rather than the
author. Given the passage of time, our code will be read far more frequently than it is
written. We’d rather the code be tedious to type than difficult to read. In our Python
style guide, when discussing conditional expressions, we recognize that they are
shorter than if statements and therefore more convenient for code authors. However,
because they tend to be more difficult for readers to understand than the more ver‐
bose if statements, we restrict their usage. We value “simple to read” over “simple to
write.” We’re making a trade-off here: it can cost more upfront when engineers must
repeatedly type potentially longer, descriptive names for variables and types. We
choose to pay this cost for the readability it provides for all future readers.

As part of this prioritization, we also require that engineers leave explicit evidence of
intended behavior in their code. We want readers to clearly understand what the code
is doing as they read it. For example, our Java, JavaScript, and C++ style guides man‐
date use of the override annotation or keyword whenever a method overrides a
superclass method. Without the explicit in-place evidence of design, readers can
likely figure out this intent, though it would take a bit more digging on the part of
each reader working through the code.
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Evidence of intended behavior becomes even more important when it might be sur‐
prising. In C++, it is sometimes difficult to track the ownership of a pointer just by
reading a snippet of code. If a pointer is passed to a function, without being familiar
with the behavior of the function, we can’t be sure what to expect. Does the caller still
own the pointer? Did the function take ownership? Can I continue using the pointer
after the function returns or might it have been deleted? To avoid this problem, our
C++ style guide prefers the use of std::unique_ptr when ownership transfer is
intended. unique_ptr is a construct that manages pointer ownership, ensuring that
only one copy of the pointer ever exists. When a function takes a unique_ptr as an
argument and intends to take ownership of the pointer, callers must explicitly invoke
move semantics:

// Function that takes a Foo* and may or may not assume ownership of
// the passed pointer.
void TakeFoo(Foo* arg);

// Calls to the function don’t tell the reader anything about what to
// expect with regard to ownership after the function returns.
Foo* my_foo(NewFoo());
TakeFoo(my_foo);

Compare this to the following:

// Function that takes a std::unique_ptr<Foo>.
void TakeFoo(std::unique_ptr<Foo> arg);

// Any call to the function explicitly shows that ownership is
// yielded and the unique_ptr cannot be used after the function
// returns.
std::unique_ptr<Foo> my_foo(FooFactory());
TakeFoo(std::move(my_foo));

Given the style guide rule, we guarantee that all call sites will include clear evidence of
ownership transfer whenever it applies. With this signal in place, readers of the code
don’t need to understand the behavior of every function call. We provide enough
information in the API to reason about its interactions. This clear documentation of
behavior at the call sites ensures that code snippets remain readable and understanda‐
ble. We aim for local reasoning, where the goal is clear understanding of what’s hap‐
pening at the call site without needing to find and reference other code, including the
function’s implementation.

Most style guide rules covering comments are also designed to support this goal of
in-place evidence for readers. Documentation comments (the block comments pre‐
pended to a given file, class, or function) describe the design or intent of the code that
follows. Implementation comments (the comments interspersed throughout the code
itself) justify or highlight non-obvious choices, explain tricky bits, and underscore
important parts of the code. We have style guide rules covering both types of
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3 Credit to H. Wright for the real-world comparison, made at the point of having visited around 15 different
Google offices.

4 “Chunking” is a cognitive process that groups pieces of information together into meaningful “chunks” rather
than keeping note of them individually. Expert chess players, for example, think about configurations of
pieces rather than the positions of the individuals.

comments, requiring engineers to provide the explanations another engineer might
be looking for when reading through the code.

Be consistent
Our view on consistency within our codebase is similar to the philosophy we apply to
our Google offices. With a large, distributed engineering population, teams are fre‐
quently split among offices, and Googlers often find themselves traveling to other
sites. Although each office maintains its unique personality, embracing local flavor
and style, for anything necessary to get work done, things are deliberately kept the
same. A visiting Googler’s badge will work with all local badge readers; any Google
devices will always get WiFi; the video conferencing setup in any conference room
will have the same interface. A Googler doesn’t need to spend time learning how to
get this all set up; they know that it will be the same no matter where they are. It’s easy
to move between offices and still get work done.

That’s what we strive for with our source code. Consistency is what enables any engi‐
neer to jump into an unfamiliar part of the codebase and get to work fairly quickly. A
local project can have its unique personality, but its tools are the same, its techniques
are the same, its libraries are the same, and it all Just Works.

