

Starting and Scaling DevOps
in the Enterprise

Gary Gruver

“With all of the hype around DevOps, it has been difficult to really
understand how DevOps scales at large companies and how to begin.
The insight in this book has provided clarity and a path forward. I look
Forward to beginning the process using this book as the guide.”

- Steven D. Leist, VP, American Airlines

Copyright © 2016 Gary Gruver

Print ISBN: 978-1-48358-358-7

eBook ISBN: 978-1-48358-359-4

All rights reserved.

Elephant pictures by Amelia Tiedemann

Graphics by Shahla Mahdavi and Cassie Lydon of Katie Bush design

TABLE OF CONTENTS

About the Author 1

Acknowledgments 3

Forward 5

Chapter 1 - DevOps and the Deployment Pipeline 7

Chapter 2 - The Basic Deployment Pipeline 17

Chapter 3 - Optimizing the Basic Deployment Pipeline 25

Chapter 4 - Scaling to a Team with Continuous Integration 46

Chapter 5 - Scaling Beyond a Team 51

Chapter 6 - Scaling with Loosely Coupled Architectures 58

Chapter 7 - Documenting the Deployment Pipeline for Tightly

Coupled Architectures 64

Chapter 8 - Optimizing Complex Deployment Pipelines 69

Chapter 9 - Practices for Tightly versus Loosely Coupled

Architectures 82

Chapter 10 - The Impact of Moving to DevOps in Larger, More

Complex Organizations 90

Bibliography 93

1

ABOUT THE AUTHOR
Gary Gruver is an experienced executive with a proven track record
of transforming software development and delivery processes in
large organizations, first as the R&D director of the LaserJet firm-
ware group that completely transformed how they developed
embedded firmware and then as VP of QA, Release, and Operations
at Macy’s.com where he led the journey toward continuous delivery.
He now consults with large organizations and runs workshops to
help them transform their software development and delivery pro-
cesses. He is the co-author of Leading the Transformation: Applying
Agile and DevOps Principles at Scale and A Practical Approach
to Large-Scale Agile Development: How HP Transformed LaserJet
FutureSmart Firmware.

Website: GaryGruver.com

Twitter: @GRUVERGary

Linkedin: https://www.linkedin.com/in/garygruver

Email: gary@garygruver.com

3

ACKNOWLEDGMENTS
Many people have contributed to this book. I would like to thank
everyone I have worked with over the years who helped me better
understand how to develop software. The ideas shared in this book
are an accumulation of everything I have learned from working with
each of you on a constant journey of improving software develop-
ment processes. Without these discussions and debates, my under-
standing would not be as rich and the book would not be as complete.

I would like to especially thank all the clients of the executive and
execution workshops for letting me join you on your journey.
Sharing the challenges you were facing and the improvements that
worked helped to fine tune the content of this book. Thanks also to
Paul Remeis and Greg Lonnon for helping to fine tune the content by
helping me deliver and improve the execution workshops.

I would like to thank everyone that has taken time to give me feed-
back on early versions of the book (in alphabetical order): John
Ediger, Mirco Hering, Jez Humble, Tommy Mouser, and Vinod
Peris. Your input significantly improved the final product.

I would also like to thank the editorial and production staff: Kate
Sage, the editor, did a great job of forcing me to clarify the ideas
so they could be communicated clearly and concisely. The back and
forth made for a better book, but more importantly it required me
to crisp up the concepts, enabling me to be more efficient at helping
others on their journeys. Shahla Mahdavi and Cassie Lydon from
Katie Bush design provided most of the graphics. They did a great
job if creating visual artifacts to help communicate the ideas I am
trying to get across. Finally, I would like to thank Amelia Tiedemann
for the wonderful elephant pictures and cover design. I feel she was
really helpful in communicating that a successful DevOps transfor-
mation requires more than just having all the right parts.

5

FORWARD
When David Farley and I wrote the Continuous Delivery book, we
thought we were tackling a dusty, niche corner of the software deliv-
ery lifecycle. We didn’t expect a huge amount of interest in the book,
but we were sick of seeing people spending weeks getting builds
deployed into testing environments, performing largely manual
regression testing that took weeks or months, and spending their
nights and weekends getting releases out of the door, often accom-
panied by long outages. We knew that much of the software delivery
process was hugely inefficient, and produced poor outcomes in terms
of the quality and stability of the systems produced. We could also
see from our work in large enterprises that the tools and practices
existed that would remove many of these problems, if only teams
would implement them systematically.

Fortunately, we weren’t the only ones who saw this. Many oth-
ers—including Gary—had come to the same conclusion across the
world, and the DevOps movement was born. This movement has
had unprecedented success, primarily because these ideas work. As
I’ve worked with leaders in large, regulated companies, and most
recently as a US federal government employee at 18F, I’ve seen order
of magnitude improvements in delivery lead times accompanied by
improvements in quality and resilience, even when working with
complex, legacy systems.

Most important of all, I’ve seen these ideas lead to happier tech-
nology workers and end users. Using continuous delivery, we can
build products whose success derives from a collaborative, experi-
mental approach to product development. Everybody in the team
contributes to discovering how to produce the best user and organi-
zational outcomes. End users benefit enormously when we can work
with them from early on in the delivery process and iterate rapidly,

6 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

changing the design of systems in response to their feedback, and
delivering the most important features from early on in the prod-
uct lifecycle.

Gary has been applying ideas from the Continuous Delivery and
DevOps playbook from well before these terms became popu-
lar, starting with his work at HP leading the FutureSmart LaserJet
Firmware team. His large, distributed team applied continuous deliv-
ery to printer firmware, and showed the transformational results
this created in terms of quality and productivity in a domain where
nobody cared about frequent deployments. Then he went on to do
the same thing in a regulated organization with complex, tightly
coupled legacy systems.

Today’s technology leaders understand the urgency of transforming
their organizations to achieve both better quality and higher produc-
tivity. Effective leadership is essential if these kinds of transforma-
tion are to succeed. However overcoming the combined obstacles of
organizational inertia, silo-based thinking and high levels of archi-
tectural complexity can seem like an overwhelming task. This book
provides a concise yet thorough guide to the engineering practices
and architectural change that is critical to achieving these break-
through results, from a leader’s perspective.

This book won’t make your journey easy—but it will serve as an
invaluable map to guide your path. Happy travels!

Jez Humble

7

Chapter 1

DEVOPS AND THE
DEPLOYMENT PIPELINE

Software is starting to play a much larger role in how companies
compete across a broad range of industries. As the basis of compe-
tition shifts to software, large traditional organizations are finding
that their current approaches to managing software are limiting
their ability to respond as quickly as the business requires. DevOps
is a fundamental shift in how leading edge companies are starting
to manage their software and IT work. It is driven by the need for
businesses to move more quickly and the realization that large soft-
ware organizations are applying these DevOps principles to develop
new software faster than anyone ever thought possible. Everyone is
talking about DevOps.

In my role, I get to meet lots of different companies, and I realized
quickly that DevOps means different things to different people. They
all want to do “DevOps” because of all the benefits they are hearing
about, but they are not sure exactly what DevOps is, where to start,
or how to drive improvements over time. They are hearing a lot of
different great ideas about DevOps, but they struggle to get every-
one to agree on a common definition and what changes they should
make. It is like five blind men describing an elephant. In large orga-
nizations, this lack of alignment on DevOps improvements impedes
progress and leads to a lack of focus. This book is intended to help
structure and align those improvements by providing a framework
that large organizations and their executives can use to understand
the DevOps principles in the context of their current development
processes and to gain alignment across the organization for success-
ful implementations.

