

Docker for Sysadmins: Linux Windows
VMware
Getting started with Docker from the perspective
of sysadmins and VM admins

Nigel Poulton

This book is for sale at http://leanpub.com/dockerforsysadmins

This version was published on 2016-10-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2016 Nigel Poulton

http://leanpub.com/dockerforsysadmins
http://leanpub.com/
http://leanpub.com/manifesto

Huge thanks to my wife and kids for putting up with a geek in the house who
genuinely thinks he’s a bunch of software running inside of a container on top of
midrange biological hardware. It can’t be easy living with me!

Massive thanks as well to everyone who watches my Pluralsight videos. I love
connecting with you and really appreciate all the feedback I’ve gotten over the years.
This was one of the major reasons I decided to write this book! I hope it’ll be an
amazing tool to help you drive your careers even further forward.

Contents

0: About the book . 1
Why should I read this book or care about Docker? 1
Isn’t Docker just for developers? . 1
Why this Docker book and not another one? 2
Should I buy the book if I’ve already watched your video courses? 2
How the book is organized . 2
Other stuff about the book . 3

4: The big picture . 6
Engine check . 6
Images . 7
Containers . 9
Attaching to running containers . 11

0: About the book
This is a book about Docker, hand-crafted for system administrators. No prior
knowledge required!

But what about developers and DevOps?

If you’re a developer with no interest in operations then this book is not for you. If
you’re into DevOps then I think you’ll get a lot from the book.

To keep things short… the book is not about showing you how to develop microser-
vice apps with Docker. The book is about how the core Docker plumbing works.
You’ll learn the how and the why - the commands and the deep-dives. I really want
to set you on your way to being as good at Docker as you already are at Linux,
Windows or VMware.

Why should I read this book or care about
Docker?

Docker is coming and there’s no hiding from it. Developers are all over it. In IT Ops,
we need to get ready to support Dockerized apps in our business critical production
environments.

Isn’t Docker just for developers?

Hell no!!!

All of those Dockerized apps that developers are creating need a solid Docker
infrastructure to run on. And that’s where IT Ops comes into the picture… IT
Ops will be asked to build and run high performance and highly available Docker
infrastructures to support business applications. If we’re not skilled-up on Docker,
we’re going to struggle.

0: About the book 2

Why this Docker book and not another one?

At the time I decided to write the first edition of this book, so many of the Docker
books already out there were terrible! They were a shocking mix of badly written,
full of technical inaccuracies, or massively out of date. And sometimes they were all
three! It’s honestly not my intention to offend people, but go and read some of the
reviews on Amazon. Some of the Docker books out there are a shameful waste of
trees and paper!

So I decided to write something that was well written, technically accurate, and kept
up to date. I want you to love this book.

If you buy the book and think it’s bad, call me out on Twitter¹, give the book bad
reviews, do whatever you feel necessary. And I’ll try and fix it. But I’m confident
you won’t need to do any of that.

Should I buy the book if I’ve already watched
your video courses?

If you like my video courses² you’ll probably like the book. If you don’t like my video
courses you probably won’t like the book.

How the book is organized

I’ve divided the book into two sections:

• The general info stuff
• The technical stuff

The general info stuff covers things like - Who is Docker, Inc. What is the Docker
project. What is the OCI. Why do we even have containers… Not the coolest part of

¹https://twitter.com/nigelpoulton
²https://app.pluralsight.com/library/search?q=nigel+poulton

https://twitter.com/nigelpoulton
https://app.pluralsight.com/library/search?q=nigel+poulton
https://twitter.com/nigelpoulton
https://app.pluralsight.com/library/search?q=nigel+poulton

0: About the book 3

the book, but the kind of stuff that’s important if youwant a good rounded knowledge
of Docker and containers. It’s only a short section and you probably should read it.

The technical stuff is what the book is all about! This is where you’ll find everything
you need to start working with Docker. It gets into the detail of images, containers
and the increasingly important topic of orchestration. You’ll get the theory so that
you know how it all fits together, and you’ll get commands and examples to show
you how it all works in practice.

Every chapter in the technical stuff section is divided into three parts:

• The TLDR
• The deep dive
• The commands

The TLDR will give you two or three paragraphs that you could use to explain the
topic at the coffee machine.

TLDR or TL;DR, is a modern acronym meaning “too long; didn’t read”.
It’s normally used to indicate something that was too long to bother
reading. I’m using it here in the book to indicate a short section that you
can read if you’re in a hurry and haven’t got time to read the longer deep
dive that immediately follows it.

The deep dive is where we’ll explain how everything works and go through the
examples.

The Commands lists out all of the commands you’ve learned in an easy to read list
with brief reminders of what each one does.

I think you’ll love that format.

Other stuff about the book

Here are just a few other things I want you to know about the book.

