

Security Orchestration,
Automation, and Response
for Security Analysts

Learn the secrets of SOAR to improve MTTA and MTTR
and strengthen your organization’s security posture

Benjamin Kovacevic

BIRMINGHAM—MUMBAI

Security Orchestration, Automation, and Response
for Security Analysts

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Prachi Sawant
Senior Editor: Athikho Sapuni Rishana
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Ashwin Kharwa
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Nilesh Mohite
Marketing Coordinator: Shruthi Shetty, Marylou De Mello
Business Development Executive: Prathamesh Walse

First published: July 2023
Production reference: 1230623

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80324-291-0
www.packtpub.com

http://www.packt.com

Contributors

About the author
Benjamin Kovacevic is a cybersecurity enthusiast with hands-on experience with Microsoft XDR
and SIEM platforms. Currently working with Microsoft Sentinel as a product manager, he focuses on
the SOAR component of Microsoft Sentinel and works on new capabilities that help SOCs improve
their investigations and responses. Benjamin constantly works to improve his knowledge about
cybersecurity and also shares his knowledge about Microsoft SOAR. He is the author of Microsoft
Sentinel Automation training blog, as well as many other blog posts containing tips and tricks to get
started quickly with Microsoft Sentinel Automation.

Benjamin is originally from Bosnia and Herzegovina, but he currently resides in Ireland with his wife
and two sons.

I want to thank my wife, Dzenana, and my sons, Adi and Mak. Thank you for all the sacrifices you
have made and for supporting me through this journey. Also, a big thanks to all the people who have
made a big impact on my security journey!

5
Introducing Microsoft

Sentinel Automation

In the previous chapter, we introduced a few SOAR tools and some of the main features we can utilize
in our day-to-day operations. We showcased what incident management, investigation, automation,
and reporting look like in real tools and offered some directions on how to utilize them.

This chapter will focus on Microsoft Sentinel automation, and we will dive deep into each element
when working with it. We will discuss automation rules, playbooks, their elements and permissions,
and prepare you for hands-on examples that will be covered in Chapters 6 to 8.

In this chapter, we will discuss the following:

• The purpose of Microsoft Sentinel automation

• All about automation rules

• All about playbooks

• Monitoring automation rules and playbook health

The purpose of Microsoft Sentinel automation
Microsoft Sentinel automation’s purpose, like the purpose of all automation, is to take repetitive tasks
and transform them into automated tasks. In the SOC, some of the topics automation focuses on are
as follows:

• Enrichment: When an incident is created, we want to enrich it with additional data. This will
save SOC analysts time as they will have this enrichment as soon as they pick up the incident.
For example, when an incident with an IP address is created, we can run an automatic playbook
to enrich the incident with TI data about whether the IP is known to be malicious or not.

Introducing Microsoft Sentinel Automation86

• Initial triage and incident suppression: This accompanies enrichment as we can utilize the
results of that to decide whether we want to auto-close an incident if the IP is internal and
behavior is expected, or transfer it to tier 2 if the IP address is known to be malicious.

• Orchestration: This is more oriented to orchestrating incident assignments or notifying SOC
analysts that an incident has been created or assigned to them. For example, we can create
automation that will send a Microsoft Teams chat message to the user using adaptive cards on
incident creation, from where we can utilize SOC analyst input to even auto-close incidents if
the information that’s shared warrants making that decision.

• Response: SOC analysts used to struggle when they needed to block an IP address, isolate
a machine, block a user or reset their password, and so on. Because SOC analysts wouldn’t
usually have permission to access a firewall, active directory, or EDR solution, they would need
to raise an internal ticket or ping the network or system administrator to help out. By running
a playbook, that task can be done for them automatically. This is crucial for many modern
threats, where the time it takes to contain the threat must be minimal.

To perform any of the preceding tasks, Microsoft Sentinel uses two different automation methods:

• Automation rules: These are used to manage automation in Microsoft Sentinel centrally.
Automation rules contains triggers, conditions, and actions that dictate how an automation rule
will respond. In the next section, All about automation rules, we will dive deep into this feature.

• Playbooks: Playbooks are a list of actions that will be performed on an incident. This can
include enrichment, response, remediation, and much more. We will cover playbooks in more
detail later, in the All about playbooks section.

All about automation rules
As mentioned previously, automation rules can be created to manage automation in Microsoft Sentinel
centrally. But how can we do that?