Advantages of consistency
Even though it might feel restrictive for an office to be disallowed from customizing a
badge reader or video conferencing interface, the consistency benefits far outweigh
the creative freedom we lose. It’s the same with code: being consistent may feel con‐
straining at times, but it means more engineers get more work done with less effort:3

• When a codebase is internally consistent in its style and norms, engineers writing
code and others reading it can focus on what’s getting done rather than how it is
presented. To a large degree, this consistency allows for expert chunking.4 When
we solve our problems with the same interfaces and format the code in a consis‐
tent way, it’s easier for experts to glance at some code, zero in on what’s impor‐
tant, and understand what it’s doing. It also makes it easier to modularize code
and spot duplication. For these reasons, we focus a lot of attention on consistent
naming conventions, consistent use of common patterns, and consistent format‐
ting and structure. There are also many rules that put forth a decision on a seem‐
ingly small issue solely to guarantee that things are done in only one way. For
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5 See 4.2 Block indentation: +2 spaces, Spaces vs. Tabs, 4.4 Column limit:100 and Line Length.

example, take the choice of the number of spaces to use for indentation or the
limit set on line length.5 It’s the consistency of having one answer rather than the
answer itself that is the valuable part here.

• Consistency enables scaling. Tooling is key for an organization to scale, and con‐
sistent code makes it easier to build tools that can understand, edit, and generate
code. The full benefits of the tools that depend on uniformity can’t be applied if
everyone has little pockets of code that differ—if a tool can keep source files
updated by adding missing imports or removing unused includes, if different
projects are choosing different sorting strategies for their import lists, the tool
might not be able to work everywhere. When everyone is using the same compo‐
nents and when everyone’s code follows the same rules for structure and organi‐
zation, we can invest in tooling that works everywhere, building in automation
for many of our maintenance tasks. If each team needed to separately invest in a
bespoke version of the same tool, tailored for their unique environment, we
would lose that advantage.

• Consistency helps when scaling the human part of an organization, too. As an
organization grows, the number of engineers working on the codebase increases.
Keeping the code that everyone is working on as consistent as possible enables
better mobility across projects, minimizing the ramp-up time for an engineer
switching teams and building in the ability for the organization to flex and adapt
as headcount needs fluctuate. A growing organization also means that people in
other roles interact with the code—SREs, library engineers, and code janitors, for
example. At Google, these roles often span multiple projects, which means engi‐
neers unfamiliar with a given team’s project might jump in to work on that proj‐
ect’s code. A consistent experience across the codebase makes this efficient.

• Consistency also ensures resilience to time. As time passes, engineers leave
projects, new people join, ownership shifts, and projects merge or split. Striving
for a consistent codebase ensures that these transitions are low cost and allows us
nearly unconstrained fluidity for both the code and the engineers working on it,
simplifying the processes necessary for long-term maintenance.
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6 Use of const, for example.

At Scale
A few years ago, our C++ style guide promised to almost never change style guide
rules that would make old code inconsistent: “In some cases, there might be good
arguments for changing certain style rules, but we nonetheless keep things as they are
in order to preserve consistency.”

When the codebase was smaller and there were fewer old, dusty corners, that made
sense.

When the codebase grew bigger and older, that stopped being a thing to prioritize.
This was (for the arbiters behind our C++ style guide, at least) a conscious change:
when striking this bit, we were explicitly stating that the C++ codebase would never
again be completely consistent, nor were we even aiming for that.

It would simply be too much of a burden to not only update the rules to current best
practices, but to also require that we apply those rules to everything that’s ever been
written. Our Large Scale Change tooling and processes allow us to update almost all
of our code to follow nearly every new pattern or syntax so that most old code exhib‐
its the most recent approved style (see Chapter 22). Such mechanisms aren’t perfect,
however; when the codebase gets as large as it is, we can’t be sure every bit of old code
can conform to the new best practices. Requiring perfect consistency has reached the
point where there’s too much cost for the value.

Setting the standard.    When we advocate for consistency, we tend to focus on internal
consistency. Sometimes, local conventions spring up before global ones are adopted,
and it isn’t reasonable to adjust everything to match. In that case, we advocate a hier‐
archy of consistency: “Be consistent” starts locally, where the norms within a given
file precede those of a given team, which precede those of the larger project, which
precede those of the overall codebase. In fact, the style guides contain a number of
rules that explicitly defer to local conventions,6 valuing this local consistency over a
scientific technical choice.

However, it is not always enough for an organization to create and stick to a set of
internal conventions. Sometimes, the standards adopted by the external community
should be taken into account.
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7 Style formatting for BUILD files implemented with Starlark is applied by buildifier. See https://github.com/
bazelbuild/buildtools.

Counting Spaces
The Python style guide at Google initially mandated two-space indents for all of our
Python code. The standard Python style guide, used by the external Python commu‐
nity, uses four-space indents. Most of our early Python development was in direct
support of our C++ projects, not for actual Python applications. We therefore chose
to use two-space indentation to be consistent with our C++ code, which was already
formatted in that manner. As time went by, we saw that this rationale didn’t really
hold up. Engineers who write Python code read and write other Python code much
more often than they read and write C++ code. We were costing our engineers extra
effort every time they needed to look something up or reference external code snip‐
pets. We were also going through a lot of pain each time we tried to export pieces of
our code into open source, spending time reconciling the differences between our
internal code and the external world we wanted to join.

