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6.1  Introduction

Due to rapid advances in internet technology, network terminals have become all but ubiq-
uitous. Legacy network design, on the other hand, has failed to take future communication 
and internet technology improvements into account. Legacy network infrastructure could 
not keep up with the rapid development of the internet because it was out of date. Data 
and control planes are closely connected in conventional network design, which has vari-
ous constraints. For example, if we wish to modify the configuration of the network, each 
device must be configured individually throughout the whole network. This is a signifi-
cant disadvantage. For the same reason, suppliers do not provide developers and mem-
bers of the community with access to the essential configuration settings of their devices, 
since doing so might cause networks to malfunction. Protocols are also deeply ingrained in 
the network equipment’s firmware. Due to proprietary hardware and a lack of testing for 
creative networking solutions, these limitations limit network innovation, increase admin-
istrative effort, and drive up network management costs [1–4].

The SDN paradigm [5–8] introduces novelty in computer networks by decoupling the 
data and control planes. The separation of data and control planes shifts the network com-
plexity from networking devices to the intelligent SDN controllers; thus, the network 
devices can be programmed through applications running on the controller, while the net-
work is abstracted from applications [9] running on the top of the controller. The network 
functions according to the applications being executed on the SDN controller. As a result, 
the complexity of the networks reduces as the logic shifts from the devices to the central-
ized SDN controller.

However, besides the numerous advantages of SDN, its modeling, evaluation, and test-
ing present several challenges. One of the challenges is the performance evaluation of the 
controllers [10–12]. The controller plays a prominent role in SDN. Hence, different 
approaches are used for performance evaluation and comparison of SDN controllers. 
However, these approaches need proper categorization to enable improvements in SDN 
research. This chapter discusses, categorizes and analyzes these approaches.

The objectives of the chapter are as follows:

• To explore controller performance evaluation procedures,
• To investigate several schemes for performance evaluation of SDN controllers

based upon quantitative and qualitative analysis,
• To evaluate quantitative performance evaluation approaches in Mininet and

Cbench,
• To evaluate feature-based comparison of controllers, and
• To evaluate hybrid methods combining quantitative performance evaluation and

feature-based analysis.

Organization of the Chapter

The rest of the chapter is organized as: Section 6.2 discuss the basics of the SDN archi-
tecture and the important features in SDN controller performance evaluation. Section 6.3 
explains various schemes in the literature for controller performance evaluation. Section 6.4 
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describes the analytical network process for controller selection in SDN. Section 6.5 illus-
trates the results. Section 6.6 concludes the chapter with future scope.

6.2  SDN Architecture

Generally, the SDN is composed of data, control, and management planes. In this sec-
tion, we discuss each plane briefly. Figure 6.1 shows these three planes and the interaction 
among them through southbound (SB) and northbound (NB) APIs.

6.2.1  Data Plane

In SDN, the data plane comprises forwarding devices (known as the infrastructure or the 
underlying network). The data plane packets are matched and actions are taken in accor-
dance with the forwarding rules described in a flow table.

A flow table is made up of many flow entries. The packet header information is com-
pared to the flow table entries. Each flow entry consists of three fields: a header, an action, 
and a counter. Table 6.1 illustrates a flow table, with the top row containing header data 
and the subsequent rows containing flow entries. When a new packet arrives on a switch’s 
ingress port, the matching procedure begins, as shown in Table 6.1. If the packet’s destina-
tion IP address begins with 192.168.X.X, it is forwarded to port number 1, and counter 102 
is updated. Similarly, the third row specifies that if a packet’s source and destination port 

FIGURE 6.1
Three-plane architecture for SDN [9].



108 SDN-Supported Edge-Cloud Interplay for Next Generation Internet of Things

numbers are identical, it should be dropped. If no rules for the new packet exist in the flow 
table, the switch sends a packet-in message to the controller, which returns the destination 
to the forwarding device (packet-out message) and updates the flow rules in the flow table 
accordingly. This is in contrast to typical networks, where routing decisions are made 
between closely coupled devices.

6.2.1.1  Southbound (SB) APIs

The SB-API interfaces the data and control planes. Various protocols, such as OpenFlow 
[13] and Netconf [14], are available for interfacing the two planes. OpenFlow is the most
widely used protocol in the SDN community. OpenFlow provides a secure communica-
tion channel between the controller and the switches. The white paper [15] discusses the
benefits and programmability of OpenFlow for forwarding device programming. The
OpenFlow idea originated at Stanford University, and the Open Networking Foundation
(ONF) [16] consortium currently manages the OpenFlow standardization process.