Automation rules in Microsoft Sentinel have three main aspects:

• Triggers

• Conditions

• Actions

Automation rules are sorted in order, which is a critical element since all automation rules will run from
the lowest order number (for example, 1) to the highest (for example, 55), and they will run sequentially.

However, before we go into more detail about triggers, conditions, and actions, let’s familiarize
ourselves with the graphical user interface (GUI) of Microsoft Sentinel automation rules and learn
more about permissions.

All about automation rules 87

Navigating the automation rule GUI

Microsoft Sentinel automation rules are located under the Automation tab in the Automation rules
sub-menu. In this menu, we have the option to create an automation rule, edit an automation rule,
enable or disable an automation rule, move it up or down, remove an automation rule, as well as filter
automation rules by analytic rules, actions, triggers, statuses, who created them, and when they were
last modified.

Figure 5.1 – Microsoft Sentinel automation rules

Introducing Microsoft Sentinel Automation88

We need to click on Create and select Automation rule to create an automation rule.

Figure 5.2 – Creating a new automation rule

From here, we must navigate to the Create new automation rule window; this is where we can start
creating this new rule.

All about automation rules 89

Figure 5.3 – The Create new automation rule wizard

However, there are other ways to create or edit automation rules:

• When creating an analytic rule using the Analytics rule wizard area, under the Automated
response tab, we can see what automation rules will be triggered when an incident is created.
We can also create a new automation rule specific to this rule. We can choose between any
trigger at this stage.

Introducing Microsoft Sentinel Automation90

Figure 5.4 – Creating an automation rule when creating the analytic rule

• From the Incidents page, we can select an incident and, from the right menu, under Actions,
select Create automation rule.

Figure 5.5 – Creating an automation rule from the Incidents page

All about automation rules 91

Using this method, automation rule conditions will be filled with the data that was detected
in the incident itself.

Figure 5.6 – Automation rule configuration

Introducing Microsoft Sentinel Automation92

• We can follow the same steps to create an automation rule from the Incident investigation page.

Figure 5.7 – Creating an automation rule from the Incident Overview page

To be able to create automation rules or playbooks, users must have the right permissions to create
or edit them. Let’s go through the permissions for Microsoft Sentinel automation.

Permissions

To create automation rules, a user needs to have a Microsoft Sentinel Responder or Microsoft
Sentinel Contributor role assigned.

There is one more special role connected to Microsoft Sentinel automation rules – Microsoft Sentinel
Automation Contributor. This is not a user role but instead a role that needs to be assigned to a
Microsoft Sentinel identity so that an automation rule can run a playbook as an action. This is assigned
to Microsoft Azure resource groups, which is where playbooks reside. For example, if we have five
resource groups that contain playbooks, we want to have the option to attach them as an action; we
need to assign this permission to all five Microsoft Azure resource groups.

To assign this permission, we need to go to the Microsoft Sentinel instance, go to Settings, then Settings
again, and then, under Playbook permissions, click on Configure permissions. In the next window,
choose the resource groups you want to assign the Microsoft Sentinel Automation Contributor role.

All about automation rules 93

Figure 5.8 – Microsoft Sentinel playbook permissions configuration

Once the permission is applied on the resource group level, we can attach playbooks from that resource
group to an automation rule as an action.

Triggers

Triggers are used to define when an automation rule runs. For automation rules, we have three
different triggers:

• When incident is created: This supports a complete list of conditions

• When incident is updated (Preview): This supports a complete list of conditions, plus conditions
associated with information about updated data

• When alert is created (Preview): This supports only one condition (an analytic rule name)

Figure 5.9 – Automation rule triggers

Introducing Microsoft Sentinel Automation94

Conditions

Once a trigger has been set, we need to set conditions. Conditions are used to filter what incidents we
want to run specific actions on, as we don’t want the same actions on all incidents. What’s important
to note here is that actions will run only if all conditions are met. Automation rules support OR and
AND condition grouping, which allows us to create more detailed automation.

An analytic rule name is one condition that cannot be removed and is used across all triggers. The
evaluation supports Contains and Does not contain options, while for values, we can choose all
analytic rules or run on only specific analytic rules created in Microsoft Sentinel. When we choose
All as a value for incident creation and update, this will also run on synchronized incidents from tools
such as Microsoft 365 Defender and Microsoft Defender for Cloud.

