

VMware ThinApp 4.7 Essentials

Peter Björk

Chapter No. 1
"Application Virtualization"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.1 "Application Virtualization"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Peter Björk has many years of ThinApp experience. He started out working with
Thinstall, and continued after VMware acquired the product in 2008, renaming it
ThinApp. Peter supports ThinApp in the EMEA region. As a teacher, Peter has
educated many ThinApp packagers around the world. Peter lives in Sweden with
his wife and two kids, a boy and a girl.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

I would like to thank the people who have supported me throughout the
writing of this book. First and foremost, my thanks go out to my wonderful
wife, Lena. Without her help and support, this book would never have been
written. I know ThinApp to a depth not many others do, but my writing skills
are clearly insufficient. Luckily, Lena has the gift of words, so with her
support I managed to write this book. To my two wonderful kids, Albin and
Filippa, who constantly remind me of what’s important in my life. I would
also like to thank my reviewers, Aaron Black and Adam Eckerle. Their
valuable input was important for this book. I also thank PACKT Publishing
for trusting in me to write this book. It’s my first book and the team: Andrew
Duckworth, Abhishek Kori, and Arun Nadar really helped me through the
process. I must thank Jonathan Clark for coming up with the great idea of
Thinstall, and with that created what became the better part of the my career.
Last but not least, my thoughts go to the family of late Ge van Geldorp. Ge
was an amazing developer and without his genius coding, ThinApp
would not be what it is today. Ge, you are missed every day.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

VMware ThinApp 4.7 Essentials
VMware ThinApp 4.7 is an application virtualization solution which allows its admins
to package Windows applications so that they are portable.

"VMware ThinApp 4.7 Essentials" shows you how to create and deploy ThinApp
packages in order to improve the portability, manageability, and compatibility of
applications by encapsulating them from the underlying operating system on which
they are executed.

ThinApp eliminates application conflicts, reducing the need and cost of recoding and
regression testing.

No matter if you are completely new to VMware ThinApp or an experienced ThinApp
packager, this is the book for you. I've made an effort to make sure that everyone can
learn something in each chapter. This book will cover everything needed to become a
successful ThinApp packager. This book does not talk about the competition. I wanted
this book to be technically oriented and so very little, if any, is of a non-technical nature.

What This Book Covers
Chapter 1, Application Virtualization, covers basic application virtualization concepts.
It also covers important concepts like isolation modes, the sandbox, and much more.

Chapter 2, Application Packaging, explains the whole packaging process. It takes you
through a simple packaging example, which you can easily perform yourself. Entry
points and the data container are explained as well as how your packaging environment
affects your packages..

Chapter 3, Deployment of ThinApp Packages, walks you through the different methods
for deployment as it's now time to deploy the package to your end users. We cover
ThinApp native methods of deployment as well as using VMware View and VMware
Horizon Application Manager.

Chapter 4, Updating and Tweaking Your ThinApp Project, covers how to maintain
your packages using different methods and helps you choose the appropriate method
for different types of updates as after a while, all applications must be updated one way
or another.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 5, How to Distribute updates, covers how to deploy your newly created updated
package. ThinApp offers many different methods, so a good portion is spent on helping
you identify which methods to use for which update.

Chapter 6, Design and Implementation Considerations using ThinApp, outlines general
implementation guidelines. The chapter goes through things you need to be aware of in
order to successfully implement ThinApp in your environment.

Chapter 7, Troubleshooting, teaches you how to conduct efficient troubleshooting of
ThinApp packages, since sometimes you may face an issue while trying to package a
certain application. I have shared some tips and tricks that I've picked up from my many
years of ThinApp packaging.

Appendix, References, provides you with a complete Package.ini parameter reference
as well as all folder macros, and environment variables supported by ThinApp.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization
In this chapter we will cover a general overview of application virtualization
and ThinApp. We will start by exploring what application virtualization is and
why it is superior to local installations. We will then cover the architecture behind
ThinApp and how we can manipulate and customize ThinApp packages to suit
our specifi c requirements.

By the end of this chapter, you will have learned about:

• Application virtualization
• Why you should use application virtualization
• ThinApp architecture
• Common ThinApp vocabulary
• The sandbox
• Isolation modes
• Application linking with the help of AppLink

Application virtualization
Application virtualization encapsulates an application and all of its components
into a package that is easy to deploy and manage. Using virtualization allows you
to execute the application as if it was locally installed when it is not. Normally when
you install an application it will register DLL fi les, create registry keys, and copy
fi les into your operating system. This modifi es your operating system and you will
always run the risk of overwriting something already installed and breaking an
existing application. By virtualizing the application, you will never install anything
on the client, you will simply execute the application. There is also a virtualization
layer hooking into the APIs of the application. When hooking the API for, let's say
Open File, it is possible for the virtualization layer to present a virtual environment
for the application, thus fooling the application into thinking it is already locally
installed and therefore allowing it to execute.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[6]

The benefi ts of using application virtualization are many. Your operating system
stays clean. By having clean machines, your clients will be more stable. A virtualized
application is much easier to deploy, maintain, and retire than a natively installed
one. With application virtualization, it is often possible to run two otherwise
confl icting applications simultaneously on the same machine. Not using application
virtualization makes it pretty much impossible to have Microsoft Offi ce 2003 and
Microsoft Offi ce 2010 installed on the same client and run both at the same time.