6.2.1.2  Northbound (NB) API

The NB-API interfaces the control and management planes. By employing the represen-
tational state transfer (REST) API, the controller acts as a bridge between the forwarding 
devices and the management plane. Similarly, this API is used to retrieve operational sta-
tistics (for example, regarding flow entries) from the data plane. Applications operating in 
the management plane connect with the controller using this API, and the data plane exe-
cutes the relevant actions. These actions determine the behavior of the management plane 
application. For instance, a firewall program establishes rules that regulate the admission 
and egress of packets across the network. As a result, the data plane devices will forward 
or restrict traffic according to the application’s policies. Similarly, a load-balancing pro-
gram will manage traffic by detecting congestion in various network channels.

6.2.2  Management Plane

The management plane is located above the control plane, and it is where several pro-
grams may be run to accomplish the diverse activities required for an effective network. 
The data plane makes use of the management plane’s flexibility and programmability, as 
well as the abstractions offered by the control plane. For instance, network monitoring 
may be accomplished comprehensively by the development and deployment of a snipping 
program. Other security programs may be used to identify and mitigate distributed denial 
of service (DDoS) threats in a similar fashion [17].

TABLE 6.1

An Example of the OpenFlow Table

Source IP Destination IP Source Port
Destination 

Port Action Counter

X 192.168.X.X X X Port 1 102

X X 21 21 Drop 621

192.168.1.X X X X Port 3 100

X X 20 80 Port 4 101
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6.2.3  Control Plane

The control plane constitutes the most prominent part of the SDN infrastructure because 
the entire network is dependent upon it. It is implemented through the SDN controller. 
Several SDN controllers are available, the most important of which are NOX [18], POX 
[19], Ryu [20], Floodlight [21], TREMA [22], ODL [23] and ONOS [24]. Each controller has 
a number of features as discussed below.

(1) OpenFlow: OpenFlow is also known as the SB-API which directs the flow requests
forwarded by the switches to the controller and vice versa. The controller sends
flow response (PACKET_OUT) messages in response to flow request (PACKET_
IN) messages. Thus, OpenFlow [13] manages the exchange of messages between
these two planes. The effect on SDN controller delay of the exchange of request and 
response packets is discussed in [25]. However, different versions of OpenFlow are
supported by each controller, for example, v1.3 has support for load balancing that
facilitates performance improvement during high traffic generation by network
devices.

(2) GUI: A graphical user interface (GUI) for a controller helps in obtaining statis-
tical information about the underlying forwarding devices, the configuration of
switches’ flow entries and application deployment. The GUI is considered an
important feature in controller selection for SDN and in qualitative and exper-
imental analysis of the controllers [26]. Generally, the SDN controllers are con-
figured through a command-line interface (CLI) or a GUI, or both. The statistics
provided by the GUI of the controller consist of information regarding hosts and
forwarding devices, flow entries, flow tables and creation of the SDN topologies
[27]. Viewing these statistics through the GUI is user friendly and they can be eas-
ily examined for analysis. Likewise, flow entries can be inserted to the switches
via the GUI, though its features affect performance because the execution of the
GUI is slower than the CLI. Further, the GUI support with SDN controllers can be
divided into two categories: web-based supported by Java, and Python based. The
execution speed of controllers coded in Python is slow because of less support for
fast memory access and multithreading.

(3) Northbound REST API: In the management plane, communication between appli-
cations and controller is through a REST API. Similarly, operational statistics for
switches and topologies are collected via this API. The controller uses the REST
API and acts as a bridge between the management plane and the data plane.
This is a significant aspect of controller selection since it communicates with the
controller directly. Rapid response from the API reduces latency and improves
throughput. Hence, the REST API is important for SDN performance [28, 29] and
controller selection.

(4) Clustering: Native support for clustering tends to improve the scalability, stabil-
ity, and performance of the controller. Controllers that support clustering have
improved performance with respect to latency [30]. Similarly, decreased latency is
observed with increased switches. The same effect is observed during high traffic
generation through the clustering of controllers.