Since we have multiple triggers in automation rules, let’s see what conditions are supported for each.

Conditions associated with the “When incident is created” trigger

The When incident is created trigger can only check the current state of the values of an incident. If
we evaluate the same incident in multiple automation rules, the current state can change if we update
the incident in a previous automation rule. For example, if the severity of incident creation is set to
Medium, that will be the current state for the first automation rule. Suppose, in the automation rule, we
take action to change the severity to High. In that case, the current value for severity in the following
automation rule (that is, automation rule number 3) that will run on this same incident will be High.

The following conditions can be used with the When an incident is created trigger:

• Incident properties: For example, analytic rule name, title, description, severity, owner, status,
tactics, and custom details

• Entity properties: For example, account name, account domain, filename, file hash, hostname,
IP address, IoT device, mail message details, URL, and many more

All about automation rules 95

Figure 5.10 – Automation rule condition values

Based on the condition selected, we can use one of the following evaluation methods:

• Equals or Does not equal

• Contains or Does not contain

• Starts with or Does not start with

• Ends with or Does not end with

Introducing Microsoft Sentinel Automation96

Figure 5.11 – Automation rule condition options

The final element of the condition is the value itself. Here, we can have clear text input (such as an
incident title or description) or the option to select pre-existing values (such as incident severity or
status). We can also add multiple inputs to the same condition.

Figure 5.12 – An automation rule condition example

All about automation rules 97

Conditions associated with the “When incident is updated” trigger

If we update an incident with one of the supported conditions, we can trigger automation rules based on
that. This gives us complete control over automation scenarios to support incident creation and updates.

Conditions with an incident update trigger support current state and state changes. Conditions
include those from the incident creation trigger, plus the following:

• Owner

• Updated by

• Alerts

• Comments

They also include state change values for the following:

• Severity

• Status

• Tactics

• Tag

The following evaluation methods can be added with state change:

• Changed (owner, severity, and status)

• Changed To (severity and status)

• Changed From (severity and status)

• Added (alerts, comments, tactics, and tags)

The only difference is Updated by, which uses the current state for evaluation. We can select one of
the following values from the dropdown:

• Application

• User (a manual change of a field by a specific user)

• Alert grouping (adding an alert to the incident)

• Playbook (a change made by a playbook run)

• Automation rule (a change made by an automation rule run)

• Microsoft 365 Defender (for updates to incidents made by bidirectional incident synchronization
from Microsoft 365 Defender)

Introducing Microsoft Sentinel Automation98

Figure 5.13 – The Updated by automation rule values

Conditions associated with the “When alert is created” trigger

The When alert is created trigger only supports analytic rules created in Microsoft Sentinel, and the
only supported condition is Analytic rule name.

Figure 5.14 – An automation rule alert creation condition

All about automation rules 99

After choosing one of the triggers (incident creation, incident update, or alert creation) and configuring
the conditions, if all conditions we configured are met, we can run one or more actions on an incident.

Actions

The following actions are supported for automation rules:

• Run playbook:

Figure 5.15 – Run playbook action

• Change status:

Figure 5.16 – Change status action

Introducing Microsoft Sentinel Automation100

• Change severity:

Figure 5.17 – Change severity action

	� Assign owner:

Figure 5.18 – Assign owner action

All about automation rules 101

• Add tags:

Figure 5.19 – Add tags action

Important note
The Run playbook action is the only action that’s available when utilizing the When alert is
created trigger.

While automation rule triggers, conditions, and actions are fields, we will always want to configure
to have effective automation rules; we can also configure rule expiration and order.

Rule expiration and order

As mentioned previously, we have two additional steps we can configure when creating automation rules:

• Rule expiration: This is if we are creating an automation rule that will be active for only a
specific period – for example, if we are performing penetration testing. We want to auto-close
incidents created by and during penetration testing and disable the automation rule at a specific
date and time.

• Order: This is what execution order number we want to configure an automation rule as. To
recall, all automation rules are run via an order number, from a lower number to a higher
one, sequentially.

Figure 5.20 – Automation rule expiration and order configuration

Introducing Microsoft Sentinel Automation102

With that, we have covered all the major elements of automation rules and how they work. In the next
section, we will look at playbooks and their main building blocks in Microsoft Sentinel automation
in more detail.