8 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Part of the issue with implementing DevOps principles and prac-
tices is that there are so many ideas out there about what DevOps
is, and so many different ways to define it. The most consistent and
comprehensive definition I have heard lately is from Gene Kim, a
co-author of The Phoenix Project and The DevOps Handbook. He is
a great thought leader and evangelist for the DevOps movement. In
order to get us all on the same page for our work here, we will use his
definition of DevOps:

DevOps should be defined by the outcomes. It is those
sets of cultural norms and technology practices that
enable the fast flow of planned work from, among other
things, development through tests into operations, while
preserving world class reliability, operation, and secu-
rity. DevOps is not about what you do, but what your
outcomes are. So many things that we associate with
DevOps, such as communication and culture, fit under-
neath this very broad umbrella of beliefs and practices.

People have such different views of DevOps because what it takes to
improve quality and flow at every step, from a business idea all the
way out to working code in the customer’s hands, differs for different
organizations. The DevOps principles designed to improve this pro-
cess are a lot about implementing changes that help coordinate the
work across teams. The movement started with leading edge, fairly

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 9

small companies that were delivering code more frequently than
anyone thought possible. DevOps was also very successful in large
organizations like Amazon where they re-architected their mono-
lithic system to enable small teams to work independently. More
recently, DevOps has started being leveraged into large organiza-
tions with tightly coupled architectures that require coordinating
the work across hundreds of people. As it started scaling into these
larger more complex organizations, the problem was that people
started assuming the approaches for successfully coordinating the
work across small teams would be the same and work as well for
coordinating the work across large organizations. The reality is that
while the principles are the same for small and complex, the imple-
mentations can and should be different.

Most large organizations don’t have that context as they start their
DevOps journey. They have different people in different roles who
have gone to different conferences to learn about DevOps from pre-
sentations by companies with different levels of complexity and dif-
ferent problems and have come back with different views of what
DevOps means for them, like when the five blind men describe the
elephant. Each stakeholder gives a very accurate description of their
section of the DevOps elephant, but the listener never gets a very
good macro view of DevOps. So, when they go to create their own
elephant, nobody can agree on where to start, and they frequently
want to implement ideas that worked well for small teams, but are
not designed for complex organizations that require coordinating
the work of hundreds of people. The intent of this book is to provide
the overall view of the elephant to help large organizations gain a
common understanding of the concepts and provide a framework
they can use to align the organization on where to start and how to
improve their software development processes over time.

This is important because if you can’t get people in a large organiza-
tion aligned on both what they are going to build and what approach
they are going to use for prioritizing improvement, they are not
very likely to deliver a DevOps implementation that will deliver the
expected results. It will potentially have pieces of the different things

10 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

that the organization has heard about DevOps, but it won’t really
help the organization deliver code on a more frequent basis while
improving or maintaining all aspects of quality. It is like having the
five blind men build an elephant based on their understanding of the
animal. It may have all the right parts, but it doesn’t really look like
or work like an elephant because they don’t have a good macro view
of the animal.

To clarify the macro view of DevOps, we will look at how a business
idea moves to development, where a developer writes code, through
the creation of the environment to how code gets deployed, tested,
and passed into production where it is monitored. The process of
moving from a business idea all the way out to the customer using a
deployment pipeline (DP) was originally documented by Jez Humble
and David Farley in their book Continuous Delivery. This book will
leverage that framework extensively because I believe it represents
the basic construct of DevOps. It captures the flow of business ideas
to the customer and the quality gates that are required to maintain
or improve quality.

It is my personal experience that creating, documenting, automat-
ing, and optimizing DPs in large software/IT organizations is key
to improving their efficiency and effectiveness. You already have in
place something that you are using to get code through your organi-
zation from idea to production, which is your DP. But documenting

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 11

that so everyone has a common view and optimizing it based on
using value stream mapping is a key tool in this process that helps
to align the organization. The DP defines and documents the flow of
code through the system, and value stream mapping the DP helps to
identify bottlenecks and waste and other inefficiencies that can be
addressed using DevOps techniques. Improving it will require a lot
of organizational change management, but the DP will help every-
one understand what processes are being changed at any one time
and how they should start working differently.

The DP for a large organization with a tightly coupled architecture
is a fairly complex concept to grasp. Therefore, in Chapter 2, we will
start with the simplest example of a DP with one developer and will
show the inefficiencies that can occur with one developer. Then,
in Chapter 3, we will highlight the DevOps approaches that were
designed to address those issues. We will also show the metrics you
can start collecting to help you understand the magnitude of your
inefficiencies so you can align your organization on fixing the issues
that will provide the biggest benefit.

Once the basic construct of the DP is well understood, in Chapter
4 we will show how the complexity changes as you start scaling the
DP from one developer to a team of developers. Having a team of
developers working together on an application while keeping it close
to release quality is a fundamental shift for most traditional organi-
zations. It requires some different technical approaches by the devel-
opers, but it also requires a cultural shift that prioritizes keeping the
code base stable over creating new features. This will be a big shift for
most organizations, but it is very important because if you can’t get
the developers to respond to the feedback from the DP, then creating
it will be of limited value.

The next big challenge large organizations have after they have had
some success at the team level concerns how to scale DevOps across
a large organization. They typically approach it by trying to get the
rest of the organization to do what they did because of the bene-
fits it provided. This overlooks the fact that the biggest barriers to

12 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

adoption are not technical, but instead involve organizational change
management and getting people to work differently. The key to this
adoption is helping the broader organization understand the prin-
ciples, while providing as much flexibility as possible to allow them
to develop and take ownership of their plans. In order to make this
adoption of principles as flexible as possible, in Chapter 5 we will
cover how to segment the work in large organizations into the small-
est pieces possible to enable local control and ownership. For some
organizations with loosely coupled architectures, this will result in a
lot of small, independent teams where you only have to coordinate
the work across tens of people. For other organizations with tightly
coupled architectures that require large applications to be developed,
qualified, and released together, this will require coordinating the
work across hundreds of people. It is important to start by grouping
applications into these types because the things you do to coordi-
nate the work across tens of people will be different than the types
of things you do to coordinate the work across hundreds of people.
While small teams will always be more efficient and deploy more
frequently, the process of documenting, automating, and continu-
ally improving DPs is much more important for coordinating work
across hundreds of people because the inefficiencies across large
organizations are much more pronounced.

In Chapter 6, we will provide a quick overview of the approaches
that work well for large organizations with small teams that can work
independently. This topic will not be covered in a lot of detail because
most available DevOps material already covers this very well. In
Chapter 7, we will start addressing the complexities of designing a
DP for large, tightly-coupled systems. We will show how to break
the problem into smaller more manageable pieces and then build
those up into more complex releasable systems. In Chapter 8, we
cover how to start optimizing these complex DPs, including met-
rics, to help focus changes in the areas where they will most help the
flow through the system. In Chapter 9, we will review and highlight
the differences between implementing improvements for small inde-
pendent teams and for large complex systems.

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 13

Changing how a large organization works is going to take a while,
and it is going to require changing how everyone both thinks about
and does their actual work. A couple of things are important to con-
sider when contemplating this type of organizational change: first,
start where it provides the most benefit so you can build positive
momentum, and second, find executives that are willing to lead
the change and prioritize improvements that will optimize the DP
instead of letting teams sub-optimize their segment of the DP.

Once the DP is in place, it provides a very good approach for trans-
forming how you manage large and complex software projects.
Instead of creating lots of management processes to track prog-
ress and align different teams, you use working code as the forcing
function that aligns the organization. Requiring all the different
Development teams to integrate their code on a regular basis and
ensure it is working with automated testing forces them to align their
software designs without a lot of management overhead.