0: About the book 4

Text wrapping

I’ve tried really hard to get the commands and outputs to fit on a single line without
wrapping! So instead of getting this…

$ docker service ps uber-service

ID NAME IMAGE NOD\

E DESIRED STATE CURRENT STATE ERROR

7zi85ypj7t6kjdkevreswknys uber-service.1 nigelpoulton/tu-demo:v2 ip-\

172-31-12-203 Running Running about an hour ago

0v5a97xatho0dd4x5fwth87e5 _ uber-service.1 nigelpoulton/tu-demo:v1 ip-\

172-31-12-207 Shutdown Shutdown about an hour ago

31xx0df6je8aqmkjqn8w1q9cf uber-service.2 nigelpoulton/tu-demo:v2 ip-\

172-31-12-203 Running Running about an hour ago

… you should get this.

$ docker service ps web-fe

ID NAME IMAGE NODE DESIRED CURRENT

817f...f6z web-fe.1 nigelpoulton/... mgr2 Running Running 5 mins

a1dh...mzn web-fe.2 nigelpoulton/... wrk1 Running Running 5 mins

cc0j...ar0 web-fe.3 nigelpoulton/... wrk2 Running Running 5 mins

For best results you might want to flip your reading device onto its side.

In doing this I’ve had to trim some of the output from some commands, but I don’t
think you’re missing anything important. However, despite all of this, if you’re
reading on a small enough device, you’re still going to get some wrapping :-(

But you didn’t include something I really hoped you
would…

I know the book doesn’t cover everything about Docker. But it’s not supposed to! I’ve
written the book to get you up to speed as quickly as possible while still spending

0: About the book 5

the time to learn how it all fits together. If the book was 1,000 printed pages itwould
not help you get up to speed quickly!

However, I will add sections to the book if I think they’re important and fundamental
enough. Please use the book’s feedback pages and hit me up on Twitter³ with ideas
of what you think should be included in the next version of the book.

Right, that’s enough waffling. Let’s crack on!

³https://twitter.com/nigelpoulton

https://twitter.com/nigelpoulton
https://twitter.com/nigelpoulton

4: The big picture
In the next few chapters we’re going to get into the details of things like images,
containers, and orchestration. But before we do that, I think it’s a good idea to show
you the big picture first.

In this chapter we’ll download an image, start a new container, log in to the new
container, run a command inside of it, and then destroy it. This will give you a good
idea of what Docker is all about and how some of the major components fit together.

But don’t worry if some of the stuff we do here is totally new to you.We’re not trying
to make you experts by the end of this chapter. All we’re doing here is giving you a
feel of things - setting you up so that when we get into the details in later chapters,
you have an idea of how the pieces fit together.

All you need to follow along with the exercises in this chapter is a single Docker
host. This can be any of the options we just installed in the previous chapter, though
if you are using Docker for Windows you should be running it in “Linux Container”
mode. It doesn’t matter if this Docker host is a VM on your laptop, an instance in the
public cloud, or bare metal server in your data center. All it needs, is to be running
Docker with a connection to the internet.

Engine check

When you install Docker you get two major components:

• the Docker client
• the Docker daemon (sometimes called server)

The daemon implements the Docker Remote API⁴. In a default Linux installation the
client talks to the daemon via a local IPC/Unix socket at /var/run/docker.sock. You
can test that the client and daemon are operating and can talk to each other with the
docker version command.

⁴https://docs.docker.com/engine/reference/api/docker_remote_api/

https://docs.docker.com/engine/reference/api/docker_remote_api/
https://docs.docker.com/engine/reference/api/docker_remote_api/

4: The big picture 7

$ docker version

Client:

Version: 1.12.1

API version: 1.24

Go version: go1.6.3

Git commit: 23cf638

Built: Thu Aug 18 05:33:38 2016

OS/Arch: linux/amd64

Server:

Version: 1.12.1

API version: 1.24

Go version: go1.6.3

Git commit: 23cf638

Built: Thu Aug 18 05:33:38 2016

OS/Arch: linux/amd64

As long as you get a response back from the Client and Server components you
should be good to go. If you get an error response from the Server component, try
the command again with sudo in front of it: sudo docker version. If it works with
sudo you will need to prefix the remainder of the commands in this chapter with
sudo.

Images

Now let’s look at images.

Right now, the best way to think of a Docker image is as an object that contains
an operating system and an application. It’s not massively different from a virtual
machine template. A virtual machine template is essentially a stopped virtual
machine. In the Docker world, an image is effectively a stopped container.

Run the docker images command on your Docker host.

4: The big picture 8

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

If you are working from a freshly installed Docker host it will have no images and
will look like the output above.

Getting images onto your Docker host is called “pulling”. Pull the ubuntu:latest

image to your Docker host with the command below.

$ docker pull ubuntu:latest

latest: Pulling from library/ubuntu

952132ac251a: Pull complete

82659f8f1b76: Pull complete

c19118ca682d: Pull complete

8296858250fe: Pull complete

24e0251a0e2c: Pull complete

Digest: sha256:f4691c96e6bbaa99d...a2128ae95a60369c506dd6e6f6ab

Status: Downloaded newer image for ubuntu:latest

Run the docker images command again to see the ubuntu:latest image you just
pulled.