All about playbooks
Playbooks are a list of actions that will be performed on the incident. They can include enrichment,
response, remediation, and much more. To achieve this, Microsoft Sentinel utilizes a Microsoft Azure
solution called Logic Apps – a platform used to create and run automated workflows. This platform
uses low- or no-code and focuses more on visual design. However, those who prefer to code more can
utilize coding mode as well. Because of this, it is common to hear people refer to Microsoft Sentinel
playbooks as Logic Apps.

There are two different types of Logic Apps that Microsoft Sentinel supports:

• Logic Apps Consumption: This is a single playbook that has only one workflow. It supports
templates and custom connectors and is widely integrated into Microsoft Sentinel with template
support. Logic Apps Consumption shares the same backend resources across different customer
tenants. We will use the Logic Apps Consumption model in our hands-on examples.

• Logic Apps Standard: This is a single Logic App that can have multiple workflows. It doesn’t
support templates and custom connectors, which is why Microsoft Sentinel doesn’t have playbook
templates created in Logic Apps Standard. In Logic Apps Standard, workflows in the same Logic
App share the same backend resources, and they are not shared across different Logic Apps like
they are with Logic Apps Consumption. It’s also important to note that when creating a Logic
Apps Standard playbook, it must be stateful and cannot utilize private endpoints – Microsoft
Sentinel does not support these scenarios at the time of writing.

Microsoft Sentinel is a unified way to run a playbook, and it will make no difference whether Logic
Apps Consumption or Logic Apps Standard is used.

Navigating the playbooks GUI

Microsoft Sentinel playbooks are located under the Automation tab in the Active playbooks sub-menu.
In this menu, we have the option to create a playbook, open playbook details to edit or manage it,
enable or disable a playbook, delete a playbook, as well as to filter playbooks by status, trigger kind,
subscription, resource group, plan, and source name. If we have deployed the playbook using built-in
templates, we will also get information on whether an update is available.

All about playbooks 103

Figure 5.21 – Microsoft Sentinel playbooks

Playbooks support templates; all deployed templates can be found in the Playbooks templates (Preview)
sub-menu. We can deploy any playbook, from templates to active state. We can filter templates by
trigger, Logic App connector, entities, tags, and source name. If we have already deployed a playbook
template, we will see a notification stating that a specific playbook is in use.

Introducing Microsoft Sentinel Automation104

Figure 5.22 – Microsoft Sentinel playbook templates

To access all templates in Microsoft Sentinel, we can utilize Content hub and the available solutions,
where we can filter, among others, by the solution we need or solutions with playbook templates.

Figure 5.23 – Microsoft Sentinel – Content hub

All about playbooks 105

More templates can be found on GitHub and can be easily deployed to Microsoft Sentinel since they
utilize Azure Resource Manager (ARM) templates. Microsoft Sentinel has an official repository with
lots of content available that is ready to be deployed. The link to the official repository is https://
github.com/Azure/Azure-Sentinel.

To create a new playbook, go to the Automation tab, click Create, and select one of the following options:

• Playbook with incident trigger

• Playbook with alert trigger

• Blank playbook

Figure 5.24 – Creating a new Microsoft Sentinel playbook

If we select Playbook with incident trigger or Playbook with alert trigger, we will create a Logic
Apps Consumption Logic App. The first view is where we enter basic information, such as what
subscription and resource we want to deploy the playbook in, the region, and the playbook’s name.
We can also enable diagnostic settings, which we will cover in the Monitoring automation rules and
playbook health section:

https://github.com/Azure/Azure-Sentinel
https://github.com/Azure/Azure-Sentinel

Introducing Microsoft Sentinel Automation106

Figure 5.25 – The Create playbook wizard

In the next window, we can select how we want to authenticate a Microsoft Sentinel connection. By
default, playbook creation will enable a system-assigned managed identity from the playbook and
utilize it (the recommended method). However, we can utilize any pre-existing connection or change
it once the playbook has been deployed.

All about playbooks 107

Figure 5.26 – Creating a new playbook – Connections

The last step is to review the configuration and create our playbook.

Figure 5.27 – Creating a new playbook – Review and create

Introducing Microsoft Sentinel Automation108

Once the playbook has been deployed, we can navigate to Logic app designer, where we can start
our playbook design.

Figure 5.28 – The Logic app designer view

From here, we can also access the code view of the playbook if we prefer to work with code.