ThinApp overview
VMware ThinApp is a packaging format. Like MSI and other packaging formats,
ThinApp simplifi es application deployment. ThinApp uses virtualization to package
your application, which lets you execute the packaged application without having
to install it. When using ThinApp, you simply need to have access to your package
in order to use the application, as compared to the legacy MSI format in which you
need to install and register your application on the local machine. As a side effect of
using virtualization, you can isolate the fi lesystem and registry components from
the locally installed applications as well as from other virtualized applications.
This allows you to run confl icting applications on the same machine. Since you will
never install anything locally, the use of an application will not alter your operating
system. Your client will be much cleaner, more stable, and will operate faster for a
longer time. ThinApp minimizes the constant reinstallation of the operating system
due to repetitive application installs, which leave residue and often create confl icts
that eventually leave the operating system in a degraded state necessitating a
complete system rebuild.

ThinApp has one very obvious advantage over other solutions out there. It is
agentless, meaning you need nothing locally installed in order to execute an
application packaged with the help of ThinApp. Being agentless greatly reduces
the administration overhead. When a new ThinApp version is released, you don't
have to touch any existing packages already deployed. Start using the new version
to capture new applications. You can happily deploy these next to an old ThinApp
package since there is no confl ict between ThinApp versions running side-by-side.
Being agentless also lets you offer an application to a user bringing his or her own
device without the need to ever touch the device. You don't run the risk of being
accused of altering the user's machine.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[7]

Out of the box, ThinApp is capable of virtualizing 60 – 80 percent of your
applications. Having more ThinApp knowledge and experience might allow you to
virtualize up to 85 – 90 percent. You will, most of the time, never achieve 100 percent
virtualization. This means you will, most of the time, have two packaging formats in
place – native installation (often MSI) and ThinApp. ThinApp supports virtualizing
Services, COM, and DCOM objects. ThinApp does not support virtualizing device
drivers, Network visible DCOM, Global Hook DLLs , and COM+ . There might
be workarounds to these limitations. One of these could be to load what is not
supported outside the virtual environment. One of the main reasons to virtualize
an application is to keep your operating system clean. This is why ThinApp does
not make many changes to the operating system when registering a ThinApp
package. Registering a package will give you a certain level of shell integration,
such as shortcuts, fi le type registrations, and a few more, but not all. Context menus
are a typical example. This changed user experience might be a reason not to
virtualize an application, even though ThinApp can package it. For instance, 7-Zip
 adds a context menu item so that when you right-click on a ZIP fi le in Windows
Explorer, you can perform zip/unzip operations without having to open the
application directly. A 7-Zip ThinApp package will happily perform zip/unzip
operations when launched directly, but the users will not have access to the
right-click context menu. Most of the times you can create context menus pointing
to a virtualized application but it is not something ThinApp creates automatically
for you when registering the package.

Even though you will probably not be able to reach 100 percent application
virtualization, ThinApp adds signifi cant value to your application's deployment
and management infrastructure. Every application you manage to virtualize will
be easier to maintain and cheaper to support.

ThinApp architecture
Since it cannot be mentioned too many times, ThinApp is agentless. Nothing needs
to be installed on the client in order to run and use a ThinApped application. The
ThinApp runtime is built into each one of the ThinApp packages you create. ThinApp
does not create confl icts between different versions of ThinApp runtimes, so you can
run packages built using different ThinApp versions on one single machine.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[8]

The ThinApp runtime manages fi le and registry access within the virtual
environment. With the help of isolation modes you can decide what may or may not
be modifi ed on the native operating system. The ThinApp runtime loads processes
and manages memory. Because it is the ThinApp runtime that launches a process,
the runtime now monitors all API calls made by the process. The runtime is also able
to intercept the API calls and manipulate both the request and reply. This is referred
to as hooking the API calls. The ThinApp runtime hooks hundreds of Win32 APIs
in order to create the virtual environment. Let's say an application tries to open a fi le.
The ThinApp runtime sees this request, hooks it, and is now capable of passing a
virtualized fi le to the application, instead of serving the native fi le to the application.
The ThinApp runtime does not hook all possible Windows APIs, only the ones
needed to present a virtual environment to the application package. API calls to
hardware such as graphical drivers are not hooked.

A ThinApp package contains not only the ThinApp runtime, but also includes
a virtualized registry and fi lesystem. You as a packager decide the content of
the virtual environment during packaging. The virtual environment built into
the package is called the read-only version of the virtual environment. The end
user cannot modify the content within the package. Only you as a packager can
change the content.

Changes made by either the user or the application itself are often stored in the
sandbox. The sandbox content is a part of the whole virtual environment known
to the application.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[9]

The view of the environment of a package is a merge between the physical and the
virtualized. In the previous screenshot, Mozilla Firefox sees the content of native
C:\Program Files as well as the virtualized folder called Mozilla Firefox. The
Mozilla Firefox folder is not available to the operating system (Explorer window).

When the virtualized application is launched, the virtual environment is initiated
by the ThinApp runtime and presented to the executing process. The application
believes it is locally installed on the machine. The packaging process of ThinApp
does not alter the application's fi les in any way. The ThinApp runtime loads the
processes and by launching it, the ThinApp runtime can hook into the API calls
made by the processes and present the virtual environment.

Common ThinApp vocabulary
In order to have a meaningful discussion about ThinApp, we need to agree on
some common vocabulary. I prefer to give you this vocabulary earlier in the book
rather than later. If you have already used ThinApp, most of this will already be
known. If you are new to ThinApp, don't worry, as we will cover all of it in more
detail as the book progresses.

The capturing process
This is the whole process of capturing an application. You can run Setup Capture,
install your application, and save the capture into a project folder. The capture
process analyzes all changes made to your capture machine and stores those into
a project folder. These changes are what will become the virtual environment and
make the captured application believe it is locally installed on the target machine.

The capture machine
This is the machine on which you run the capture process. Most of the time it's
a virtual machine since that allows easy reversion to different machine states
(snapshots). After successfully capturing an application, you will revert to a
clean state before you capture a new application.