The move to infrastructure as code, which was spearheaded by Jez
Humble and David Farley and involves treating all aspects of the
software development process with the same of rigor as application
code, provided some major breakthroughs. It requires that the pro-
cess for creating environments, deploying code, and managing data-
bases be automated with code that is documented and tracked in a
source code management (SCM) tool just like the application code.
This move to infrastructure as code forces a common definition of
environments and deployment processes across Development, QA,
and Operations teams and ensures consistency on the path to pro-
duction. Here again it is working code that helps to align these dif-
ferent groups.

Moving to infrastructure as code increases direct communication
between Development and Operations, which is key to the success of
all sorts of cultural and structural shifts DevOps requires. People no
longer log on to computers and make changes that can’t be tracked.
Instead they work together on common scripts for making changes
to the infrastructure that can be tracked in SCM tool. This requires

14 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

them, at minimum, to document any changes they are making so
everyone can see what they are doing, and ideally it forces them to
communicate directly about the changes they are making so they
can ensure those changes will work in every stage in the DP all the
way out to production. Having to use common code and common
tools forces the collaboration. The effect that this collaboration has
on efficiency cannot be underestimated. Since the teams are aligned
by having to ensure their code works together on a daily basis, man-
agement processes do not need to be put in place to address those
issues. Software is notoriously hard to track well with management
processes. Getting status updates everywhere doesn’t work that well
and takes a lot of overhead. It is more efficient if the teams resolve
issues in real time. Additionally, it is much easier to track progress
using the DP because instead of creating lots of different managerial
updates, everyone can track the progress of working code as it moves
down the pipeline.

This approach of a rigorous DP with infrastructure as code and auto-
mated testing gating code progression is significantly different from
the approach ITIL uses for configuration management. Where the
ITIL processes were designed to ensure predictability and stability,
the DevOps changes have been driven by the need to improve speed
while maintaining stability. The biggest changes are around configu-
ration management and approval processes. The ITIL approach has
very strict manual processes for any changes that occur in the con-
figuration of production. These changes are typically manually docu-
mented and approved in a change management tool with tickets. The
approved changes are then manually implemented in production.
This approach helped improve stability and consistency, but slowed
down flow by requiring lots of handoffs and manual processes. The
DevOps approach of infrastructure as code with automated testing
as gates in the DP enables better control of configuration and more
rigors in the approval process, while also dramatically improving
speed. It does this by automating the process with code and hav-
ing everything in the SCM tool. The code change being proposed is
documented by the script change in the SCM. The approval criteria

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 15

for accepting the change is documented by automated tests that are
also in the SCM. Additionally, you know exactly what change was
implemented because it was done with the automation code under
revision control. The whole approach puts everything required for
change management in one tool with automation that is much easier
and quicker to track. It also improves the rigors in the approval pro-
cesses by requiring the people who traditionally approve the changes
to document their criteria via automated tests instead of just using
some arbitrary management decision for each change.

This approach provides some huge benefits for auditing and regula-
tory compliance. Where before the audit team would have to track
the manual code changes, approval processes, and implementations
in different tools, it is now all automated and easily tracked in one
place. It dramatically improves compliance because computers are
much better than humans at ensuring the process is followed every
time. It is also easier for the auditing team because all the changes
are documented in a (SCM) tool that is designed for automatically
tracking and documenting changes.

These changes are dramatically improving the effectiveness of large
organizations because they improve the flow of value while main-
taining stability. Most importantly, though, is that setting up and
optimizing a DP requires removing waste and inefficiencies that have
existed in your organization for years. In order to improve the flow,
you will end up addressing lots of inefficiencies that occur in coor-
dinating work across people. The productivity of individuals will be
improved by better quality and faster feedback while they are writing
code, but the biggest benefits will come from addressing the issues
coordinating the work within teams, across teams, and across orga-
nizations. It will require technical implementations and improve-
ment, but by far the biggest challenge is getting people to embrace
the approaches and change how they work on a day-to-day basis.
These changes will be significant, but the benefits will be dramatic.

16 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Summary
As software becomes the basis of competition, how we currently
manage software limits the kinds of quick responses that businesses
require. This is where DevOps steps in. It is all about improving
speed while maintaining all aspects of quality. As businesses embark
on DevOps journeys, though, they are finding that there are myriad
ideas out there about what DevOps is and how it is defined. As this
book will address, most large organizations don’t have a good frame-
work for putting all these different ideas into context as they start
their DevOps journey. This makes it difficult to get everyone work-
ing together on changes that will improve the end-to-end system.
People working in a large organization need to be aligned on what
they are going to build and need to find ways to prioritize improve-
ment or else they won’t implement DevOps in ways that will deliver
the expected results. As this book will show, documenting, automat-
ing, and optimizing DPs in large software/IT organizations improves
efficiency and effectiveness and offers a very good approach for
transforming how you manage large and complex software projects.

17

Chapter 2

THE BASIC
DEPLOYMENT PIPELINE

The DP in a large organization can be a complex system to under-
stand and improve. Therefore, it makes sense to start with a very
basic view of the DP, to break the problem down into its simplest
construct and then show how it scales and becomes more complex
when you use it across big, complex organizations. The most basic
construct of the DP is the flow of a business idea to development
by one developer through a test environment into production. This
defines how value flows through software/IT organizations, which is
the first step to understanding bottlenecks and waste in the system.
Some people might be tempted to start the DP at the developer, but
I tend to take it back to the flow from the business idea because we
should not overlook the amount of requirements inventory and inef-
ficiencies that waterfall planning and the annual budgeting process
drive into most organizations.

The first step in the pipeline is communicating the business idea to
the developer so they can create the new feature. Then, once the new
feature is ready, the developer will need to test it to ensure that it is
working as expected, that the new code has not broken any existing
functionality, and that it has not introduced any security holes or
impacted performance. This requires an environment that is repre-
sentative of production. The code then needs to be deployed into the
test environment and tested. Once the testing ensures the new code
is working as expected and has not broken any other existing func-
tionality, it can be deployed into production, tested, and released.
The final step is monitoring the application in production to ensure
it is working as expected. In this chapter, we will review each step
in this process, highlighting the inefficiencies that frequently occur.
Then, in Chapter 3, we will review the DevOps practices that were
developed to help address those inefficiencies.

18 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Requirements
The first step in the DP is progressing from a business idea to work
for the developer to create the new feature. This usually involves
creating a requirement and planning the development to some
extent. The first problem large organizations have with flow of value
through their DP is that they tend to use waterfall planning. They do
this because they use waterfall planning for every other part of their
business so they just apply the same processes to software. Software,
however, is unlike anything else most organizations manage in three
ways. First, it is much harder to plan accurately because everything
you are asking your teams to do represents something they are being
asked to do it for the first time. Second, if software is developed
correctly with a rigorous DP, it is relatively quick and inexpensive
to change. Third, as an industry we are so poor at predicting our
customers’ usage that over 50% of all software developed is never
used or does not meet its business intent. Because of these unique
characteristics of software, if you use waterfall planning, you end up
locking in your most flexible and valuable asset in order to deliver
features that won’t ever be used or won’t deliver the intended busi-
ness results. You also use up a significant amount of your capacity
planning instead of delivering real value to your business.

Organizations that use waterfall planning also tend to build up lots
of requirements inventory in front of the developer. This inventory
tends to slow down the flow of value and creates waste and inef-
ficiencies in the process. As the Lean manufacturing efforts have

CHAPTER 2 THE BASIC DEPLOYMENT PIPELINE 19

clearly demonstrated, wherever you have excess inventory in the
system tends to drive waste in terms of rework and expediting. If the
organization has invested in creating the requirements well ahead of
when they are needed, when the developer is ready to engage, the
requirement frequently needs to be updated to answer any questions
the developer might have and/or updated to respond to changes in
the market. This creates waste and rework in the system.