(5) Quantum API: Users leverage the services provided by the cloud by calling them
remotely over the internet. Thus, there is a competition between cloud service pro-
viders (CSPs) and network service providers (NSPs). Huang et al. [31] proposed
an economic model that distinguishes the competition between CSP and NSP.
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Similarly, the research conducted by Huang et al. in [32] described a way to pro-
vide E2E performance using a cloud services configuration model. With support 
for the Quantum API, SDN controllers can take advantage of cloud computing. 
Controllers that natively support this API can use the Quantum API to leverage 
the cloud in the realm of high-performance computing as well as OpenStack net-
working. Controllers with quantum support feature parallelism and fast memory 
access. Consequently, performance improves with SDN scalability, i.e., when the 
number of switches increases. This API was incorporated into a research study 
describing controller selection [28].

(6) Synchronization: This shows how effectively a controller stores and responds to
information about the network, which affects the time taken to discover the topol-
ogy. This is very important for performance monitoring in SDN [33]; controllers
which take a short time to discover the topology improve SDN performance.

(7) Productivity: This relates to the ease of development of applications and to the pro-
gramming language of the controller. Using a controller coded in Python makes it
easy to develop your application, but without the platform support and multithread-
ing, it is slow. Productivity is therefore, inversely related to controller performance
[34]. Well-coded Python is easier to develop applications and more productive,
but lower productivity means better Java support. This is due to the fast memory
access, cross-platform support, multithreading, and inter-process communication
(IPC) features of Java-supported controllers which lead to high performance.

(8) Partnership support: Many local and international organizations support SDN con-
trollers. As a result, IT organizations not only consider technical strengths when
choosing a controller but also key aspects such as the financial resources as well as
the sponsors associated with a controller. This function plays a vital role in control-
ler selection [34].

(9) Platform support: This concerns the compatibility of SDN controllers with differ-
ent operating systems, such as Linux, Mac, or Windows. Executing compatibil-
ity across various platforms means the controller has support for multithreading,
flexible management of memory and fast memory access affecting controller per-
formance. Because controllers can create clusters on different platforms, running
on other platforms improves the efficiency of clustering. This reduces latency and
improves QoS during normal and high traffic loads [30].

(10) Modularity: The ability to make the sub-routines of the main program is called
modularity. Modular support helps the controller in dealing with large-scale sys-
tems. If controller modularity is high, it means the sub-modules have the capabil-
ity to run in parallel, which speeds up execution and hence reduces response time.
It helps to improve performance, especially when scalability increases.

6.3  Categorization of SDN Controller Selection Approaches

Several methods of SDN controller selection are described in the literature. These methods 
can be divided into three main categories: comparing controllers by performance, features, 
and hybrid. The hybrid approach combines feature results with performance-based compari-
sons to select the best controller. These methods are described below.
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6.3.1  Performance Analysis Controller Selection

The studies presented in [35], [36, 37] and [38, 39] compare the controllers through per-
formance. The performance-based approach only considers the performance and neglects 
features of the SDN controller. This approach only considers the performance of a typical 
topology made in Mininet or through creating virtual hosts and switches in Cbench. Hence, 
realistic scenarios of the real internet are not taken into consideration in the experiment.

6.3.2  Feature-Based Controller Selection

The research carried out in [40–43] compares only the supporting features of SDN con-
trollers. Examples of support features are platform, OpenFlow, REST API, and clustering. 
Another disadvantage of this approach is that it provides only a theoretical analysis of 
the feature set that the controller provides. This selection method will result in a cognitive 
overload. Thus, the optimal decision cannot be made due to the 7 ± 2 problem, or the limi-
tations of the human memory for processing information, also known as Miler’s law [44].