The project folder
This is the outcome of your capturing process. Now the real work as a packager
begins. It's the project folder that contains the virtualized environment such as
fi les and registry keys recorded during your capturing process.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[10]

The package
When you compile your project folder, the outcome will be the package.
The package is what your users consume in order to execute the captured
application. The package will normally be found in the bin folder within
your project folder. A package can be one single fi le or multiple fi les, one
being the data container and others being entry points.

The data container
The data container is the fi le containing your compiled project folder. It's the
container for the whole virtual environment and the ThinApp runtime.

The entry point
Entry points are the doorways for the user to access the virtualized application.
An entry point specifi es what will be executed in the virtualized environment of
your data container. The target of your entry point may or may not be virtualized. It
is possible to have an entry point for a Java Runtime package launching your locally
installed Internet Explorer. Internet Explorer would see the virtualized environment
and therefore use the version of Java packaged. An entry point can also be a data
container. Otherwise, if it's only an entry point, the data container must be located in
the same folder as the entry point. An entry point can be used to any data container.
The entry point simply searches for the specifi ed data container's name and will
happily use any data container. An entry point contains registration information
such as icon, fi le types, object types, protocols and where to create shortcuts.

Compiling or building your ThinApp package
The building process is the process of taking the content of your project folder and
compiling it into a virtual environment. This process can be issued from within
ThinApp's capturing tool, Setup Capture, or from within your project folder by
launching the build.bat batch fi le. Every time you change the content of your project
folder, you'll have to recompile it in order for the changes to be applied to the package.

The build machine
This is any machine you can use to compile your project. It may or may not be your
capture machine. You do not have to use a certain operating system or even a clean
machine in order to compile your package. Any machine should do the trick. The
build machine must have access to the ThinApp utilities folder and your project
folder in order to successfully compile your project.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[11]

The ThinApp utilities folder
This is the folder created during the installation of VMware ThinApp. Most of the
time it's found in C:\Program Files\VMware\VMware ThinApp. Since ThinApp
utilities are virtualized, you can move this folder to any location. I personally store
the folder on a network share for easy access from all my different capture machines.

The ThinApp runtime
This package embedded runtime allows the virtual environment to be created.
The ThinApp runtime loads the virtualized application's processes and DLLs.
It hooks Windows APIs in order to present a virtualized environment to the
virtualized application.

Read-Only data
This is the virtual environment, fi lesystem, and registry, compiled into the ThinApp
package. Since the package is in a compiled format, no regular end user can open
this fi le and modify its content.

Read and write data
This is what we call the data stored in the sandbox. The sandbox is where ThinApp
stores changes made to the environment by the virtualized application or the end
user. Deleting the sandbox will revert the package to its read-only data state.

Folder macros
These are much like system variables in a Windows operating system, but these are
ThinApp-specifi c variables. Some folder macros share the same name as Windows
variables such as %AppData% pointing to the users' roaming profi le. But others
are different, for example %ProgramFilesDir% represents the system variable
%ProgramFiles%. When you use VBScripts within your packages, you must
understand that there is a difference between folder macros and system variables.
The use of folder macros allows package portability. When you launch a package
on an English OS, your %ProgramFilesDir% will be C:\Program Files, while on
a German OS it is the same folder macro pointing to C:\Programme. This way, the
application you virtualized will fi nd its installation folder where it expects to fi nd
it, no matter what language of OS it's running on. You can fi nd a list of all folder
macros in References.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[12]

The sandbox
Many applications require the ability to write or modify data on the computer's
fi lesystem and registry. When this need arises, ThinApp writes this data to the
sandbox. This process is confi gurable and can be controlled through isolation modes.

The sandbox will store user settings so that these are preserved between application
launches. If you delete the sandbox, the package will revert to its vanilla state.
How big the sandbox will become depends on two factors: isolation modes and the
behavior of the application.

The sandbox is a normal folder storing complete, fully functional versions of
modifi ed fi les. Let's say you run a virtualized application using .ini confi guration
fi les. Changing the application's confi guration would alter the .ini fi le, and in your
sandbox you would fi nd the new version. It's fully functional and possible to open,
for example, in native Notepad. The fi les are stored in folder macros, representing
the path to the fi le. Since fi les are stored as native fi les and not in a binary blob, it's
easy to perform backups of your sandbox. You can do single fi le restores and your
antivirus software can scan its content without any problems.

The previous screenshot shows the sandbox contents stored as plain fi les in a path
represented by a folder macro.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[13]

Modifi cations to the registry are also kept in the sandbox. In order to guarantee
integrity, the registry is stored in a transactional database format. This makes it a
little harder to investigate the contents of the registry changes stored in the sandbox,
but with the tool called vregtool.exe found in the ThinApp utilities folder, it's still
possible. It's important to maintain the integrity of the registry since the registry in
the sandbox also includes a fi le database, telling the ThinApp runtime where to fi nd
each fi le.

The registry fi les are found in the root of the sandbox and are all called Registry.

The previous screenshot is an example of sandbox contents.

The database format for storing the registry was introduced in ThinApp Version
4.0.4. With DisableTransactionRegistry=1 in your Package.ini you can still
use the legacy format, which uses a fl at fi le with a backup of the last known good
state. It's not very likely that you will want to use the legacy format, but in some rare
implementations it has proven to speed up execution of the package, especially if the
user's sandbox is stored on a network share.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[14]

The previous screenshot is a sandbox using the legacy method of storing the registry.

The sandbox can be located anywhere as long as the end user has permission
to modify the location. The sandbox will be created and updated in the context
of the user.

