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CHAPTER 1

Common kubectl Commands

The kubectl command-line utility is a powerful tool, and in the following chapters
you will use it to create objects and interact with the Kubernetes API. Before that,
however, it makes sense to go over the basic kubectl commands that apply to all
Kubernetes objects.

Namespaces
Kubernetes uses namespaces to organize objects in the cluster. You can think of each
namespace as a folder that holds a set of objects. By default, the kubectl command-
line tool interacts with the default namespace. If you want to use a different name‐
space, you can pass kubectl the --namespace flag. For example,
kubectl --namespace=mystuff references objects in the mystuff namespace.

Contexts
If you want to change the default namespace more permanently, you can use a con‐
text. This gets recorded in a kubectl configuration file, usually located at
$HOME/.kube/config. This configuration file also stores how to both find and
authenticate to your cluster. For example, you can create a context with a different
default namespace for your kubectl commands using:

$ kubectl config set-context my-context --namespace=mystuff

This creates a new context, but it doesn’t actually start using it yet. To use this newly
created context, you can run:

$ kubectl config use-context my-context
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Contexts can also be used to manage different clusters or different users for authenti‐
cating to those clusters using the --users or --clusters flags with the set-context
command.

Viewing Kubernetes API Objects
Everything contained in Kubernetes is represented by a RESTful resource. Through‐
out this book, we refer to these resources as Kubernetes objects. Each Kubernetes
object exists at a unique HTTP path; for example, https://your-k8s.com/api/v1/name
spaces/default/pods/my-pod leads to the representation of a pod in the default name‐
space named my-pod. The kubectl command makes HTTP requests to these URLs to
access the Kubernetes objects that reside at these paths.

The most basic command for viewing Kubernetes objects via kubectl is get. If you
run kubectl get <resource-name> you will get a listing of all resources in the cur‐
rent namespace. If you want to get a specific resource, you can use kubectl get
<resource-name> <object-name>.

By default, kubectl uses a human-readable printer for viewing the responses from
the API server, but this human-readable printer removes many of the details of the
objects to fit each object on one terminal line. One way to get slightly more informa‐
tion is to add the -o wide flag, which gives more details, on a longer line. If you want
to view the complete object, you can also view the objects as raw JSON or YAML
using the -o json or -o yaml flags, respectively.

A common option for manipulating the output of kubectl is to remove the headers,
which is often useful when combining kubectl with Unix pipes (e.g., kubectl … |
awk …). If you specify the --no-headers flag, kubectl will skip the headers at the top
of the human-readable table.

Another common task is extracting specific fields from the object. kubectl uses the
JSONPath query language to select fields in the returned object. The complete details
of JSONPath are beyond the scope of this chapter, but as an example, this command
will extract and print the IP address of the pod:

$ kubectl get pods my-pod -o jsonpath --template={.status.podIP}

If you are interested in more detailed information about a particular object, use the
describe command:

$ kubectl describe <resource-name> <obj-name>

This will provide a rich multiline human-readable description of the object as well as
any other relevant, related objects and events in the Kubernetes cluster.
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Creating, Updating, and Destroying Kubernetes Objects
Objects in the Kubernetes API are represented as JSON or YAML files. These files are
either returned by the server in response to a query or posted to the server as part of
an API request. You can use these YAML or JSON files to create, update, or delete
objects on the Kubernetes server.

Let’s assume that you have a simple object stored in obj.yaml. You can use kubectl to
create this object in Kubernetes by running:

$ kubectl apply -f obj.yaml

Notice that you don’t need to specify the resource type of the object; it’s obtained
from the object file itself.

Similarly, after you make changes to the object, you can use the apply command
again to update the object:

$ kubectl apply -f obj.yaml

If you feel like making interactive edits, instead of editing a local
file, you can instead use the edit command, which will download
the latest object state, and then launch an editor that contains the
definition:

$ kubectl edit <resource-name> <obj-name>

After you save the file, it will be automatically uploaded back to the
Kubernetes cluster.

When you want to delete an object, you can simply run:

$ kubectl delete -f obj.yaml

But it is important to note that kubectl will not prompt you to confirm the delete.
Once you issue the command, the object will be deleted.

Likewise, you can delete an object using the resource type and name:

$ kubectl delete <resource-name> <obj-name>

Labeling and Annotating Objects
Labels and annotations are tags for your objects. We’ll discuss the differences in
Chapter 6, but for now, you can update the labels and annotations on any Kubernetes
object using the annotate and label commands. For example, to add the color=red
label to a pod named bar, you can run:

$ kubectl label pods bar color=red
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The syntax for annotations is identical.

By default, label and annotate will not let you overwrite an existing label. To do this,
you need to add the --overwrite flag.

If you want to remove a label, you can use the -<label-name> syntax:

$ kubectl label pods bar color-

This will remove the color label from the pod named bar.

Debugging Commands
kubectl also makes a number of commands available for debugging your containers.
You can use the following to see the logs for a running container:

$ kubectl logs <pod-name>

If you have multiple containers in your pod you can choose the container to view
using the -c flag.

By default, kubectl logs lists the current logs and exits. If you instead want to con‐
tinuously stream the logs back to the terminal without exiting, you can add the -f
(follow) command-line flag.

You can also use the exec command to execute a command in a running container:

$ kubectl exec -it <pod-name> -- bash

This will provide you with an interactive shell inside the running container so that
you can perform more debugging.

Finally, you can copy files to and from a container using the cp command:

$ kubectl cp <pod-name>:/path/to/remote/file /path/to/local/file

This will copy a file from a running container to your local machine. You can also
specify directories, or reverse the syntax to copy a file from your local machine back
out into the container.

Summary
kubectl is a powerful tool for managing your applications in your Kubernetes cluster.
This chapter has illustrated many of the common uses for the tool, but kubectl has a
great deal of built-in help available. You can start viewing this help with:

kubectl help

or:

kubectl help command-name
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