6.3.3  Hybrid Methods of Controller Selection

A comparison of four SDN controllers using a hybrid approach was highlighted by Bispo 
et al. [26]. The authors chose two controllers based on heuristic decisions in the table of nine 
controller functions and ran Cbench in throughput and latency mode to evaluate the perfor-
mance of those controllers. The study did not provide an explicit ranking of these control-
lers as study only analyzed the feature table, making accurate choices impossible. Second, 
authors did not consider performance comparisons in a real internet topology. The study 
by Salman et al. [34] compared the six SDN controllers Opendaylight (ODL), Beacon [45], 
Nox, Maestro [46], Libfluid Raw [47] and Ryu with respect to an increase in the number of 
switches and threads in the latency and throughput modes. Another study by Mamushiane 
[48] compared the performance of four controllers consisting of Ryu, ODL, Open Network
Operating System (ONOS), and Floodlight. In this study, the authors used Cbench for mea-
suring latency and throughput. Anderson [33] compared five SDN controllers – Trema [22],
Ryu, ODL, ONOS and Floodlight – for wireless networks using qualitative and quantitative
studies. A qualitative study of two features of these controllers – clustering support and
state handling – was carried out first. Thus, in case of switch or controller failure, informa-
tion about the state was tabulated for the five controllers to see how each controller collects
and stores network state information and the status of this information, i.e., whether the
controller reloads this information from a previously saved state or relearns the network
state. Likewise, the clustering information was tabulated to see if these controllers support
clustering and how other controllers share information among the clusters of controllers.
In the study, two controllers were selected based on these two features that met the con-
straints of the aerial networks. The performance of the two controllers was then evaluated
through emulated experimental scenarios in Mininet. Nevertheless, the selection process
for controllers is based on heuristic decisions, and as the number of controllers and features
expands, cognitive overload can occur, leading to disobedience of Miller’s law.

6.3.4  Multi-Criteria Decision-Making (MCDM) Methods for Controller Selection in SDN

MCDM is a mathematical decision-making technique used for the selection of alternatives 
based on certain criteria elements [49]. It has been extensively used in many fields, such 
as for strategy selection in software development [50], for natural resources management 
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[51] and for selection of a network among heterogeneous networks [52], etc. Various
approaches are in use for the selection process, which depends on several criteria elements
to achieve the desired objective, for example, TOPSIS, analytical hierarchy process (AHP)
and ANP, etc. An AHP method of selecting an SDN controller was proposed by Khondoker
et al. [28]. The research sought to select a controller from ten candidates considering only
their features, but did not perform any experimental evaluation of the controllers, nor did
it provide the mathematical details of the approach.

A hybrid scheme based on AHP which utilizes both the features and performance eval-
uation for controller selection is described in [29]. Based on the feature set selection, the 
three highest-ranked controllers were evaluated using Cbench, but the performance in real 
internet topologies was not evaluated. AHP does not take into account the feedback from 
the alternatives, and it only considers the criteria weights for selection of alternatives. 
Another problem with AHP is that it does not consider the dependency of the criteria ele-
ments, making precise and accurate selection impossible. In [53], ANP was used to model 
risk factors in large projects using risk indices. Similarly, Nazir et al. [54] used quality cri-
teria to select software components. ANP has been used in wireless sensors for optimal 
cluster head selection [55]. Therefore, it is assumed that the ANP approach may be used to 
analyze systems with complex behaviors and structures. Due to the complexity of the sys-
tems, the dependencies between them have increased. Therefore, research on interdepen-
dent network systems is important [56]. ANP is an established tool for the decision-making 
process where dependency exists among criteria elements.

6.4  Analytical Network Process-Based Controller Selection

The ANP MCDM problem is formulated by first defining the aim or objective, then defin-
ing the parameters for the criteria or sub-criteria, and then considering the assessment 
options. After listing the controller’s characteristics, ANP is applied. Figure 6.2 illustrates 
the technique in detail. The purpose of this research is to determine the optimal SDN con-
troller based on the ten characteristics listed in Table 6.2. Equations (6.1) and (6.2) indicate 
the criteria and alternatives. F denotes the available features of the various SDN control-
lers, while C denotes the alternatives. It is necessary to create a network model that repre-
sents the criteria and options, as well as their connection. Each possibility was analyzed in 
terms of each criterion and vice versa using the network model.

F F F F FN� �� �1 2 3, , , , (6.1)

C C C C CN� �� �1 2 3, , , , (6.2)

The ten critical characteristics that should be examined while selecting SDN controllers 
are described below. We presume that each of these characteristics is necessary for the con-
troller selection process. However, since controllers are constantly changing, we use the 
most up-to-date information on these aspects from controller documentation and research 
reported in [25, 26]. These critical characteristics are taken into account in the ANP-based 
optimal controller selection procedure. The significance of a feature in a controller is 
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determined by classifying these characteristics. A controller may handle two distinct sorts 
of features: ordinal and regular. Ordinal features have an intrinsic ordering, but regular 
categorical features do not. The classification of the feature set shows the extent to which 
each feature is supported by each controller. For example, C4 and C6 support only OpenFlow 
v1.0, and hence fall into the low category (L) for this feature (F1). C1 support is medium 
(M), C2 and C3 support v1.0,1.1,1.3, respectively, and are therefore classified as high (H), 
whereas C5 supports higher versions of OpenFlow, namely 1.5, and is thus classified as 
very high (VH). F2 denotes a controller’s GUI. C1 supports a Java-based web interface and 
is quicker to run due to the presence of graphical tools for application and data plane 
administration.