You can specify the location of the sandbox using the parameter SandboxPath=
in Package.ini (more information about Package.ini can be found in the next
chapter). If you do not specify SandboxPath=, the default location will be the user's
roaming profi le, in a folder called Thinstall. You can override the sandbox location
using environment variables or by creating a folder called either the project's
sandbox name or simply Thinstall in the same folder as the package.

You can use SandboxPath= in Package.ini in different ways.

The following is how you store the sandbox in a location next to the package:

[BuildOptions]
SandboxPath=.

This is shown in the following screenshot:

The following screenshot shows the result:

More examples are given as follows:

[BuildOptions]
SandboxPath=C:\Sandboxes

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[15]

The following screenshot shows the result:

[BuildOptions]
SandboxPath=\\cnb\Sandboxes

The following screenshot shows the result:

Creating a folder called Thinstall next to the package will change the sandbox
location. This comes in handy especially during troubleshooting. By using a
Thinstall folder, you can override the content in your existing sandbox. The
Thinstall folder is shown in the following screenshot:

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[16]

Using environment variables to override a package sandbox location allows you to
use the same package in many different environments. Let's say you want to store
the sandbox in the default location on laptops, while you want to store them on a
network share on your Terminal servers. Using an environment variable on your
Terminal servers allows you to re-use the package without rebuilding it.

THINSTALL_SANDBOX_DIR overrides the sandbox location for all of your packages.

The environment variable %SandboxName_SANDBOX_DIR% redirects a specifi c
package's sandbox location. Please note the variable value specifi es the root
of your sandbox folder.

ThinApp searches for the sandbox in a specifi c order. ThinApp starts by looking
 for the environment variable, %SandboxName_SANDBOX_DIR% followed by
%THINSTALL_SANDBOX_DIR%. If no environment variable is found, ThinApp
will look for the following folders and store the sandbox in the following locations:

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[17]

• LOCATION_OF_PACKAGE\SandboxName.ComputerName

For example, C:\Program Files\Firefox\Mozilla Firefox 3.5.2.My_
Computer

• LOCATION_OF_PACKAGE\SandboxName

For example, C:\Program Files\Firefox\Mozilla Firefox 3.5

• LOCATION_OF_PACKAGE\Thinstall\SandboxName.ComputerName

For example, C:\Program Files\Firefox\Thinstall\Mozilla Firefox
3.5.2.My_Computer

• LOCATION_OF_PACKAGE\Thinstall\SandboxName

For example, C:\Program Files\Firefox\Thinstall\Mozilla Firefox
3.5.2

• SandboxPath_In_Package.ini\SandboxName.ComputerName

For example, H:\Sandboxes\Mozilla Firefox 3.5.2.My_Computer

• SandboxPath_In_Package.ini\SandboxName

For example, H:\Sandboxes\Mozilla Firefox 3.5.2

If ThinApp fails to fi nd %SandboxName_SANDBOX_DIR%, %THINSTALL_SANDBOX_DIR%,
a Thinstall folder next to itself, or SandboxPath= in Package.ini, then ThinApp
will create the sandbox in the default location, that is, in the user's roaming profi le
(%AppData%).

The search order for the sandbox in %AppData% is:

• %AppData%\Thinstall\SandboxName.ComputerName

For example, C:\Documents and Settings\User\Application Data\
Thinstall\Mozilla Firefox 3.5.2.My_Computer

• %AppData%\Thinstall\SandboxName

For example, C:\Documents and Settings\User\Application Data\
Thinstall\Mozilla Firefox 3.5.2

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[18]

You can change the name of the sandbox. The default name will be taken
from Inventory name specifi ed during the capturing process, as shown in
the following screenshot:

Using the parameter SandboxName= in Package.ini enables you to set the
sandbox name.

Isolation modes
Isolation modes are by far the most important thing to fully understand when
it comes to ThinApp. Most of the troubleshooting you will face is related to
isolation modes in one way or another. Isolation modes are the packager's
method of specifying what level of interaction the package is allowed to have
with the underlying operating system.

You can specify different isolation modes on a per directory or registry sub-tree
basis. Any child will inherit its parent isolation mode if not overridden.

ThinApp offers three different isolation modes.

Merged
Merged allows the virtualized application to interact with local fi les, folders, and
registry keys. The package can read local elements and is able to modify local
elements. Any new element will be created on the local system. If any of the
virtualized elements are modifi ed, the modifi cations will be stored in the sandbox.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[19]

Merged mostly mimics the behavior of a natively installed application. The actions
of the package are still subject to the privileges of the user running the application.
If the user is not allowed to modify a location, the standard operating system dialog
box will be displayed saying so.

WriteCopy
WriteCopy will allow the package to read any local elements, but if modifi ed, the
modifi cation will end up in the sandbox and not the local system. If you create a new
fi le or registry key in a WriteCopy location, it will be sandboxed. Modifi cations made
to virtualized elements will be sandboxed.

WriteCopy will protect your local system from being modifi ed by a virtualized
application. WriteCopy is often used to allow applications demanding higher
privileges to be able to executed by a standard user. The application thinks it is
capable of modifying C:\Windows but all those operations end up in the sandbox.

Full
Full isolation mode will keep the virtualized application from accessing anything
locally on the underlying operating system. Physical elements are hidden from the
virtualized application. If you fully isolate a folder, only the folder's virtualized
content will be available. New elements or modifi cations of a virtualized element
will end up in the sandbox.

Full is mostly used to protect the virtualized application from seeing confl icting
elements present on the local machine. Take for example, your virtualized Microsoft
Offi ce 2010 having Microsoft Offi ce 2003 locally installed. If you don't protect the
virtualized Offi ce from seeing the old local installation of Offi ce, the virtualized
Offi ce 2010 will start to self-repair.