The other challenge with having excess inventory of requirements
in front of the developer is that as the marketplace evolves, the pri-
orities should also evolve. This leads to the organization having to
reprioritize the requirements on a regular basis or, in the worst case,
sticking to a committed plan and delivering features that are less
likely to meet the needs of the current market. If these organizations
let the planning process lock them into committed plans, it creates
waste by delivering lower value features. If the organizations repri-
oritize a large inventory of requirements, they will likely deprioritize
requirements that the organization has invested a lot of time and
energy in creating. Either way, excess requirements inventory leads
to waste.

Test Environment
The next step is getting an environment where the new feature can
be deployed and tested. The job of providing environments typically
belongs to Operations, so they frequently lead this effort. In small

20 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

organizations using the cloud, this can be very straightforward and
easy. In large organizations using internal datacenters, this can be
a very complex and timely process that requires working through
extensive procurement and approval processes with lengthy handoffs
between different parts of the organization. Getting an environment
can start with long procurement cycles and major operational proj-
ects just to coordinate the work across the different server, storage,
networking, and firewall teams in Operations. This is frequently one
of the biggest pain points that cause organizations to start explor-
ing DevOps.

There is one large organization that started their DevOps initia-
tive by trying to understand how long it would take to get up Hello
World! in an environment using their standard processes. They did
this to understand where the biggest constraints were in their orga-
nization. They quit this experiment after 250 days even though they
still did not have Hello World! up and running because they felt they
had identified the biggest constraints. Next, they ran the same exper-
iment in Amazon Web Services and showed it could be done in two
hours. This experiment provided a good understanding of the issues
in their organization and also provided a view of what was possible.

Testing and Defect Fixing
Once the environment is ready, the next step is deploying the code
with the new feature into the test environment and ensuring it works
as expected and does not break any existing functionality. This step
should also ensure that there were no security or performance issues
created by the new code. Three issues typically plague traditional
organizations at this stage in their DP: repeatability of test results,
the time it takes to run the tests, and the time it takes to fix all the
issues.

Repeatability of the results is a big source of inefficiency for most
organizations. They waste time and energy debugging and trying to
find code issues that end up being problems with the environment,
the code deployment, or even the testing process. This makes it

CHAPTER 2 THE BASIC DEPLOYMENT PIPELINE 21

extremely difficult to determine when the code is ready to flow into
production and requires a lot of extra triaging effort for the orga-
nization. Large, complex, tightly coupled organizations frequently
spend more time setting up and debugging these environments than
they do writing code for the new capabilities.

This testing is typically done with expensive and time-consuming
manual tests that are not very repeatable. This is why it’s essential to
automate your testing. The time it takes to run through a full cycle
of manual testing delays the feedback to developers, which results
in slow rework cycles, which reduces flow in the DP. The time and
expense of these manual test cycles also forces organizations to batch
lots of new features together into major releases, which slows the flow
of value and makes the triage process more difficult and inefficient.

The next challenge in this step is the time and effort it takes to remove
all the defects from the code in the test environment and to get the
applications up to production level quality. In the beginning, the big-
gest constraint is typically the time it takes to run all the tests. When
this takes weeks, the developers can typically keep up with fixing
defects at the rate at which the testers are finding them. This changes
once the organization moves to automation where all the testing can
be run in hours, at which point the bottleneck tends to move toward
the developers ability to fix all the defects and get the code to pro-
duction levels of quality.

22 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Once an organization gets good at providing environments or is just
adding features to an application that already has environments set
up, reaching production level quality is frequently one of the biggest
challenges to releasing code on a more frequent basis. I have worked
with organizations that have the release team leading large cross-or-
ganizational meetings to get applications tested, fixed, and ready for
production. They meet every day to review the testing progress to
see when it will be done so they are ready to release to production.
They track all the defects and fixes so they can make sure the cur-
rent builds have production level quality. Frequently, you see these
teams working late on a Friday night to get the build ready for off-
shore testing over the weekend only to find out Saturday morning
that all the offshore teams were testing with the wrong code or a bad
deployment, or the environment was misconfigured in some way.
This process can drive a large amount of work into the system and is
so painful that many organizations choose to batch very large, less
frequent releases to limit the pain.

Production Deployment
Once all the code is ready, the next step is to deploy the code into
production for testing and release to the customer. Production
deployment is an Operations led effort, which is important because
Operations doesn’t always take the lead in DevOps transformations,
but when you use the construct of the DP to illustrate how things
work, it becomes clear that Operations is essential to the transfor-
mation and should lead certain steps to increase efficiency in the
process. It is during this step that organizations frequently see issues
with the application for the first time during the release. It is often
not clear if these issues are due to code, deployment, environments,
testing, or something else altogether. Therefore, the deployment of
large complex systems frequently requires large cross-organizational
launch calls to support releases. Additionally, these deployment pro-
cesses themselves can require lots of time and resources for manual
implementations. The amount of time, effort, and angst associated

CHAPTER 2 THE BASIC DEPLOYMENT PIPELINE 23

with this process frequently pushes organizations into batching large
amounts of change into less frequent releases.

Monitoring and Operations
Monitoring is typically another Operations-led effort since they own
the tools that are used to monitor production. Frequently, the first
place in the DP that monitoring is used is in production. This is prob-
lematic because when code is released to customers, developers hav-
en’t been able to see potential problems clearly before the customer
experience highlights it. If Operations works with Development to
move monitoring up the pipeline, potential problems are caught ear-
lier and before they impact the customer.

When code is finally released to the customers and monitored to
ensure it is working as expected, then ideally there shouldn’t be any
new issues caught with monitoring in production if all the perfor-
mance and security testing was complete with good coverage. This
is frequently not the case in reality. For example, I was part of one
large release into production where we had done extensive testing
going through a rigorous release process, only to have it immediately
start crashing in production as a result of an issue we had never seen
before. Every time we pointed customer traffic to the new code base,
it would start running out of memory and crashing. After several
tries and collecting some data, we had to spend several hours roll-
ing back to the old version of the applications. We knew where the
defect existed, but even as we tried debugging the issues, we couldn’t
reproduce it in our test environments. After a while, we decided
we couldn’t learn any more until we deployed into production and
used monitoring to help locate the issue. We deployed again, and
the monitoring showed us that we were running out of memory and
crashing. This time the developers knew enough to collect more
clues to help them identify the issue. It turns out a developer was fix-
ing a bug that was not wrapping around a long line of text correctly.
The command the developer had used worked fine in all our testing,
but in production we realized that IE8 localized to Spanish had a
defect that would turn this command into a floating point instead of

24 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

an integer, causing a stack overflow. This was such a unique corner
case, we would not have considered testing for it. Additionally, even
if we had considered it, running all our testing on different browsers
with different localizations would have become cost prohibitive. It
is issues like this that remind us that the DP is not complete until
the new code has been monitored in production and is behaving as
expected.

Summary
Understanding and improving a complex DP in a large organization
can be a complicated process. Therefore, it makes sense to start by
exploring a very simple DP with one developer and understanding
the associated challenges. This process starts with the business idea
being communicated to the developer and ends with working code
in production that meets the needs of the customer. There are lots of
things that can and do go wrong in large organizations, and the DP
provides a good framework for putting those issues in context. In
this chapter, we introduced the concept and highlighted some typi-
cal problems. Chapter 3 will introduce the DevOps practices that are
designed to address issues at each stage in the pipeline and provide
some metrics that you can use to target improvements that will pro-
vide the biggest benefits.

25

Chapter 3

OPTIMIZING THE BASIC
DEPLOYMENT PIPELINE

Setting up your DP and using DevOps practices for increasing its
throughput while maintaining or improving quality is a journey that
takes time for most large organizations. This approach, though, will
provide a systematic method for addressing inefficiencies in your
software development processes and improving those processes over
time. We will look at the different types of work, different types of
waste, and different metrics for highlighting inefficiencies. We will
start there because it is important to put the different DevOps con-
cepts, metrics, and practices into perspective so you can start your
improvements where they will provide the biggest benefits and start
driving positive momentum for your transformation.