FIGURE 6.2
The procedure for controller selection leveraging ANP.

TABLE 6.2

Features Categorization for SDN Controller Selection

Alternatives

Criteria/Features

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

C1 M VH Yes Yes No M M L L M

C2 H H Yes Yes Yes M M VH H H

C3 H H Yes Yes Yes L M H H H

C4 L M No No No L H L H L

C5 VH L No Yes No H H M L M

C6
L L No Yes No L H L L M
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As a result, F2 is classified as very high due to its usage of Java multithreading. Similarly, 
C2 and C3 feature a Java-based interface and allow for the configuration of QoS parameters 
for data plane devices. They offer more application administration and topology setup 
options, which results in a slower GUI than C1. As a result, they are classified as high. C4 
has a Python-based interface and has a quicker execution speed than C5 and C6 due to its 
preparatory functions; hence, it is classified as medium. C5 and C6 offer solely Python-
based interfaces; nevertheless, they perform poorly owing to the increased number of 
functions to maintain the data plane and management plane, as well as the absence of 
multithreading.

F3, F4, and F5 are regular categorical traits, i.e., characteristics that cannot be subdivided 
further. A controller, for example, may or may not support REST APIs, open stack network-
ing, or clustering. As a result, these features (F3, F4, and F5) lack intrinsic ordering. In 
Table 6.2, these characteristics are denoted by Yes or No. As with C4, C5 and C6 lack built-in 
support for REST APIs; hence, they get a No in the equivalent F3 column of Table 6.2. 
Similarly, C1, C2, and C3 provide built-in support for the REST API; hence, the F3 column is 
marked Yes. F4 demonstrates the Quantum API. Because C1, C2, C3, C5, and C6 have an 
inbuilt support for the Quantum API, a value of Yes is shown in column F4 for them. C4 
does not support the Quantum API; hence, No appears in F4 for this controller. The cluster-
ing characteristic is denoted by F5. Because the controllers C1, C4, C5, and C6 lack built-in 
capability for clustering, a No is entered in the F5 column of Table 6.2. In comparison, C2 
and C3 support clustering and are therefore denoted by Yes.

F6 denotes the synchronization characteristic that has an effect on the data plane’s topol-
ogy discovery and response. C1, C5, and C6 have a medium amount of interaction, which 
means that their interactions are rather sluggish. C2 and C3 are considered high level due 
to their rapid discovery of the underlying topology, whilst C4 is considered low level due 
to the slowest interaction between the data and control planes. F7 indicates a controller’s 
production level. Productivity is connected to the simplicity with which an application 
may be developed and is dependent on the programming language used to write the con-
troller. While developing applications using Python-coded controllers is straightforward, 
their lack of platform support, memory management, and multithreading make them 
sluggish. C1, C2, and C3 have a moderate degree of productivity, whilst C4, C5, and C6 have 
a high amount.

F8 indicates the presence of support from many manufacturers. C2 is backed by Cisco, 
NEC, IBM, and the Linux Foundation, which has a membership of over 40 corporations; as 
a result, it is rated very high. C3 is backed by SK Telecom (South Korean telecommunica-
tions), Cisco, and NEC, and is therefore classified as high. C1, C4, and C6 are supported by 
Big Switch Networks, Nicira, and NEC, respectively, and are therefore classified as low in 
terms of support. Although it is not directly connected to performance, effective vendor 
support ultimately results in performance improvement. F9 is the platform support key. C2, 
C3, and C4 all support three platforms, namely Linux, Mac, and Windows, and are there-
fore classified as high end. However, since C1, C5, and C6 are supported on just one plat-
form, namely Linux, they are accorded a low grade. Cross-platform compatibility allows 
multithreading and clustering, resulting in an increased quality of service. F10 indicates 
that modularity is supported. C1, C5, and C6 have a moderate amount of modularity, but C2 
and C3 have a high level of modularity. This is because C2 and C3 controllers may invoke 
sub-modules from the main function, resulting in parallel processing and therefore increas-
ing performance. Categorization of features is performed as a pre-processing step prior to 
creating the comparison matrix.
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6.4.1  Pairwise Comparison Matrix for Criteria and Alternatives