To summarize the differences between the isolation modes, refer to the table
given as follows:

Isolation mode System elements Virtual elements
Merged mode Application can read and

modify content.
Modifications will be
sandboxed.

WriteCopy mode Application can read
content. Modifications
will be sandboxed.

Modifications will be
sandboxed.

Full mode Application cannot
read content.

Modifications will be
sandboxed.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[20]

You specify different isolation modes for folders using a confi guration fi le named
##Attributes.ini located in each folder, as shown in the following screenshot:

The previous screenshot is an example of WriteCopy specifi ed in the
%ProgramFilesDir% folder.

In the virtual registry you specify isolation modes in front of the registry sub-tree.

Let's have a look at some isolation mode examples to help you fully understand
isolation modes.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[21]

Example 1
On your physical machine you have a fi le called File.txt within C:\Temp folder.

You have the representation of C:\Temp within your project folder where
you specify either Merged or WriteCopy as an isolation mode, as shown in
the following screenshot:

Run your virtualized application (in this example, Mozilla Firefox) and browse
to C:\ Temp. The application can see the local File.txt fi le, it can open it and
read its content.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[22]

Merged and WriteCopy allows for the virtual environment to read and access native
fi les and registry keys.

Example 2
In the same scenario as the previous example, on your native machine you have
C:\Temp\File.txt.

Within your project folder you've specifi ed Full as the isolation mode in the
C:\Temp folder.

When you run your virtualized Mozilla Firefox and browse to C:\Temp, it looks
empty, as shown in the following screenshot:

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[23]

The Full isolation mode hides any native fi les or registry keys.

Example 3
You are using WriteCopy or Full as your isolation mode on C:\Temp. From within
your virtualized application you save a fi le into C:\Temp. The fi le will be sandboxed
and your native machine is kept clean. Your virtualized application sees the fi le as
being located in C:\Temp.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[24]

WriteCopy or Full will place new fi les in the sandbox and keep your physical
machine clean. Note that there are different associations for the .html fi le between
the native environment and the virtualized one. We will discuss the fi le type
registrations later in Chapter 3, Deployment of ThinApp Packages.

No matter which one of the isolation modes you use, if a virtual fi le or registry
key is modifi ed, the modifi cation will be stored in the sandbox.

When does a fi le end up in the sandbox? An application can access a fi le using one
of two methods. It can be read-only, which means no modifi cations can be made to
the fi le and the ThinApp runtime simply passes the fi le to the application. But if the
application opens a fi le for writing operations, depending on the isolation mode, the
ThinApp runtime will fi rst copy the fi le into the sandbox and then pass the fi le to the
application. This way ThinApp can guarantee that any writing operation needed can
be done immediately to the fi le. This also means you might end up getting fi les in
your sandbox that have not been modifi ed by either the application or the user. It's
not very common but nevertheless something you need to be aware of.

During the capture process, you're asked what default directory isolation mode
you want to use. This is of very little technical importance and is mostly a policy
decision. I tend to use WriteCopy as my default isolation mode during packaging
and tweaking of the project. This way I know that all I do will be sandboxed. Later,
when I compile my production version, I change to Merged as the default directory
isolation mode. This way, users are less likely to run into the problem of storing a fi le
somewhere without being able to fi nd the fi le later on since it has been sandboxed.
The default isolation mode is specifi ed within your Package.ini fi le using the
following parameter:

[Isolation]
DirectoryIsolationMode=

It's important to point out that you are only asked about the default directory isolation
mode and not your default registry isolation mode. The default isolation mode for
your registry is always WriteCopy but you can change it within Package.ini.

[Isolation]
RegistryIsolationMode=Merged

As a result of the above, the default isolation mode for the registry would be Merged
instead of WriteCopy.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[25]

During the capture process you are asked about which default directory isolation
mode to use, as shown in the previous screenshot.

The virtual fi lesystem
ThinApp packagers are working with three different virtual fi lesystems. The fi rst
one is the project folder content. Here, a packager can change the .ini fi les, replace
the old .dll fi les with new updated ones, and delete or add any fi les and folders
needed. The second virtual fi lesystem is created when compiling the project; an exact
copy of the fi lesystem found in the project folder will be compiled into the package
as a read-only version of the virtual fi lesystem. There is no way an end user can
modify the content of the package. When using the application, a third version of
the fi lesystem is created in the sandbox: the read and write version of the fi lesystem.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[26]

The complete fi lesystem known to the virtualized application is a combination of the
native (physical) fi lesystem on the machine, the read-only virtual fi lesystem stored
in the package, and the read and write version stored in the sandbox. If there is a
confl ict between the native fi lesystem and the virtual one, the virtual environment
will win and the virtual fi le will be the one presented to the application. If there is a
confl ict between the sandbox content and the read-only fi lesystem, then the sandbox
content will win.

All folders in the root of the project folder (excluding Support and bin folders)
are in a variable format, for example, %AppData%. These variables are called folder
macros and are similar to variables used in the operating system. Folder macros
point to predefi ned locations. These locations may vary depending on the language
of the operating system or which version of the Windows operating system you're
running the package on. Some folder macros may use the same names as the ones
in the operating system but they are different from one another. Especially when
using VBScripts built into the packages, it is important to understand that there
is a difference. It's the folder macros that allow a package to be portable between
different operating systems.

The previous screenshot shows a project folder showing some folder macros.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[27]

%AppData% refers to the user's roaming profi le, which is mostly used to save user
settings. Executing a ThinApp package on a Windows XP machine, the %AppData%
will refer to C:\Documents and Settings\UserName\Application Data.
Executing the same package on a Windows 7 machine, %AppData% will refer to
C:\Users\UserName\AppData\Roaming. Since ThinApp uses %AppData%, the
user settings will follow the user no matter which OS the package is executed on.