The technical and cultural shifts associated with this will change how
everyone works on a day-to-day basis. The goal is to get people to
accept these cultural changes and embrace different ways of work-
ing. For example: As an Operations person, I have always logged into
a server to debug and fix issues on the fly. Now I can log on to debug,
but the fix is going to require updating and running the script. This
is going to be slower at first and will feel unnatural to me, but the
change means I know, as does everyone else, that the exact state of
the server with all changes are under version control, and I can cre-
ate new servers at will that are exactly the same. Short-term pain for
long-term gain is going to be hard to get some people to embrace,
but this is the type of cultural change that is required to truly trans-
form your development processes.

Additionally, there are lots of breakthroughs coming from the field
of DevOps that will help you address issues that have been plaguing
your organization for years that were not very visible while operating
at a low cadence. When you do one deployment a month, you don’t
see the issues repeating enough to see a common cause that needs to

26 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

be fixed. When you do a deployment each day, you see a pattern that
reveals the things that need fixing. When you are deploying manu-
ally on a monthly basis, you can use brute force, which takes up a
lot of time, requires a lot of energy, and creates a lot of frustration.
When you deploy daily, you can no longer use brute force. You need
to automate to improve frequency, and that automation allows you
to fix repetitive issues.

As you look to address inefficiencies, it is important to understand
that there are three different kinds of work with software that require
different approaches to eliminate waste and improve efficiency. First,
there is new and unique work, such as the new features, new appli-
cations, and new products that are the objective of the organization.
Second, there is triage work that must be done to find the source of
the issues that need to be fixed. Third, there is repetitive work, which
includes creating an environment, building, deploying, configuring
databases, configuring firewalls, and testing.

Since the new and unique work isn’t a repetitive task, it can’t be opti-
mized the way you would a manufacturing process. In manufac-
turing, the product being built is constant so you can make process
changes and measure the output to see if there was an improvement.
With the new and unique part of software you can’t do that because
you are changing both the product and the process at the same
time. Therefore, you don’t know if the improvement was due to the
process change or just a different outcome based on processing a
different type or size of requirement. Instead the focus here should
be on increasing the feedback so that people working on these new
capabilities don’t waste time and energy on things that won’t work
with changes other people are making, won’t work in production,
or don’t meet the needs of the customer. Providing fast, high-qual-
ity feedback helps to minimize this waste. It starts with feedback in
a production-like environment with their latest code working with
everyone else’s latest code to ensure real-time resolution of those
issues. Then, ideally, the feedback comes from the customer with
code in production as soon as possible. Validating with the customer
is done to address the fact that 50% of new software features are

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 27

never used or do not meet their business intent. Removing this waste
requires getting new features to the customers as fast as possible to
enable finding which parts of the 50% are not meeting their business
objective so the organization can quit wasting time on those efforts.

In large software organizations, triaging and localizing the source of
the issue can consume a large amount of effort. Minimizing waste
in this area requires minimizing the amount of triage required and
then designing processes and approaches that localize the source
of issues as quickly as possible when triage is required. DevOps
approaches work to minimize the amount of triage required by auto-
mating repetitive tasks for consistency. DevOps approaches are also
designed to improve the efficiency of the triage process by moving to
smaller batch sizes, resulting in fewer changes needing to be investi-
gated as potential sources of the issue.

The waste with repetitive work is different. DevOps moves to auto-
mate these repetitive tasks for three reasons. First, it addresses the
obvious waste of doing something manually when it could be auto-
mated. Automation also enables the tasks to be run more frequently,
which helps with batch sizes and thus the triage process. Second,
it dramatically reduces the time associated with these manual tasks
so that the feedback cycles are much shorter, which helps to reduce
the waste for new and unique work. Third, because the automated
tasks are executed the same way every time, it reduces the amount
of triage required to find manual mistakes or inconsistencies across
environments.

DevOps practices are designed to help address these sources of
waste, but with so many different places that need to be improved
in large organizations, it is important to understand where to start.
The first step is documenting the current DP and starting to collect
data to help target the bottlenecks in flow and the biggest sources of
waste. In this chapter we will walk through each step of the basic DP
and will review which metrics to collect to help you understand the
magnitude of issues you have at each stage. Then, we will describe
the DevOps approaches people have found effective for addressing

28 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

the waste at that stage. Finally, we will highlight the cultural changes
that are required to get people to accept working differently.

This approach should help illustrate why so many different people
have different definitions of DevOps. It really depends what part of
the elephant they are seeing. For any given organization, the con-
straint in flow may be the planning/requirements process, the devel-
opment process, obtaining consistent environments, the testing
process, or deploying code. Your view of the constraint also poten-
tially depends on your role in the organization. While everything
you are hearing about DevOps is typically valid, you can’t simply
copy the rituals because it might not make sense for your organi-
zation. One organization’s bottleneck is not another organization’s
bottleneck so you must focus on applying the principles!

Requirement/Planning
Here we are talking about new and unique work, not repetitive work,
so fixing it requires fast feedback and a focus on end-to-end cycle
time for ultimate customer feedback.

For organizations trying to better understand the waste in the plan-
ning and requirements part of their DP, it is important to understand
the data showing the inefficiencies. It may not be possible to col-
lect all the data at first, but don’t let this stop you from starting your
improvements. As with all of the metrics we describe, get as much
data as you can to target issues and start your continuous improve-
ment process. It is more important to start improving than it is to
get a perfect view of your current issues. Ideally, though, you would
want to know the answers to the following questions:

• What percentage of the organizations capacity is spent on docu-
menting requirements and planning?

• What is the amount of requirements inventory waiting for
development, roughly, in terms of days of supply?

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 29

• What percentages of the requirements are reworked after origi-
nally defined?

• What percentages of the delivered features are being used by the
customers and are achieving the expected business results?

Optimizing this part of the DP requires moving to a just-in-time
approach to documenting and decomposing requirements only to
the level required to support the required business decisions while
limiting the commitment of long-term deliveries to a subset of the
overall capacity. The focus here is to limit the inventory of require-
ments as much as possible. Ideally this would wait until the devel-
oper is ready to start working on the requirement before investing in
defining the feature. This approach minimizes waste because effort
is not exerted until you know for sure it is going to be developed. It
also enables quick responsiveness to changes in the market because
great new ideas don’t have to wait in line behind all the features that
were previously defined.

While this is the ideal situation, it is not always possible because
organizations frequently need a longer-range view of when things
might happen in order to support different business decisions. For
example, you might ask yourself, ”Do I need to ramp up hiring to
meet schedule, or should I build the manufacturing line because a
product is going to be ready for a launch?” The problem is that most
organizations create way more requirements inventory a long way
into the future than is needed to support their business decisions.
They want to know exactly what features will be ready when using
waterfall planning because that is what they do for every other part
of the business. The problem is that this approach drives a lot of
waste into the system and locks in to a committed plan what should
be your most flexible asset. Additionally, most organizations push
their software teams to commit to 100% of their capacity, meaning
they are not able to respond to changes in the marketplace or discov-
eries during development. This is a significant source of waste in a
lot of organizations.

30 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

I have worked with one organization that moved to a more just-
in-time approach for requirements and that has transformed their
planning processes from taking 20% or more of their capacity to less
than 5%. They eliminated waste and freed up 15% of the capacity of
their organization to focus on creating value for the business. This
was done by limiting long-term commitments of over a year to less
than 50% of capacity and committing additional capacity in shorter
timeframe horizons. The details of how this worked are in Chapter 5
of Leading the Transformation by Gary Gruver and Tommy Mouser.
This was a big shift that freed up more capacity, and it also improved
the speed of value through the system because new ideas could move
quickly into development if they were of the highest priority instead
of waiting in queue behind a lot of lower-priority ideas that were
previously planned.