The pairwise comparison matrix is drawn up according to the 9-point scale proposed by 
Saaty [57] as shown in Table 6.3. It shows the relative importance of different components 
(criteria or alternatives) regarding an element. The same matrix is also employed to extrap-
olate the effect of the components on the objective using the 9-point scale as shown in 
Table 6.3. The values in the matrix are assigned to the criteria as well as alternatives repre-
senting personal judgments. For example, the importance of C1 compared with C2, C3, C4, 
and C5 with respect to the F1 component is assigned a value from the scale table. The value 
of a(i, j) represents the relative significance of a component corresponding to the ith row and 
row jth column. The value of a(i, j) = 1 in the pairwise comparison matrix shows the equal 
importance of the component corresponding to the ith row and jth column. The diagonal 
components correspond to the comparison of the same components; therefore, their values 
are 1. The values below the diagonal are the reciprocal of the values above the diagonal. 
The value of, a(5, 1) = 6 shows that component in the 5th row is significantly to remarkably 

more important than the component in the 1st column. The value of a
a1 5

5 1

1 1
6,

,
� �

� �
� �  is the 

reciprocal of a(5, 1), denoting that a component in the 1st row is significant to remarkably less 
important than a component in the 5th column. The values are incorporated prudently for 
all the components in the pairwise comparison matrix.

6.4.2  Pairwise Comparison Matrix for Criteria and Alternatives

Alternatives are pairwise compared to each criteria component. The general form of the 
pairwise comparison matrix is denoted in the matrix (6.3). The rows and columns of the 
matrix are represented as M1 to Mn and N1 to Nn. First, the alternatives are pairwise com-
pared with respect to the F1 criterion. The values have been incorporated in (6.3) based 
using the 9-point scale defined in Table 6.3. The nonreciprocal and reciprocal values indi-
cate the relative importance of the row and column components, respectively. First, the 
comparison of C1 is made with C2, C3, C4, C5, and C6 considering F1 criterion. C1 is of the 
same importance as itself therefore a(1, 1)=1. Then C2 and C3 are moderately more important 

TABLE 6.3

Values for Relative Importance of One Feature/Controller Over Another

Scale Description

1 Equally important

2 Equally to moderately more important

3 Moderately more important

4 Moderately to significantly more important

5 Significantly more important

6 Significantly to remarkably more important

7 Remarkably more important

8 Remarkably to excessively more important

9 Excessively more important
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than C1. i.e. , , ,a a1 2 1 3
1
3� � � �� � . C1 moderately more important than C4 and C6, e.g., a(1, 6) = 3

shows that the alternative in this row (C1) is moderately more important than the alterna-

tive in the corresponding column (C6). a 1 5
1
6,� � �  shows that C5 is significant to remarkably

more important than C1. Similarly, the values are filled for C2–C6.
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Then, matrix (6.4) is used for summing up and each value is divided by the sum of the 
total values of the column. The next step is to find the eigenvector from the normalized 
matrix. The eigenvector shows the priority of these features F1.
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The eigenvector X is obtained from the normalized matrix (6.4) according to Equation 
(6.5).

X
n

a ni

j

n

i j� � �
�

� ��1
1 2 3

1

, , , , , ,where i (6.5)

The result from Equation (6.5) is considered as the eigenvector X1. To verify whether the 
judgments made while making the pairwise matrix are consistent, the next step is to find 
the CI and CR values. However, before making the consistency analysis, the consistency 
measure (CM) vector is to be calculated.

Consistency Measure: The CM vector is a prerequisite for the calculation of CI and CR. 
The consistency measure is calculated according to Equation (6.6). Mj denotes the row of 
the comparison matrix (6.3). X and xi represents the eigenvector and the corresponding 
element of the eigenvector as shown in the matrix (6.5). The Mj and X are multiplied and 
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then divided by the component in the eigenvector corresponding to Mj. The procedure to 
find the CM is shown in Figure 6.3. The CM vector is averaged for computing λmax.