A list of all folder macros can be found in References at the end of this book.

The virtual registry
The virtual registry exists in three versions as well. Within the project folder you
will fi nd the virtual registry represented by three clear text fi les, HKEY_CURRENT_
USER.txt, HKEY_LOCAL_MACHINE.txt, and HKEY_USERS.txt.

When you run build.bat the content of these registry fi les are compiled into the
package as read-only versions. When you use the package, the read and write
version is created in the sandbox.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[28]

You may ask yourself where HKEY_CLASSES_ROOT is. HKEY_CLASSES_ROOT
is a merged view of HKEY_LOCAL_MACHINE\Software\Classes and HKEY_CURRENT_
USER\Software\Classes. HKEY_CLASSES_ROOT will be created dynamically
during the launch of your package, in a similar way to how the Windows OS
generates HKEY_CLASSES_ROOT at boot time.

The fi le database is included in the virtual registry. You can see it while running
regedit.exe within your virtual environment.

The ThinApp fi lesystem database can be viewed when running Registry Editor
within the virtualized environment.

Application Linking (AppLink)
By default, two virtualized applications are isolated from each other. Application
One cannot see fi les or registry entries virtualized in Application Two's package.
The ThinApp feature AppLink lets packagers allow full integration between two or
more packages. AppLinking packages will effectively merge the different virtualized
environments into one big environment. ThinApp supports up to 250 packages
linked together but in reality you will never AppLink that many packages together.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[29]

There will be a penalty in the startup time for each AppLink and pretty soon your
implementation will become too complicated to maintain and manage. Try to limit
the amount of AppLinks between fi ve to ten.

AppLink will allow you to package your main application into one package and any
dependencies as AppLink. This allows for a more modular design of your desktop
environment. A typical use case is a packaged browser and Java, .NET, Active X,
Flash as AppLink packages. AppLink is not limited to dependencies. A packaged
Microsoft Offi ce and an application tightly integrating with Offi ce can be AppLinked
together. This way it will look like both the applications are locally installed on the
client, and full integration between applications is possible.

The package your end users launch fi rst is called the parent package. Any AppLink
packages are referred to as child packages. There is no difference between a parent
and child package. Both are valid, normal ThinApp packages. A package being a
child when Application A is launched can just as easily be a parent when you launch
it separately. Adobe Acrobat Reader is an excellent example. It can be launched as a
separate application but is often a child to your packaged Internet Explorer.

Let's say you packaged Internet Explorer and Adobe Acrobat Reader in two different
packages. If you associate .pdf fi les to your Acrobat Reader Package you will be able
to click on a link to a .pdf fi le from within your virtualized Internet Explorer and a
separate Acrobat Reader window will be used to display the Acrobat document. If
you want Internet Explorer (IE) to use the embedded Acrobat Reader within the IE
window you must AppLink the two packages together. This way Internet Explorer
will see Adobe Acrobat Reader as locally installed. The registry keys identifying the
embedded functionality in IE will be present in the virtual environment.

When you launch a parent package, its virtual environment will load fi rst, and then
the child packages' environments will be merged into the active environment. This
happens every time you launch the parent package. If you change the content of a
child package the new updated environment will be merged upon the next launch
of the parent package. This allows individual updates of your packages. The load
order is either alphabetic or in the order specifi ed within Package.ini.

The following is an example of an alphabetic load order:

[BuildOptions]
OptionalAppLinks=C:\Plugins*.exe

The following is an example of a predefi ned load order:

[BuildOptions]
OptionalAppLinks=C:\Plugins\LoadMeFirst.exe; C:\Plugins\LoadMeLast.exe

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[30]

When you confi gure AppLink, it is important to understand that you have to point
to a data container. It is the virtual environment stored in the data container you
want to merge into your running environment. So if your AppLink package uses
a separate data container, make sure you refer to the correct fi le extension, that is,
FileName.dat.

ThinApp supports one parent package being AppLinked to up to 250 child packages.
ThinApp also supports many parent packages AppLinking to one child package. A
child package can have its own AppLink, and nested loading of AppLinks is fully
supported. This means you could end up launching one parent package, AppLinking
to one child package that loads one or more child packages of its own. Pretty soon
you risk losing the complete overview of where fi les and registries are located and
which isolation mode is active. A fi le or a registry key may exist in more than one
package in your AppLink chain. In order to resolve these confl icts, the ThinApp
runtime will use "last loaded". This means if you have C:\Temp\File.txt in your
parent package and in your child package, the version in your child package will
be used. Parent environments are always loaded fi rst and then child environments
are loaded in either alphabetic order or in the load order specifi ed within your
Package.ini fi le. What about isolation modes? Here the ThinApp runtime uses a
different method, wherein the most restrictive mode will win. This means if your
parent package has Merged on the folder C:\Temp, then make sure not to use
any other isolation modes in any of your child packages. Remember that nested
packages will be part of the whole AppLink chain as well. Now it's getting clearer
why I recommend using only a small number of AppLink packages in a desktop
environment design.

An AppLink package is only loaded once per execution. If you have a complex
AppLink chain referring to the same child package multiple times, the child
package will be merged only once, the fi rst time it is referred to.