When the time came for Starlark (a Python-based language designed at Google to
serve as the build description language) to have its own style guide, we chose to
change to using four-space indents to be consistent with the outside world.7

If conventions already exist, it is usually a good idea for an organization to be consis‐
tent with the outside world. For small, self-contained, and short-lived efforts, it likely
won’t make a difference; internal consistency matters more than anything happening
outside the project’s limited scope. Once the passage of time and potential scaling
become factors, the likelihood of your code interacting with outside projects or even
ending up in the outside world increase. Looking long-term, adhering to the widely
accepted standard will likely pay off.

Avoid error-prone and surprising constructs
Our style guides restrict the use of some of the more surprising, unusual, or tricky
constructs in the languages that we use. Complex features often have subtle pitfalls
not obvious at first glance. Using these features without thoroughly understanding
their complexities makes it easy to misuse them and introduce bugs. Even if a con‐
struct is well understood by a project’s engineers, future project members and main‐
tainers are not guaranteed to have the same understanding.

This reasoning is behind our Python style guide ruling to avoid using power features
such as reflection. The reflective Python functions hasattr() and getattr() allow a
user to access attributes of objects using strings:
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if hasattr(my_object, 'foo'):
some_var = getattr(my_object, 'foo')

Now, with that example, everything might seem fine. But consider this:

some_file.py:

A_CONSTANT = [
'foo',
'bar',
'baz',
]

other_file.py:

values = []
for field in some_file.A_CONSTANT:
values.append(getattr(my_object, field))

When searching through code, how do you know that the fields foo, bar, and baz are
being accessed here? There’s no clear evidence left for the reader. You don’t easily see
and therefore can’t easily validate which strings are used to access attributes of your
object. What if, instead of reading those values from A_CONSTANT, we read them from
a Remote Procedure Call (RPC) request message or from a data store? Such obfusca‐
ted code could cause a major security flaw, one that would be very difficult to notice,
simply by validating the message incorrectly. It’s also difficult to test and verify such
code.

Python’s dynamic nature allows such behavior, and in very limited circumstances,
using hasattr() and getattr() is valid. In most cases, however, they just cause
obfuscation and introduce bugs.

Although these advanced language features might perfectly solve a problem for an
expert who knows how to leverage them, power features are often more difficult to
understand and are not very widely used. We need all of our engineers able to operate
in the codebase, not just the experts. It’s not just support for the novice software engi‐
neer, but it’s also a better environment for SREs—if an SRE is debugging a production
outage, they will jump into any bit of suspect code, even code written in a language in
which they are not fluent. We place higher value on simplified, straightforward code
that is easier to understand and maintain.

Concede to practicalities
In the words of Ralph Waldo Emerson: “A foolish consistency is the hobgoblin of lit‐
tle minds.” In our quest for a consistent, simplified codebase, we do not want to
blindly ignore all else. We know that some of the rules in our style guides will
encounter cases that warrant exceptions, and that’s OK. When necessary, we permit
concessions to optimizations and practicalities that might otherwise conflict with our
rules.
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8 See Exceptions to Naming Rules. As an example, our open sourced Abseil libraries use snake_case naming for
types intended to be replacements for standard types. See the types defined in https://github.com/abseil/abseil-
cpp/blob/master/absl/utility/utility.h. These are C++11 implementation of C++14 standard types and therefore
use the standard’s favored snake_case style instead of Google’s preferred CamelCase form.

9 See Generated code: mostly exempt.

Performance matters. Sometimes, even if it means sacrificing consistency or readabil‐
ity, it just makes sense to accommodate performance optimizations. For example,
although our C++ style guide prohibits use of exceptions, it includes a rule that
allows the use of noexcept, an exception-related language specifier that can trigger
compiler optimizations.

Interoperability also matters. Code that is designed to work with specific non-Google
pieces might do better if tailored for its target. For example, our C++ style guide
includes an exception to the general CamelCase naming guideline that permits use of
the standard library’s snake_case style for entities that mimic standard library fea‐
tures.8 The C++ style guide also allows exemptions for Windows programming,
where compatibility with platform features requires multiple inheritance, something
explicitly forbidden for all other C++ code. Both our Java and JavaScript style guides
explicitly state that generated code, which frequently interfaces with or depends on
components outside of a project’s ownership, is out of scope for the guide’s rules.9

Consistency is vital; adaptation is key.