Y
M X
x

j nj
j

i
�

�
� �, , , , ,where 1 2 3 (6.6)

�max �
�
�1

1
n

Y
j

n

j (6.7)

Consistency Index: CI denotes the deviation or the inconsistency [54] of the pairwise com-
parison matrix for an element. The CI of the pairwise comparison matrix for the F1 criterion 
is calculated using Equation (6.8) by putting the value of λmax. The value of λmax = 6.07 and 
n = 6 are put in Equation (6.8).

CI
n

n
�

�� �
�� �

�max

1
(6.8)

In Equation (6.8), n represents the criterion number for controller selection in the com-
parison matrix. Here, six alternatives are considered; therefore, n is equal to 6. The resul-
tant value for CI = 0.01, according to Equation (6.8).

Consistency Ratio: The reliability of the pairwise comparison matrix is verified by calcu-
lating the CR value. The CR is calculated according to Equation (6.9). In Equation (6.9) the 
ratio index (RI) denotes the index ratio. The value of RI = 1.24 is derived from Table 6.4, 
based on the order of the matrix. If the rank of the matrix is three (the actual number of 
alternatives being compared), then a value corresponding to three is selected for RI. In this 
case, the number of criteria under consideration is 6. Therefore, a value corresponding to 6 
will be inserted from Table 6.4. The CR is derived by putting CI value from Equation (6.8) 
into Equation (6.9).

CR
CI
RI

= (6.9)

FIGURE 6.3
The measurement of the consistency measure.
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The CR value is 0.09. A CR of 0.1 or less is accepted for the inconsistent judgments of the 
comparison matrix; otherwise, the inconsistency is high and pairwise judgments must be 
made again to satisfy the condition, i.e., CR ≤ 0.1. The alternatives are pairwise compared 
to the remaining criteria, i.e., F2, F3, F4, F5, F6, F7, F8, F9, and F10. The CI and CR values are 
computed using the same process for each of these matrices. The CR value is shown in each 
matrix.

Likewise, the eigenvectors corresponding to X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 are 
computed corresponding to features F1, F2, F3, F4, F5, F6, F7, F8, F9, and F10 respectively along 
with their CR values. X1 represents the eigenvector corresponding to the F1 criterion. 
Similarly, X2 represents the eigenvector for the F2 criterion, X3 for F3 and so on. The CR 
value for calculating each eigenvector is verified to be less than 0.1.

6.4.3  Pairwise Comparison for Criteria with Respect to Controllers

The ten features F1, F2, F3, …, F10 of the criteria are pairwise compared for all alternatives C1, 
C2, C3, C4, C5, and C6. The corresponding eigenvectors for these alternatives are calculated, 
i.e., X11, X12, X13, X14, X15, and X16. The eigenvectors for alternatives should be calculated
using similar calculations as we have done for criteria elements. The CM, CI, λmax and the
CR values for each matrix were calculated. The CR value for each eigenvector was checked
and verified to be less than 0.1 for maintaining consistency among judgments.

6.4.4  Weighted Super-Matrix

The eigenvectors are computed (which indicates the weight of each criterion in relation to 
each option and vice versa). We then combine them to form an unweighted super-matrix. 
Additionally, the unweighted super-matrix is modified to be column stochastic, so that the 
total of each column equals one. This operation converts the matrix to a super-matrix with 
weights. The weighted super-matrix illustrates the comparison of criterion alternatives and 
vice versa. The unweighted super-matrix is identical to the weighted super-matrix; however, 
the weighted super-matrix is column stochastic. X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 are 
the eigenvectors respectively for features (i.e., F1, F2, F3, F4, F5, F6 F7, F8, F9, F10 which denote 
the priority values of the features) for each controller. Similarly, X11, X12, X13, X14, X15, X16, the 
eigenvectors corresponding to C1, C2, C3, C4, C5, and C6, show the priority of the alternatives 
(controllers) regarding each feature. Finally, we compute the limit super-matrix in order to 
derive the final weights for the alternatives in the ANP model given in the next paragraph.