All about playbooks 109

Figure 5.29 – The Logic App designer code view

We will go through the whole process of creation and explanation in Chapters 6 to 8, where we will
cover hands-on examples.

When we want to create a blank playbook, we can choose between creating a Logic Apps Standard or
Logic Apps Consumption Logic App. We can also utilize any other trigger available in Logic Apps,
such as a recurrence to perform a regular playbook run, and a Microsoft Forms trigger to create an
incident when a new form is filled in and when an email is received.

Introducing Microsoft Sentinel Automation110

Figure 5.30 – Creating a playbook using Logic Apps Standard

All about playbooks 111

To run the created playbook, we have a few options:

• Attach the playbook to an automation rule for automatic triggering (which will require the
Microsoft Sentinel Automation Contributor role to be assigned to a Microsoft Sentinel
identity; more about this in the subsequent Permissions section)

• Run the playbook manually on the incident (which will require the Microsoft Sentinel
Automation Contributor role assigned to a Microsoft Sentinel identity)

• Run the playbook manually on the alert

To create, edit, and run playbooks in Microsoft Sentinel, you will need certain permissions to perform
these actions. Let’s go through the different permissions users can have and what users can perform
with these actions.

Permissions

Important note
To understand this segment better, I suggest that you have a basic understanding of permissions
on Azure and Azure RBAC. A great starting point is the official documentation: https://
learn.microsoft.com/azure/role-based-access-control/.

There are a few different permissions that users can utilize based on the actions they need to perform
when working with Microsoft Sentinel playbooks:

• Logic Apps Contributor: This gives you permission to manage Logic Apps and run playbooks,
but you cannot change access to them (there is standard role separation in Azure, and only the
Owner or User Access Administrator role can perform this action).

• Logic App Operator: This gives you permission to read, enable, or disable a playbook, but you
cannot edit, update, or run playbooks.

• Microsoft Sentinel Contributor: This permits you to attach a playbook to an analytic rule,
among other Microsoft Sentinel permissions.

• Microsoft Sentinel Responder: This permits you to run playbooks manually, among other
Microsoft Sentinel permissions.

• Microsoft Sentinel Playbook Operator: This permits you to list and run playbooks manually.

We covered the Microsoft Sentinel Automation Contributor role earlier in this chapter, so we will
not look at it in detail again.

To be able to create and utilize playbooks, it is important to understand how they work. In the next
section, we will cover the main aspects of Logic Apps.

https://learn.microsoft.com/azure/role-based-access-control/
https://learn.microsoft.com/azure/role-based-access-control/

Introducing Microsoft Sentinel Automation112

Logic Apps connectors and authentication

Under the hood, Logic Apps uses API calls to connect with Microsoft and non-Microsoft solutions.
Those API calls can be wrapped in a Logic Apps connector, giving us more straightforward configuration
and authentication. These connectors are as follows:

• Managed connectors: These are available in a Logic App out of the box. They contain triggers
and actions for specific products or services, such as the Microsoft Sentinel connector. There
are hundreds of managed connectors for Microsoft products and services, as well as for
non-Microsoft products and services.

• Custom connectors: If some product or service still doesn’t have a built-in connector in Logic
Apps, you have the option to create and utilize a custom connector in your environment. It is
also possible to share those custom connectors with others, and some of them are utilized with
Microsoft Sentinel. When using custom connectors, you must utilize the Logic App Consumption
model since Logic App Standard doesn’t support custom connectors at the time of writing.

But what if there is neither a built-in nor custom connector?

In this case, we can utilize an HTTP connector that will allow us to connect to a product or solution
using direct API calls. Examples of these HTTP calls will be covered in Chapter 9.

Important note
Data connectors in Microsoft Sentinel aren’t the same as Logic Apps connectors.

Data connectors in Microsoft Sentinel are used to ingest logs into a Log Analytics workspace,
and we can utilize those logs to create detection rules, hunt for data, and so on. Some examples
of these logs include Syslog data, security event data from Windows Server, and sign-in logs
from Azure AD.

Logic Apps connectors are API calls to products and services so that we can perform specific
actions. Examples of these API calls are a call to Azure AD to block a user, a call to an EDR
solution to isolate the machine, and an API call to the TI solution to get IP address information.

But wait! When making an API call, don’t we need to provide authentication? Is this supported in
Microsoft Sentinel playbooks?