This move is a big cultural change for most organizations. It requires
software/IT and business executives to think differently about how
they manage software. They really need to change their focus from
optimizing the system for accuracy in plans to optimizing it for
throughput of value for the customer. They need to be clear about
the business decisions they need to support and work with the orga-
nization to limit the investment in requirements just to the level of
detail required to support those decisions.

Environments
For many organizations, like the one described in Chapter 2, the
time it takes for Operations to create an environment for testing is
one of the lengthiest steps in the DP. Additionally, the consistency
between this testing environment and production is so lacking
that it requires finding and fixing a whole new set of issues at each
stage of testing in the DP. Creating these environments is one of the
main repetitive tasks that can be documented, automated, and put
under revision control. The objective here is to be able to quickly
create environments that provide consistent results across the DP.
This is done through a movement to infrastructure as code, which
has the additional advantage of documenting everything about the

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 31

environments so it is easier for different parts of the organization to
track and collaborate on changes.

To better understand the impact environment issues are having on
your DP, it would be helpful to have the following data:

• time from environment request to delivery

• how frequently new environments are required

• the percent of time environments need fixing before acceptance

• the percent of defects associated with code vs. environment vs.
deployment vs. database vs. other at each stage in the DP

One of the biggest improvements coming out of the DevOps move-
ment concerns the speed and consistency of environments, deploy-
ments, and databases. This started with Continuous Delivery by Jez
Humble and David Farley. They showed the value of infrastructure
as code, where all parts of the environment are treated with the same
rigor and controls as the application code. The process of automating
the infrastructure and putting it under version control has some key
advantages. First, the automation ensures consistency across differ-
ent stages and different servers in the DP. Second, the automation
supports the increased frequency that is required to drive to smaller
batch sizes and more frequent deployments. Third, it provides work-
ing code that is a well-documented definition of the environments
that everyone can collaborate on when changes are required to sup-
port new features.

Technical solutions in this space are quickly evolving because orga-
nizations are seeing that getting control of their environments
provides many benefits. Smart engineers around the world are con-
stantly inventing new ways to make this process easier and faster.
Cloud capabilities, whether internal or external, tend to help a lot
with speed and consistency. New scripting capabilities from Chef,
Puppet, Ansible, and others help with getting all the changes in
scripts under source control management. There have also been

32 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

breakthroughs with containers that are helping with speed and con-
sistency. The “how” in this space is evolving quickly because of the
benefits the solutions are providing, but the “what” is a lot more con-
sistent. For environments, you don’t want the speed of provisioning
to be a bottleneck in your DP. You need to be able to ensure consis-
tency of the environment, deployment process, and data across dif-
ferent stages of your DP. You need to be able to qualify infrastructure
code changes efficiently so your infrastructure can move as quickly
as your applications. Additionally, you need to be able to quickly and
efficiently track everything that changes from one build and envi-
ronment to the next.

Having Development and Operations collaborate on these scripts for
the entire DP is essential. The environments across different stages
of the DP are frequently different sizes and shapes, so often no one
person understands how a configuration change in the development
stage should be implemented in every stage through production. If
you are going to change the infrastructure code, it has to work for
every stage. If you don’t know how it should work in those stages,
it forces necessary discussions. If you are changing it and break-
ing other stages without telling anyone, the SCM will find you out
and the people managing the DP will provide appropriate feedback.
Working together on this code is what forces the alignment between
Development and Operations. Before this change, Development
would tend to make a change to fix their environment so their code
would work, but they wouldn’t bother to tell anyone or let people
know that in order for their new feature to work, something would
have to change in production. It was release engineering’s job to
try and figure out everything that had changed and how to get it
working in production. With the shift to infrastructure as code, it is
everyone’s responsibility to work together and clearly document in
working automation code all of the changes.

This shift to infrastructure as code also has a big impact on the
ITIL and auditing processes. Instead of the ITIL processes of doc-
umenting configuration of a change manually in a ticket, it is all
documented in code that is under revision control in a SCM tool.

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 33

The SCM is designed to make it easy to track any and all changes
automatically. You can look at any server and see exactly what was
changed by who and when. Combine this with automated testing
that can tell you when the system started failing, and you can quickly
get to the change that caused the problem. This localization gets eas-
ier when the cycle time between tests limits this to a few changes to
look through.

Right now, the triage process takes a long time to sort through
clues to find the change that caused the problem. It is hard to tell
if it is a code, environment, deploy, data, or test problem. and cur-
rently the only thing under control for most organizations is code.
Infrastructure as code changes that and puts everything under ver-
sion control that is tracked. This eliminates server-to-server variabil-
ity and enables version control of everything else. This means that
the process for making the change and documenting the change are
the same thing so you don’t have to look at the documentation of the
change in one tool to see what was approved and then validate that
it was really done in the other tool. You also don’t have to look at
everything that was done in one tool and then go to the other tool to
ensure it was documented. This is what they do during auditing. The
other thing done during auditing is tracking to ensure everyone is
following the manual processes every time–something that humans
do very poorly, but computers do very well. When all this is auto-
mated, it meets the ITIL test of tracking all changes, and it makes
auditing very easy. The problem is that the way DevOps is currently
described to process and auditing teams makes them dig in their
heels and block changes when instead they should be championing
those changes. To avoid this resistance to these cultural changes, it is
important to help the auditing team understand the benefits it will
provide and include them in defining how the process will work.
This will make it easier for them to audit, and they will know where
to look for the data they require.

Using infrastructure as code across the DP also has the benefit of
forcing cultural alignment between Development and Operations.
When Development and Operations are using different tools and

34 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

processes for creating environments, deploying code into those envi-
ronments, and managing databases, they tend to find lots of issues
releasing new code into production. This can lead to a great deal of
animosity between Development and Operations. As they start using
the same tools, and more specifically the same code, you will likely
find that making the code work in all the different stages of the DP
forces them to collaborate much more closely. They need to under-
stand each other’s needs and the differences between the different
stages much better. They also need to agree that any changes to the
production environments start at the beginning of the DP and prop-
agate through the system just like the application code. Over time,
you will likely find that this working code is the forcing function that
starts the cultural alignment between Development, Operations,
and all the organizations in between. This is a big change for most
large organizations. It requires that people quit logging in to servers
and making manual changes. It requires an investment in creating
automation for the infrastructure. It also requires everyone to use
common tools, communicate about any infrastructure changes that
are required, and document the changes with automated scripts. It
requires much better communication across the different silos than
exists in most organizations.

Organizations doing embedded development typically have a unique
challenge with environments because the firmware/software systems
are being developed in parallel with the actual product so there is
very little, if any, product available for early testing. Additionally,
even when the product is available, it is frequently difficult to fully
automate the testing in the final product. These organizations need
to invest in simulators to enable them to test the software portions
of their code as frequently and cheaply as possible. They need to find
or create a clean architectural interface between the software parts of
their code and the low-level embedded firmware parts. Code is then
written that can simulate this interface running on a blade server so
they can test the software code without the final product. The same
principle holds true for the low-level embedded firmware, but this
testing frequently requires validating the interactions of this code

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 35

with the custom hardware in the product. For this testing, they need
to create emulators that support testing of the hardware and firm-
ware together without the rest of the product.