The Style Guide
So, what does go into a language style guide? There are roughly three categories into
which all style guide rules fall:

• Rules to avoid dangers
• Rules to enforce best practices
• Rules to ensure consistency

Avoiding danger
First and foremost, our style guides include rules about language features that either
must or must not be done for technical reasons. We have rules about how to use static
members and variables; rules about using lambda expressions; rules about handling
exceptions; rules about building for threading, access control, and class inheritance.
We cover which language features to use and which constructs to avoid. We call out
standard vocabulary types that may be used and for what purposes. We specifically
include rulings on the hard-to-use and the hard-to-use-correctly—some language
features have nuanced usage patterns that might not be intuitive or easy to apply
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10 See https://google.github.io/styleguide/cppguide.html#Comments, http://google.github.io/styleguide/pyguide#38-
comments-and-docstrings, and https://google.github.io/styleguide/javaguide.html#s7-javadoc, where multiple
languages define general comment rules.

properly, causing subtle bugs to creep in. For each ruling in the guide, we aim to
include the pros and cons that were weighed with an explanation of the decision that
was reached. Most of these decisions are based on the need for resilience to time, sup‐
porting and encouraging maintainable language usage.

Enforcing best practices
Our style guides also include rules enforcing some best practices of writing source
code. These rules help keep the codebase healthy and maintainable. For example, we
specify where and how code authors must include comments.10 Our rules for com‐
ments cover general conventions for commenting and extend to include specific cases
that must include in-code documentation—cases in which intent is not always obvi‐
ous, such as fall-through in switch statements, empty exception catch blocks, and
template metaprogramming. We also have rules detailing the structuring of source
files, outlining the organization of expected content. We have rules about naming:
naming of packages, of classes, of functions, of variables. All of these rules are
intended to guide engineers to practices that support healthier, more sustainable
code.

Some of the best practices enforced by our style guides are designed to make source
code more readable. Many formatting rules fall under this category. Our style guides
specify when and how to use vertical and horizontal whitespace in order to improve
readability. They also cover line length limits and brace alignment. For some lan‐
guages, we cover formatting requirements by deferring to autoformatting tools—
gofmt for Go, dartfmt for Dart. Itemizing a detailed list of formatting requirements or
naming a tool that must be applied, the goal is the same: we have a consistent set of
formatting rules designed to improve readability that we apply to all of our code.

Our style guides also include limitations on new and not-yet-well-understood lan‐
guage features. The goal is to preemptively install safety fences around a feature’s
potential pitfalls while we all go through the learning process. At the same time,
before everyone takes off running, limiting use gives us a chance to watch the usage
patterns that develop and extract best practices from the examples we observe. For
these new features, at the outset, we are sometimes not sure of the proper guidance to
give. As adoption spreads, engineers wanting to use the new features in different ways
discuss their examples with the style guide owners, asking for allowances to permit
additional use cases beyond those covered by the initial restrictions. Watching the
waiver requests that come in, we get a sense of how the feature is getting used and
eventually collect enough examples to generalize good practice from bad. After we
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11 Such discussions are really just bikeshedding, an illustration of Parkinson’s law of triviality.

have that information, we can circle back to the restrictive ruling and amend it to
allow wider use.

Case Study: Introducing std::unique_ptr
When C++11 introduced std::unique_ptr, a smart pointer type that expresses
exclusive ownership of a dynamically allocated object and deletes the object when the
unique_ptr goes out of scope, our style guide initially disallowed usage. The behavior
of the unique_ptr was unfamiliar to most engineers, and the related move semantics
that the language introduced were very new and, to most engineers, very confusing.
Preventing the introduction of std::unique_ptr in the codebase seemed the safer
choice. We updated our tooling to catch references to the disallowed type and kept
our existing guidance recommending other types of existing smart pointers.

Time passed. Engineers had a chance to adjust to the implications of move semantics
and we became increasingly convinced that using std::unique_ptr was directly in
line with the goals of our style guidance. The information regarding object ownership
that a std::unique_ptr facilitates at a function call site makes it far easier for a reader
to understand that code. The added complexity of introducing this new type, and the
novel move semantics that come with it, was still a strong concern, but the significant
improvement in the long-term overall state of the codebase made the adoption of
std::unique_ptr a worthwhile trade-off.

Building in consistency
Our style guides also contain rules that cover a lot of the smaller stuff. For these rules, 
we make and document a decision primarily to make and document a decision. Many 
rules in this category don’t have significant technical impact. Things like naming con‐
ventions, indentation spacing, import ordering: there is usually no clear, measurable, 
technical benefit for one form over another, which might be why the technical com‐
munity tends to keep debating them.11 By choosing one, we’ve dropped out of the 
endless debate cycle and can just move on. Our engineers no longer spend time dis‐
cussing two spaces versus four. The important bit for this category of rules is not what 
we’ve chosen for a given rule so much as the fact that we have chosen.
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