AppLink confl ict resolution for isolation
modes

• WriteCopy versus Merged, WriteCopy will win
• WriteCopy versus Full, Full will win

AppLink will discard any sandboxes existing for the child package. Let's say you
AppLink to Adobe Acrobat Reader. This package might have been used separately
and therefore has the user settings stored within its sandbox. Now, when you
execute the parent package, the parent sandbox is the only one in use and any
settings stored within the Adobe Acrobat's sandbox will not be part of the
running environment.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[31]

If your child packages have any virtualized services or VBScripts, they will be active
when using AppLink. Bear in mind that, starting services may be a time consuming
task. AppLinking to a package starting services might therefore add extra time to the
launch time.

ThinApp supports the following two fl avors of AppLink:

• Optional AppLink
• Required AppLink.

Optional AppLink
When using the dynamic AppLink called OptionalAppLinks in Package.ini,
the package will AppLink to any package available. If no AppLink can be found,
the package will happily launch anyway.

Using Optional AppLink offers a true dynamic design of your applications. You
don't even have to know upon packaging if you need to AppLink or not. Simply
activate OptionalAppLinks and you can always add functionality to your package
later on.

The following are example confi gurations:

[BuildOptions]
OptionalAppLinks=plugins*.exe

The result of this confi guration is that, any package located in the folder called
plugins relative to the parent package itself will be added.

[BuildOptions]
OptionalAppLinks=plugins*.exe; plugins*.dat

The result of this confi guration is that, any package located in the plugins folder
relative to the parent package will be AppLinked, including separate data containers.

[BuildOptions]
OptionalAppLinks=\\ServerName\ShareName\MyAppLinks\Java.dat

The result of this confi guration is that the Java package located on a network share
will be AppLinked.

[BuildOptions]
OptionalAppLinks=C:\Program Files\Java 1.6 (VMware ThinApp)*.exe; C:\
Program Files\Flash (VMware ThinApp)*.exe

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[32]

The result of this confi guration is that, if available, a virtualized Java and locally
deployed Flash clients will be AppLinked. This is a very common AppLink
confi guration used when you deploy ThinApps with the help of MSI and existing
deployment tools. We will get back to some different deployment scenarios later.

[BuildOptions]
OptionalAppLinks=%HOMEPATH%**.exe

This confi guration shows that, AppLink supports environment variables and
wildcard searches. This example will search one folder deep in the users %HOMEPATH%
for child packages called *.exe.

[BuildOptions]
OptionalAppLinks=\\ServerName\ShareName***.dat

In this confi guration, ThinApp will search two folders deep for child packages
named *.dat. For example, both \\ServerName\ShareName\AppLinks\Java\
java.dat and \\ServerName\ShareName\AppLinks\Flash\Flash.dat will
be AppLinked.

Required AppLink
Required AppLink, called RequiredAppLinks in Package.ini, will deny execution
of the package if the AppLink cannot be found. When you use a required AppLink,
make sure you specify the whole fi lename of your child packages. You should not
use the wildcard (*) since this will effectively disable the required rule set, that is,
deny usage of the parent package if AppLink packages are not available.

[BuildOptions]
RequiredAppLinks=C:\Program Files\Java 1.6 (VMware ThinApp)\java.exe;
C:\Program Files\Flash (VMware ThinApp)\flash.exe

 This confi guration means that the Java and Flash packages will be AppLinked. If
they are not accessible, the user will be denied the ability to run the parent package.

[BuildOptions]
RequiredAppLinks=\\ServerName\ShareName\java.exe

This confi guration means that the Java package located on a network share will be
AppLinked. If the Java package is not accessible, the user will be denied the ability
to run the parent package.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[33]

The ThinApp utilities folder and its
content
The ThinApp utilities folder is installed in C:\Program Files\VMware\VMware
ThinApp by default. Only the ThinApp packagers need access to the ThinApp
utilities folder - end users never need access to it. If desired, you can move this
folder to a network share and run all the tools from there. The ThinApp utilities are
virtualized using ThinApp so the folder is just as portable as any ThinApp package.
Placing the folder on a network share makes it easier to access the tools from any
machine. Often when packaging, you are using virtual machines and reverting the
virtual machines to clean states between each capture. Having the ThinApp utilities
folder on a network share will make them easier to maintain. Changing the version
of ThinApp used does not require a new snapshot of your virtual machine. Another
benefi t is that all your packager colleagues can share one and the same ThinApp
utilities folder and settings.

Default location of the ThinApp utilities Folder.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[34]

If you don't place the ThinApp utilities folder in the default location, you should
make sure that you specify an environment variable called THINSTALL_BIN
pointing to the ThinApp utilities folder. This way the build.bat fi le will fi nd
the location of the tools needed while building your project folder. Using the
THINSTALL_BIN environment variable allows you to have multiple versions
of the ThinApp utilities folder present. You can switch between active folders
by simply changing the value of the environment variable.

Specify the location of your ThinApp utilities folder with the help of the
THINSTALL_BIN environment variable , as shown in the previous screenshot.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[35]

Let's have a look at some of the fi les you'll fi nd within the ThinApp utilities folder.
Most of them will be discussed in much more detail later in this book. The following
are the fi les present:

• AppSync.exe

AppSync is one of the built-in update mechanisms within ThinApp. We
will cover AppSync more in depth later in this book. Running AppSync.exe
allows you to specify a package to AppSync and an AppSync URL, where
the update is located, providing a more dynamic method of updating the
deployed ThinApp packages than the AppSync you can confi gure using
package.ini.

log_monitor.exe.
The log monitor is a trace tool used to troubleshoot ThinApp packages.

• Capture.ini and LogFilter.ini
These are fi lter fi les used to fi lter what is captured while running the
log monitor.

• relink.exe

Relink is used to inject a new runtime, certain settings, and a license key
into an existing package without the need to completely rebuild the whole
project folder.