This investment in simulators and emulators is a big cultural shift for
most embedded organizations. They typically have never invested to
create these capabilities and instead just do big bang integrations late
in the product lifecycle that don’t go well. Additionally, those that
have created simulators or emulators have not invested in continu-
ally improving these capabilities to ensure they can catch more and
more of the defects over time. These organizations need to make the
cultural shift to more frequent test cycles just like any other DevOps
organization, but they can’t do that if they don’t have test environ-
ments they can trust for finding code issues. If the organization is
not committed to maintaining and improving these environments,
the organization tends to loose trust and quit using them. When this
happens, they end up missing a key tool for transforming how they
do embedded software and firmware development.

Testing
The testing, debug, and defect fixing stage of the DP is a big source of
inefficiencies for lots of organizations. To understand the magnitude
of the problem for your DP, it would be helpful to have the following
data:

• the time it takes to run the full set of testing

• the repeatability of the testing (false failures)

• the percent of defects found with unit tests, automated system
tests, and manual tests

• the time it takes the release branch to meet production quality

• approval times

• batch sizes or release frequency at each stage

36 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

The time it takes for testing is frequently one of the biggest bot-
tlenecks in flow in organizations starting on the DevOps journey.
They depend on slow-running manual tests to find defects and sup-
port their release decisions. Removing or reducing this bottleneck
is going to require moving to automated testing. This automated
testing should include all aspects of testing required to release code
into production: regression, new functionality, security, and per-
formance. Operations should also work to add monitoring or other
operational concerns to these testing environments to ensure issues
are found and feedback is given to developers while they are writ-
ing code so they can learn and improve. Automating all the testing
to run within hours instead of days and weeks is going to be a big
change for most organizations. The tests need to be reliable and pro-
vide consistent results if they are going to be used for gating code.
You should run them over and over again in random order against
the same code to make sure they provide the same result each time
and can be run in parallel on separate servers. Make sure the test
automation framework is designed so the tests are maintainable and
triageable. You are going to be running and maintaining thousands
of automated tests running daily, and if you don’t think through how
this is going to work at scale, you will end up dying under the weight
of the test automation instead of reaping its benefits. This requires a
well-designed automation framework that is going to require close
collaboration between Development and QA.

It is important to make sure the tests are designed to make the tri-
age process more efficient. It isn’t efficient from a triage perspective
if the system tests are finding lots of environment or deployment
issues. If this happens, you should start designing specific post-de-
ployment tests to find and localize these issues quickly. Then once
the post-deployment tests are in place, make sure they are passing
and the environments are correct before starting any system testing.
This approach improves the triage efficiency by separating code and
infrastructure issues with the design of the testing process.

Automated testing and responding to feedback is going to be a big
cultural shift for most organizations. The testing process is going to

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 37

have to move from manually knowing how to test the applications
to using leading edge programming skills to automate testing of the
application. These are skills that don’t always exist in organizations
that have traditionally done manual testing. Therefore, Development
and the test organization are going to have to collaborate to design
the test framework. Development is going to have to modify how
they write code so that automated testing will be stable and main-
tainable. And probably the biggest change is to have the developers
respond to test failures and keep build stability as their top priority.

If you can’t get this shift to happen, it probably doesn’t make sense
to invest in building out complex DPs that won’t be used. The pur-
pose of the automated testing is not to reduce the cost of testing,
but to enable the tests to be run on a more frequent basis to provide
feedback to developers in order to reduce waste in new and unique
work. If they are not responding to this feedback, then it is not help-
ing. Therefore, it is important to start this cultural shift as soon as
possible. Don’t write a bunch of automated tests before you start
using them to gate code. Instead, write a few automated build accep-
tance tests (BATs) that define a very minimal level of stability. Make
sure everyone understands that keeping those tests passing on every
build is job one. Watch this process very carefully. If it is primarily
finding test issues, review and redesign your test framework. If it is
primarily finding infrastructure issues, start designing post-deploy-
ment tests to ensure stability before running any system test looking
for code issues. If it is primarily finding code issues, then you are
on the right track and ready to start the cultural transformation of
having the developers respond to feedback from the DP. The process
of moving to automated tests gating code is going to be a big cultural
shift, but it is probably one of the most important steps in changing
how software is developed.

Testing more frequently on smaller batches of changes makes tri-
age and debugging much easier and more efficient. The developers
receive feedback while they are writing the code and engaged in
that part of the design instead of weeks later when they have moved
on to something else. This makes it much easier for them to learn

38 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

from their mistakes and improve instead of just getting beat up for
something they don’t even remember doing. Additionally, there
are fewer changes in the code base between the failure and the last
time it passed, so you can quickly localize the potential sources of
the problem.

The focus for automated testing really needs to be on increasing
the frequency of testing and ensuring the organization is quickly
responding to failures. This should be the first step for two reasons.
First, it starts getting developers to ensure the code they are writing
is not breaking existing functionality. Second, and most importantly,
it ensures that your test framework is maintainable and triagable
before you waste time writing tests that won’t work over the long
term.

I worked with one organization that was very proud of the fact that
they had written over one thousand automated tests that they were
running at the end of each release cycle. I pointed out that this was
good, but to see the most value, they should start using them in the
DP every day, gating builds where the developers were required to
keep the builds green. They should also make sure they started with
the best, most stable tests because if the red builds were frequently
due to test issues instead of code issues, then the developers would
get upset and disengage from the process. They spent several weeks
trying to find reliable tests out of the huge amount available. In
the end, they found out that they had to throw out all the existing
tests because they were not stable, maintainable, or triagable. Don’t
make this same mistake! Start using your test automation as soon as
possible. Have the first few tests gating code on your DP, and once
you know you have a stable test framework, start adding more tests
over time.

Once you have good test automation in place that is running in
hours instead of days or weeks, the next step to enabling more fre-
quent releases is getting and keeping trunk much closer to produc-
tion-level quality. If you let lots of defects build up on trunk while you
are waiting for the next batch release, then the bottleneck in your DP

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 39

will be the amount of time and energy it takes to fix all the defects
before releasing into production. The reality is that to do continuous
deployment, trunk has to be kept at production levels of quality all
the time. This is a long way off for most organizations, but the ben-
efit of keeping trunk closer to production-level quality is worth the
effort. It enables more frequent, smaller releases because there is not
as big an effort to stabilize a release branch before going into produc-
tion. It also helps with the localization of issues because it is easier to
identify changes in quality when new code is integrated. Lastly, while
you may still have some manual testing in place, it ensures that your
testers are as productive as possible while working on a stable build.
This might not be your bottleneck if you start with a lot of manual
testing because the developers can fix defects as quickly as the testers
can find them. However, this starts to change as you add more auto-
mated tests. Watch for this shift, and be ready to move your focus as
the bottleneck changes over time.

This transition to a more stable trunk is a journey that is going to
take some time. Start with a small set of tests that will define the
minimal level of stability that you will ever allow in your organiza-
tion. These are your BATs. If these fail due to a change, then job one
is fixing those test failures as quickly as possible. Even better, you
should automatically block that change from reaching trunk. Then
over time, you should work to improve the minimal level of stability
allowed on trunk by farming your BAT tests. Have your QA organi-
zation help identify issues they frequently find in builds that impact
their ability to manually test effectively. Create an automated test to
catch this in real time. Add it to the BAT set, and never do any man-
ual testing on a build until the all the automated tests are passing.
Look for major defects that are getting past the current BAT tests,
and add a test to fill the hole. Look for long running BAT tests that
are not finding defects, and remove them so you have time to add
more valuable tests. This is a constant process of farming the BAT
test that moves trunk closer to release quality over time.

If you are going to release more frequently with smaller batches, this
shift to keeping trunk stable and closer to release quality is required.