Yes! If we need to authenticate managed or custom connectors, there is a way to do this. For non-Microsoft
products and services, these can be usernames and passwords, API tokens, and so on. These authentications
are saved as API connections and can be accessed from a playbook. Once created, these API connections
can also be utilized in other playbooks; they are not specific to one playbook.

All about playbooks 113

Figure 5.31 – Managing an API connection in a playbook

If we use HTTP calls, this information will be inserted into the header or body of the API call, as per
the instructions of the product or service.

In terms of Microsoft services and products, playbooks support three types of API authentication.
Let’s look at them in detail.

System-assigned managed identity

This is the preferred option and is utilized by default when creating playbooks using Create playbook
with an incident trigger or Create playbook with an alert trigger. Each playbook has its own system-
assigned managed identity that can be enabled, and this identity can be utilized only by this specific
playbook. This connection cannot be shared among playbooks. A managed identity also provides an
option for the least privileged approach.

It’s important to note that not all connectors in Logic Apps support managed identities. For example,
a Microsoft Sentinel connector supports them, while Microsoft Teams and Office 365 Outlook do not.

Introducing Microsoft Sentinel Automation114

To add permissions to a managed identity, you will need to go to the Identity tab in Logic Apps.

Figure 5.32 – Enabling a playbook’s managed identity

Once you are in the Identity section, you need to select Azure role assignments and then Add role
assignments to assign an Azure permission to the managed identity.

Figure 5.33 – Assigning a permission to a playbook’s managed identity

All about playbooks 115

To authenticate a playbook trigger or action with a managed identity, first, fill in Connection name, then
for connecting, select System-assigned managed identity from the drop-down list, and click Create.

Figure 5.34 – Connecting to a Logic Apps connector using a managed identity

Service principals

Service principals can be created on the Azure AD administrator page by registering an application.
Once we have created an application, we will need to save a Tenant ID and Application ID in a secure
space. These will be needed for authentication purposes, as well as to create a secret for the application
and save it in a secure space, such as Azure Key Vault.

To register an application, we need to enter the application’s name and specify whether the application
is single- or multi-tenant.

Introducing Microsoft Sentinel Automation116

Figure 5.35 – Creating a new service principal using Azure AD App registrations

Once the service principal has been created, we can assign API permissions to it, such as the Microsoft
Graph Security API and Microsoft 365 Defender.

All about playbooks 117

Figure 5.36 – Assigning API permissions to a service principal

We can also assign any Azure AD or Azure Role Based Access Control (RBAC) role to a service
principal. For example, suppose we want the option to query data in a Log Analytics workspace. In
that case, we can utilize the Azure Monitor Logs connector, which does not support a managed
identity at the time of writing but does support service principals. Therefore, we will assign the Log
Analytics Reader permission to the service principal and authenticate our connector with it. Another
important note about using a service principal is that it can be reused across multiple playbooks as it
is not playbook-specific. This is because it’s a system-assigned managed identity.

Figure 5.37 – Connecting to the Logic Apps connector using a service principal

Introducing Microsoft Sentinel Automation118

User identity

The last option that we will cover is user identity. This option allows any user from your organization
to authenticate the connection. The user carrying out the authentication must have the permission to
perform the needed action (for example, to block a user in Azure Active Directory or to isolate a host
in EDR) to authenticate the API connection. If the user doesn’t have the permission, the playbook will
fail on this step. This is also a shared connection. Once we create this API connection, it can be utilized
across multiple playbooks – by a specific user or any user with permission to create and edit playbooks.

Figure 5.38 – Connecting to the Logic Apps connector using a user’s identity

What’s important to note here is that the user who authenticates this connection must have permission
to perform the action (for example, to block a user in Azure Active Directory or isolate a host in EDR)
when the playbook is running. Some organizations use Privileged Identity Management (PIM) and
users are only assigned permission when needed. In this scenario, it is advisable to not use user identity
for any action that can run while the user doesn’t have permission active.

With that, let’s shift focus and get to know triggers a little better.

All about playbooks 119

Triggers

Triggers are used to define on what event a playbook will be triggered to run. It is always the first
step when we create our playbook. Triggers also define the scheme that the playbook expects when
it is triggered.

In Microsoft Sentinel, we have two primary triggers, with the third one still under development at
the time of writing and, therefore, it will not be covered in this book.