• sbmerge.exe

Sbmerge stands for sandbox merge. It is a tool used by packagers to merge
the content of a sandbox into an existing project folder. It is a great tool used
to apply changes and updates to a project. Running sbmerge.exe without
any switches will display the help fi le.

• Setup Capture.exe

Setup Capture is the tool used to capture an application installation and
create a project folder. Within Setup Capture you can specify your license
key and if you want to change the license key or "licensed to" name, you
must change these within Setup Capture and then rebuild your project
or run relink on the packages.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[36]

You change the license key and "Licensed to" information by launching
Setup Capture, clicking on the top-left corner and choosing License,
as shown in the following screenshot:

You are now shown the Enter License Key dialog box, as in the
following screenshot:

Type in your license key and licensed display name. Click on OK and
then Cancel in the Setup Capture main window. You have now successfully
updated the license information. Simply rebuild your project to update your
packages or run relink.exe.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[37]

• snapshot.exe

This is the ThinApp snapshot tool. Running snapshot.exe from a command
prompt allows you to capture an installation and create a project folder
without running Setup Capture. Running snapshot.exe without any
switches will give you the full help fi le. The following procedure will
create a project folder using snapshot.exe:

1. Run the command snapshot.exe c:\PreScan.snapshot.
2. Install the application.
3. Run snapshot.exe c:\PostScan.snapshot.
4. Run snapshot.exe c:\PreScan.snapshot -SuggestName c:\

PostScan.snapshot.
5. Run the command snapshot.exe c:\PreScan.snapshot -Diff

c:\PostScan.snapshot c:\ProjectFolder.
6. Run snapshot.exe c:\PreScan.snapshot -SuggestProject c:\

PostScan.snapshot c:\OutputTemplate.ini.
7. Run snapshot.exe c:\OutputTemplate.ini -GenerateProject

c:\ProjectFolder.

• snapshot.ini

Snapshot.ini is the exclusion list used by Setup Capture and snapshot.exe.
Here you can specify parts of the operating system that should not be scanned
during the capturing process. The defaults are implemented to keep your
project from capturing unnecessary content. It's not recommended to have an
antivirus software installed on your capturing machine, but if policy dictates
that you must, you can use the snapshot.ini fi le to exclude locations for the
antivirus log fi les and such. This keeps the changes from being a part of the
captured environment and thereby polluting your project folder.

• template.msi

ThinApp can generate an MSI fi le to simplify the deployment of the ThinApp
packages. Using an MSI fi le will allow the use of any existing deployment
tool to distribute ThinApp packages. The MSI fi les that ThinApp generates
are supported by any tool supporting MSI fi les but are not normal MSI fi les.
ThinApp supports MSI fi les greater than 2 GB without the use of CAB fi les.
This is accomplished with the help of virtualization within the MSI itself.
You cannot use tools such as Orca to modify the MSI properties, since it
will destroy the content of the MSI when saved. In order to change the MSI
that ThinApp generates, you have to tweak the template.msi fi le instead.
Changes applied to the template.msi (using Orca or any other tool) fi le will
be incorporated into the MSI fi les that ThinApp generates.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Application Virtualization

[38]

• ThinApp.ini

ThinApp.ini contains the Setup Capture user settings, for example,
the options to build or skip build at the end of the capture process.

• ThinAppConverter.exe and ThinAppConverter.ini
ThinApp Converter is a tool introduced in Version 4.6. With the help of
ThinApp Converter and its confi guration fi le ThinAppConverter.ini, you
can automate the capturing process. This was an early version of automation
and is more or less replaced with the tool called ThinApp Factory. ThinApp
Converter drives the capture process by running virtual machines hosted on
ESX or VMware Workstation. ThinAppConverter.ini is pretty much the
only documentation available for this tool. There are third-party tools using
ThinApp Converter to automatically convert installers into ThinApp project
format. Quest ChangeBASE is one such tool using ThinApp Converter.

• ThinDirect.msi and ThinDirect.adm
ThinDirect is a browser helper you install locally on your client. It
 will add itself as a browser helper to your local Internet Explorer and
allows for automated redirection of URLs to specifi c packaged browsers.
ThinDirect.msi is the standalone installer you use to deploy the browser
helper. ThinDirect.adm is used to add Group Policy Management to
your ThinDirect implementation. ThinDirect.adm includes fi ve different
browsers and 25 different URLs for each one. You can change the amount
of supported browsers or URLs simply by editing the fi le in a text editor.

• thinreg.exe

Thinreg.exe is a standalone tool that you can copy to any location. Most
of the other tools in the ThinApp utilities must reside within the ThinApp
utilities folder to function. Thinreg.exe is used to register a package on a
client machine, offering the look and feel of a locally-installed application. By
registering a package, you can add shortcuts onto your desktop or the Start
menu and you can register fi le extensions, protocols, and object types to a
package. Run thinreg.exe without any arguments for the help fi le.

• tlink.exe, vftool.exe, and vregtool.exe

tlink.exe, vftool.exe, and vregtool.exe are all used to compile your
project folder into a virtualized package. Build.bat calls these fi les.
Vregtool.exe can also be used to investigate the registry changes located
in the sandbox. Running vregtool.exe without any switches will show
you the help fi le.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Chapter 1

[39]

Summary
In this chapter we learned the basics of application virtualization, isolation modes,
the sandbox, application linking, and we looked at the ThinApp utilities folder.
In the next chapter we will cover the packaging process in more detail.

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

Where to buy this book
You can buy VMware ThinApp 4.7 Essentials from the Packt Publishing website:
http://www.packtpub.com/vmware-thinapp-4-7-essentials/book.
Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/vmware-thinapp-4-7-essentials/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/vmware-thinapp-4-7-essentials/book