40 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

It is also going to be a big shift for most organizations. Developers
will need to bring code in without breaking existing functionality
or exposing their code to customers until it is done and ready for
release. Typically, organizations release by creating a release branch
where they finalize and stabilize the code. Every project that is going
to be in a release needs to have their code on trunk when the release
branches. This code is typically brought in with the new features
exposed to the customer ready for final integration testing. For lots
of organizations, the day they release branch is the most unstable
day for trunk because developers are bringing in last minute features
that are not ready and have not been tested with the rest of the latest
code. This is especially true for projects the business wants really
badly. These projects tend to come in with the worst quality, which
means every other project on the release has to wait until the really
bad project is ready before the release branch can go to production.
This type of behavior tends to lead to longer release branches and
less frequent releases. To address this, the organization needs to
start changing their definition of done. The code can and should be
brought in but not exposed to the customer until it meets the new
definition of done. If the organization is going to move to releas-
ing more frequently, the new definition of done needs to change to
include the following: all the stories are signed off, the automated
testing is in place and passing, and there are no known open defects.
This will be a big cultural shift that will take some time.

The final step in this stage of the DP is the approval for moving into
production. For some organizations that are tightly regulated, this
requires getting manual approval by someone in the management
chain, which can take up to days to get. For organizations that are
well down the path to continuous deployment, this can be the big-
gest bottleneck in the flow of code. To remove this bottleneck, highly
regulated organizations move to have the manager who was doing
the manual approval work with testers document their approval
criteria with automated tests. For less regulated environments, hav-
ing the developer take ownership and responsibility for quickly

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 41

resolving any issues found in productions can eliminate the man-
agement approval process.

There are lots of changes that can help improve the flow at this stage
of the DP. The key is to make sure you are prioritizing improvements
that will do the most to improve the flow. So, start with the bottle-
neck and fix it, then identify and fix the next bottleneck. This is the
key to improving flow. If your test cycle is taking six weeks to run and
your management approval takes a day, it does not make any sense
to take on the political battle of convincing your organization that
DevOps means it needs to let developers push code into production.
If, on the other hand, testing takes hours, your trunk is always at pro-
duction levels of quality, and your management approval takes days,
then it makes sense to address the approval barriers that are slowing
down the flow of code. It is important to understand the capabilities
of your organization and the current bottlenecks before prioritizing
the improvements.

Production Release
The next step in the basic DP is the release into production. Ideally,
you would have found and fixed all the issues in the test stage so
that this is a fairly automated and simple process. Realistically, this is
not the case for most organizations. To better understand the source
and magnitude of the issues at this stage, it is helpful to look at the
following metrics:

• the time and effort required to deploy and release into
production

• the number of issues found during release and their source
(code, environment, deployment, test, data, etc…)

If you are going to release code into production with smaller more
frequent releases, you can’t have a long drawn out release process
requiring lots of resources. Many organizations start with teams of
Operations people deploying into a datacenter with run books and
manual processes. This takes a lot effort and is often plagued with

42 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

manual errors and inconsistencies. DevOps addresses this by auto-
mating the release process as the final step in the DP. The process
has been exercised and perfected during earlier stages in the DP
and production is just the last repeat of the process. This automa-
tion ensures consistency and greatly reduces the amount of time and
people required for release.

The next big challenge a lot of organizations have during the release
process is that they are finding issues during the release process that
they did not discover earlier in the DP. It is important to understand
the source of these issues so the team can start addressing the rea-
sons they were not caught before release into production. As much as
possible, you should be using the same tools, processes, and scripts
in the test environment as in the production environment. The test
environment is frequently a smaller version of production, so it is
not exact, but as much as possible you should work to abstract those
differences out of the common code that that defines the environ-
ment, deploys the code, and configures the database. If you are find-
ing a lot of issues associated with these pieces, start automating these
processes and architect for as much common code across the DP as
possible. Also, once you have this automation in place, any patches
for production should start at the front end of the pipeline and flow
through the process just like the application code.

Organizations with large complex deployments also frequently strug-
gle with the triage process during the launch call. A test will fail, but
it is hard to tell if it is due to an environment, deployment, database,
code, or test issue. The automated testing in the deployment process
should be designed to help in this triage process. Instead of config-
uring the environments, deploying the code, configuring the data-
base, and running and debugging system tests, you need to create
post-deployment automated tests that can be run after the environ-
ments are configured to make sure they are correct server by server.
Do the same thing for the deployment and database. Then after you
have proven that those steps executed correctly, you can run the sys-
tem tests to find any code issues that were not caught earlier in the
DP. This structured DevOps approach really helps to streamline the

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 43

triage process during code deployment and helps localize hard to
find intermittent issues that only happen when a system test happens
to hit the one server where the issue exists.

Making these deployments into production work smoothly requires
these technical changes, but mostly it requires everyone in the DP
working together to optimize the system. This is why the DP is an
essential part of DevOps transformations. If Operations continually
sees issues during deployment, they need to work to design feed-
back mechanisms upstream in the DP so the issues are found and
fixed during the testing process. If there are infrastructure issues
found during deployment, Operation teams need to work with the
Development teams to understand why the infrastructure as code
approaches did not find and resolve these issues earlier in the DP.
Additionally, the Operations team should be working with the test
organization to ensure post-deployment tests are created to improve
the efficiency and effectiveness of the triage process. These are all
very different ways of working that these teams need to embrace
over time if the DevOps transformation is going to be successful.

Operation and Monitoring
The final step is operating and monitoring the code to make sure it is
working as expected in production. The primary metrics to monitor
here are:

• issues found in production

• time to restore service

Some organizations are so busy fighting issues in production that
they are not able to focus on creating new capabilities. Addressing
production quality issues can be the biggest challenge for these orga-
nizations. In these situations, it is important to shift the discovery of
these issues to earlier in the pipeline. The operational organization
needs to work with the development organization to ensure their
concerns and issues are being tested for and addressed earlier in the
pipeline. This includes adding tests to address their concerns and

44 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

adding monitoring that is catching issues in production to the test
environments. As discussed in the release section, it also requires
getting common tools and scripts for environments, deployments,
and databases across the entire DP.

Implementing all these changes can help ensure you are catching
most issues before launching into production. It does not neces-
sarily help with the IE8 issue with Spanish localization discussed
in Chapter 2. In that case, it would have just been too costly and
time consuming to test every browser in ever localization for every
test case. Instead, the other significant change that website or SaaS
type organizations that have complete control over their deployment
processes tend to implement is to separate deployment from release
by using approaches like feature toggles and canary releases. This
enables new versions of the system to be released into production
without new features being accessible to the customer, a pattern
known as “dark launching.” This is done due to the realization that
no matter how much you invest in testing, you still might not find
everything. Additionally, the push to find everything can drive the
testing cost and cycle times out of control. Instead these organiza-
tions use a combination of automated testing in their DP and canary
releases in production. Once the feature makes it through their DP,
instead of releasing it to everyone at once, they do a canary release by
giving access to a small percentage of customers and monitoring the
performance to see if it is behaving as expected before releasing it to
the entire customer base. This is not a license to avoid testing earlier
in the pipeline, but it does enable organizations to limit the impact
on the business from unforeseen issues while also taking a pragmatic
approach to their automated testing.

Summary
This simple construct of a DP with a single developer does a good
job of introducing the concepts and shows how the DevOps changes
can help to improve flow. The metrics are also very useful for tar-
geting where to start improving the pipeline. It is important to look
across all the metrics in the DP to ensure you start this work with the

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 45

bottleneck and/or the biggest source of waste because transforming
your development and deployment processes is going to take some
time, and you want to start seeing the benefits of these changes as
soon as possible. This can only occur if you start by focusing on the
biggest issues for your organization. The metrics are intended to
help identify these bottlenecks and waste in order to gain a common
understanding of the issues across your organization so you can get
everyone aligned on investing in the improvements that will add the
most value out of the gate.