The following triggers are available in Microsoft Sentinel:

• Microsoft Sentinel alert: This receives alert data as input

• Microsoft Sentinel incident: This receives incident data as input

• Microsoft Sentinel entity: Under development

Figure 5.39 – Microsoft Sentinel playbook triggers

Since Microsoft Sentinel utilizes Logic Apps to create playbooks, we can utilize many more triggers
that are not connected to Microsoft Sentinel. Some of them are as follows:

• Schedule triggers: Runs a playbook every n minutes, hours, or days, or at a specific time on
specific days

• Microsoft Forms triggers: Creates a manual incident when a Microsoft Forms form is submitted

• Office 365 Outlook: Creates a manual incident when an email is received in a shared mailbox,
and so on

Let’s now focus on the rest of the playbook steps.

Introducing Microsoft Sentinel Automation120

Actions

Once we have configured a trigger, we need to configure actions that will be performed when a playbook
is triggered. We can utilize data that arrives with the trigger (incident data alongside the incident
trigger, for example) to focus on specific information from it. These actions can be run sequentially,
in parallel, or under complex conditions.

Microsoft Sentinel’s native actions, among others, include the following:

• Add comment to incident

• Bookmarks: Create or update a bookmark

• Create incident

• Entities: Get accounts/hosts/IPs/URLs

• Watchlist: Create a new watchlist with data (raw content) and so on

Figure 5.40 – Microsoft Sentinel playbook actions

All about playbooks 121

It’s important to know that each action defines its scheme, and we can utilize data from triggers and
previous actions to define data in the action we are working on now. To access this data, we can utilize
dynamic content. This will be covered in the next section.

Some other actions we can create are as follows:

• Azure Active Directory: An action to block a user, reset their password, and revoke the session

• Azure Firewall: An action to block an IP

• Palo Alto/Fortinet/CheckPoint…: An action to block an IP

• ServiceNow/Jira: Sends incident data and creates a record

• VirusTotal: Gets the IP/URL/file hash enrichment data

Some other actions native to Logic Apps that we need to be aware of are as follows:

• Condition: Here, we can define which block of actions to execute based on condition evaluation.
For example, if the host starts with admin, we can auto-close the incident; if not, we can isolate
the device.

• For each: If the data that we are working on is an array (set of data) and we want to act on each
piece of data in the dataset.

• Switch: Similar to Condition, but we can have multiple paths.

• HTTP: To make an API call to a product or service if a native action is not available in Logic Apps.

• Parse JSON: To parse a result received by an HTTP call.

• Create HTML table: To be used when creating an email response and you want to create an
HTML table containing data.

• Set variable: If we want to set a variable that can be used on multiple instances in a playbook.

We will cover these actions in more depth in Chapter 9.

To make playbook actions utilize dynamic data, we can utilize dynamic content in Logic Apps.

Dynamic content

Dynamic content refers to temporary fields in a playbook run; these are created by triggers and
actions. The only rule is that using these temporary fields is only possible for triggers and actions that
happened before the action we are working on occurred. For example, when a playbook is triggered
with a Microsoft Sentinel incident trigger, the output that’s received will contain all the necessary data
about the incident, such as its severity, status, incident number, incident URL, entities, and alerts.
Using dynamic content, we can specify these values in the next action. For example, we might want to
get a list of IPs, so we can use the Entities - Get IPs action; as input, we can use the Entities dynamic
content that we received from the Microsoft Sentinel incident trigger.

Introducing Microsoft Sentinel Automation122

Figure 5.41 – Dynamic content in Microsoft Sentinel playbooks

If some data is not exposed in Dynamic content or we want to join two values, we can use expressions.
An example of an expression is when we have an array containing alerts and we want to list alert names
from that dataset; we can use a join expression to perform this action.

We will cover more on dynamic content and expressions in the hands-on examples in Chapters 6 to
9, which will feature common tips and tricks for working with Microsoft Sentinel playbooks.

Monitoring automation rules and playbook health
Microsoft Sentinel automation has a native way of monitoring the health of automation rules and
playbook triggers. This monitoring can be enabled from the Settings page of Microsoft Sentinel,
under Health monitoring.

Monitoring automation rules and playbook health 123

Figure 5.42 – Microsoft Sentinel – Health Monitoring configuration

We need to enable the Automation diagnostic settings and send them to the Log Analytics workspace
where Microsoft Sentinel is enabled.