6.4.5  Super-Matrix (Limit) Computation

The weighted super-matrix is processed by increasing its power until it converges to a sta-
ble matrix. The stable matrix is also referred to as the limit super-matrix. The limit matrix 
indicates the relative importance of the alternatives and criteria, i.e., the final prioritized 
values. As a consequence, the limit matrix comprises the final weights assigned to each 

TABLE 6.4

Ratio Index for Different Number of Criteria

Criteria 1 2 3 4 5 6 7 8 9 10

Ratio Index 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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element in the criterion and alternative clusters. It is computed using a weighted super-
matrix in which values are raised to the power of 2k to produce the identical value for 
each row, where k is any random integer. The limit super-matrix aggregates all matrices’ 
pairwise comparisons. Additionally, it demonstrates the indirect interaction between the 
components. The results of the limit super-matrix are shown in Figure 6.4, where heavy 
weight represents the standing alternative. Figure 6.4 shows the final stable weights of all 
options. As C2 has the largest weights, it is the best suited controller. According to their 
final weights determined from the limit super-matrix, the following controllers are suit-
able: C3, C5, C1, C4, and C6. According to the findings, C2 has a high weight value, and 
hence the suggested SDN controller with ANP model corresponds to it. Additionally, the 
suggested controller’s performance is tested in the next part via tests, and then compared 
to the controller proposed using the AHP model. The following section covers the findings 
of experimental simulations for both AHP and ANP controllers.

6.5  Results and Discussion

The performance of the C2 controller (ODL) calculated using the suggested technique, i.e., 
ANP, is to be analyzed. Additionally, performance is compared to that of the AHP-generated 
Ryu controller. The Mininet Python API was used to simulate the network topologies calcu-
lated using the proposed and AHP approaches. This network simulator has been frequently 
used to prototype experiments based on SDN. Mininet 2.3.0d1 and OpenvSwitch (OVS) 
2.5.4 were installed in Ubuntu 16.04 LTS. Additionally, the Xming server was launched in 
order to create and visualize traffic between the source and destination servers.

FIGURE 6.4
Priorities of controllers computed by the limit super-matrix.
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6.5.1  Throughput Evaluation

Throughput is determined by sending PACKET-IN packets to the controller and comput-
ing PACKET-OUT (responses/second) packets using Cbench. The number of MACs per 
switch is limited to 2000, the switches are changed between 100 and 200, and each test is 
repeated ten times. The findings indicate that the ANP controller’s throughput does not 
diminish and that it starts quickly, as seen in Figure 6.5.

6.5.2  Utilization of CPU

To determine the CPU consumption, we utilized a program called sysbench and evalu-
ated both ODL and Ryu controllers. The findings for CPU use at 20-second intervals are 
shown in Figure 6.6. The graph demonstrates that at peak controller use, utilization does 
not exceed 45% for a controller with ANP and 30% for a controller with AHP. However, 
with typical traffic, the controller suggested with AHP achieves a maximum utilization of 
19% while the controller proposed with ANP achieves a maximum utilization of 26%.

6.6  Conclusion and Future Scope

The primary objective of this study was to examine numerous strategies for selecting con-
trollers for SDN. The selection of a controller is influenced by a number of factors, including 
platform support, northbound and southbound interfaces, productivity, and modularity. 
As a result, we defined it as an MCDM issue. Additionally, the ANP MCDM was used 
to resolve this issue. To begin, we determined the characteristics that affect performance, 

FIGURE 6.5
The throughput evaluation with scalability of the switches in SDN.
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namely the criterion parameters and the alternatives (controllers). Then, pairwise com-
parisons between each characteristic in the criteria cluster and each alternative in the con-
troller’s cluster were performed, and vice versa. We obtain priority vectors (eigenvectors) 
from these comparisons, which are then put in an unweighted super-matrix that has been 
column stochastically transformed to produce a weighted super-matrix. The final matrix, 
which indicates how the options and criteria are prioritized, is a limit super-matrix. The 
limit super-matrix findings indicate that the C2 controller (ODL) has the best feature set 
among the SDN controllers investigated in this research. Thus, a high-priority or high-
weight controller from the limit super-matrix was chosen for further experimental study.

To validate the performance of the feature-based optimal controller, i.e., ODL, we com-
pared it to an AHP-based controller for the same feature set. We compared the two control-
lers experimentally by examining several QoS indicators, such as CPU use and throughput. 
We confirmed the experimental results using Mininet, demonstrating that ODL (ANP) beats 
Ryu (AHP). We generated a controller with a higher priority weight for supporting features 
than previous controllers using the suggested technique, and the experimental study con-
firmed in Mininet demonstrated an increase in performance with the ANP controller.

In future, we tend to investigate other MCDM methods for performance benchmarking 
of SDN controllers. Hence, a comparison will be made with other MCDM schemes to rank 
the controllers.
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