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest bd3d4369aebc 11 days ago 126.6 MB

We’ll get into the details of where the image is stored and what’s inside of it in
the next chapter. For now it’s enough to understand that it contains enough of
an operating system (OS), as well as all the code to run whatever application it’s
designed for. The ubuntu image that we’ve pulled has a stripped down version of the
Ubuntu Linux OS including a few of the common Ubuntu utilities.

It’s worth noting as well that each image gets it’s own unique ID. When working
with the image, as we will do in the next step, you can refer to it using either its ID
or name.

4: The big picture 9

Containers

Now that we have an image pulled locally on our Docker host, we can use the docker
run command to launch a container from it.

$ docker run -it ubuntu:latest /bin/bash

root@6dc20d508db0:/#

Look closely at the output from the command above. You should notice that your
shell prompt has changed. This is because your shell is now attached to the shell of
the new container - you are literally inside of the new container!

Let’s examine that docker run command. docker run tells the Docker daemon to
start a new container. The -it flags tell the daemon to make the container interactive
and to attach our current shell to the shell of the container (we’ll get more specific
about this in the chapter on containers). Next, the command tells Docker that we
want the container to be based on the ubuntu:latest image, and we tell it to run the
/bin/bash process inside the container.

Run the following ps command from inside of the container to list all running
processes.

root@6dc20d508db0:/# ps -elf

F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD

4 S root 1 0 0 - 4560 wait 13:38 ? 00:00:00 /bin/bash

0 R root 9 1 0 - 8606 - 13:38 ? 00:00:00 ps -elf

As you can see from the output of the ps command, there are only two processes
running inside of the container:

• PID 1. This is the /bin/bash process that we told the container to run with the
docker run command.

• PID 9. This is the ps -elf process that we ran to list the running processes.

4: The big picture 10

The presence of the ps -elf process in the output above could be a bit misleading
as it is a short-lived process that dies as soon as the ps command exits. This means
that the only long-running process inside of the container is the /bin/bash process.

Press Ctrl-PQ to exit the container. This will land you back in the shell of your Docker
host. You can verify this by looking at your shell prompt.

Now that you are back at the shell prompt of you Docker host, run the ps -elf

command again.

$ ps -elf

F S UID PID PPID NI ADDR SZ WCHAN TIME CMD

4 S root 1 0 0 - 9407 - 00:00:03 /sbin/init

1 S root 2 0 0 - 0 - 00:00:00 [kthreadd]

1 S root 3 2 0 - 0 - 00:00:00 [ksoftirqd/0]

1 S root 5 2 -20 - 0 - 00:00:00 [kworker/0:0H]

1 S root 7 2 0 - 0 - 00:00:00 [rcu_sched]

<Snip>

0 R ubuntu 22783 22475 0 - 9021 - 00:00:00 ps -elf

Notice how many more processes are running on your Docker host compared to the
single long-running process inside of the container.

In a previous step you pressed Ctrl-PQ to exit your shell from the container. Doing
this from inside of a container will exit you from the container without killing it. You
can see all of the running containers on your system using the docker ps command.

$ docker ps

CNTNR ID IMAGE COMMAND CREATED STATUS NAMES

0b3...41 ubuntu:latest /bin/bash 7 mins ago Up 7 mins tiny_poincare

The output above shows a single running container. This is the container that you
created earlier. The presence of your container in this output proves that it’s still
running. You can also see that it was created 7 minutes ago and has been running
for 7 minutes.

4: The big picture 11

Attaching to running containers

You can attach your shell to running containers with the docker exec command. As
the container from the previous steps is still running let’s connect back to it.

Note: The example below references a container called “tiny_poincare”.
The name of your container will be different, so remember to substitute
“tiny_poincare” with the name or ID of the container running on your
Docker host.

$ docker exec -it tiny_poincare bash

root@6dc20d508db0:/#

Notice that your shell prompt has changed again. You are back inside the container.

The format of the docker exec command is: docker exec -options <container-

name or container-id> <command>. In our example we used the -it options to
attach our shell to the container’s shell. We referenced the container by name and
told it to run the bash shell.

Exit the container again by pressing Ctrl-PQ.

Your shell prompt should be back to your Docker host.

Run the docker ps command again to verify that your container is still running.

$ docker ps

CNTNR ID IMAGE COMMAND CREATED STATUS NAMES

0b3...41 ubuntu:latest /bin/bash 9 mins ago Up 9 mins tiny_poincare

Stop the container and kill it using the docker stop and docker rm commands.

4: The big picture 12

$ docker stop tiny_poincare

tiny_poincare

$

$ docker rm tiny_poincare

tiny_poincare

Verify that the container was successfully deleted by running another docker ps

command.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Congratulations! You’ve downloaded a Docker image, launched a container from
that image, executed a command inside of the container (ps -elf) and then stopped
and deleted the container. This big picture view should help you with the up-coming
chapters where we will dig deeper into images and containers.

	Table of Contents
	0: About the book
	Why should I read this book or care about Docker?
	Isn't Docker just for developers?
	Why this Docker book and not another one?
	Should I buy the book if I've already watched your video courses?
	How the book is organized
	Other stuff about the book

	4: The big picture
	Engine check
	Images
	Containers
	Attaching to running containers