Figure 5.43 – The Automation Health monitoring configuration wizard

Introducing Microsoft Sentinel Automation124

These diagnostic settings will be saved in the SentinelHealth table in Microsoft Sentinel so that we
can query statuses using KQL.

A sample KQL query that you can use to get this data is as follows:

SentinelHealth
| where SentinelResourceType in ("Playbook", "Automation rule")

Figure 5.44 – Querying the SentinelHealth table in the Microsoft Sentinel | Logs tab

Monitoring automation rules and playbook health 125

We can also utilize the Automation Health workbook that’s available in workbook templates to get
a detailed report about our automation health in Microsoft Sentinel.

Figure 5.45 – Utilizing the Microsoft Sentinel Automation Health workbook

Automation Health only monitors a playbook trigger – in other words, it only checks whether the
playbook triggered successfully, not the whole playbook run. To monitor whether the playbook runs
successfully or not, we have to utilize diagnostic settings at the playbook level. A diagnostic setting
can be configured when creating a playbook.

Introducing Microsoft Sentinel Automation126

Figure 5.46 – Enabling diagnostic settings when creating a new playbook

Monitoring automation rules and playbook health 127

A diagnostic setting can also be created in the playbook itself.

Figure 5.47 – Adding a diagnostic setting to an existing playbook

Once we’ve done this, we need to select the Send to Log Analytics workspace box, where we have
Microsoft Sentinel enabled.

Introducing Microsoft Sentinel Automation128

Figure 5.48 – The Diagnostic setting configuration wizard of a playbook

This data will be saved in the AzureDiagnostics table. We can query it using KQL:

AzureDiagnostics
| where OperationName == "Microsoft.Logic/workflows/
workflowRunCompleted"

The preceding KQL query will give you the following output:

Monitoring automation rules and playbook health 129

Figure 5.49 – The queried playbook’s diagnostic settings in the Microsoft Sentinel | Logs tab

We can also join and compare data from the AzureDiagnostics and SentinelHealth tables to check
whether the playbook triggered by the automation rule or the one we triggered manually had a
successful run. This can be done by comparing the runId columns in both tables and joining them
on the same runId since it is unique for each playbook run.

Here is a KQL example:

SentinelHealth
| where SentinelResourceType == "Automation rule"
| mv-expand TriggeredPlaybooks = ExtendedProperties.TriggeredPlaybooks
| extend runId = tostring(TriggeredPlaybooks.RunId)
| join (AzureDiagnostics
    | where OperationName == "Microsoft.Logic/workflows/
workflowRunCompleted"
    | project

resource_runId_s,
playbookName = resource_workflowName_s,
playbookRunStatus = status_s)

    on $left.runId == $right.resource_runId_s
| project
    RecordId,
    TimeGenerated,
    AutomationRuleName= SentinelResourceName,
    AutomationRuleStatus = Status,

Introducing Microsoft Sentinel Automation130

    Description,
    workflowRunId = runId,
    playbookName,
    playbookRunStatus

The preceding KQL query will give you the following output:

Figure 5.50 – Querying AzureDiagnostics and SentinelHealth in the Microsoft Sentinel | Logs tab

With automation rule and playbook health monitoring covered, let’s wrap up this chapter.

Summary
In this chapter, we dug deep into Microsoft Sentinel automation and dissected each element. First, we
focused on automation rules and their main elements – triggers, conditions, and actions – and how
they define automation rule runs. We also covered permissions and ways to create automation rules.
Then, we moved on to the topic of playbooks, where we focused on their main elements – triggers,
actions, and dynamic content – as well as underlying information such as connectors, permissions,
and authentication methods.

At the end of this chapter, we focused on the critical topic of automation health and how to monitor
it using Microsoft Sentinel functionalities.

In the next chapter, we will begin our hands-on examples. We will focus on enriching incidents so
that we can speed up MTTA and MTTR in Microsoft Sentinel.

	Cover
	Copyright
	Contributors
	Chapter 5: Introducing Microsoft
Sentinel Automation
	The purpose of Microsoft Sentinel automation
	All about automation rules
	Navigating the automation rule GUI
	Permissions
	Triggers
	Conditions
	Actions
	Rule expiration and order

	All about playbooks
	Navigating the playbooks GUI
	Permissions
	Logic Apps connectors and authentication
	Triggers
	Actions
	Dynamic content

	Monitoring automation rules and playbook health
	Summary

