

This Excerpt contains Chapter 4 of Kubernetes: Up and Running. The final book is
available on Safari and through other retailers.

Kelsey Hightower, Brendan Burns, and Joe Beda

Kubernetes: Up and Running
Dive into the Future of Infrastructure

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93567-5

[LSI]

Kubernetes: Up and Running
by Kelsey Hightower, Brendan Burns, and Joe Beda

Copyright © 2017 Kelsey Hightower, Brendan Burns, and Joe Beda. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Angela Rufino
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards
Proofreader: Rachel Head

Indexer: Kevin Broccoli
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2017: First Edition

Revision History for the First Edition
2017-09-05: First Release
2018-02-02: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491935675 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491935675

Table of Contents

1. Common kubectl Commands. 5
Namespaces 5
Contexts 5
Viewing Kubernetes API Objects 6
Creating, Updating, and Destroying Kubernetes Objects 7
Labeling and Annotating Objects 7
Debugging Commands 8
Summary 8

iii

CHAPTER 1

Common kubectl Commands

The kubectl command-line utility is a powerful tool, and in the following chapters
you will use it to create objects and interact with the Kubernetes API. Before that,
however, it makes sense to go over the basic kubectl commands that apply to all
Kubernetes objects.

Namespaces
Kubernetes uses namespaces to organize objects in the cluster. You can think of each
namespace as a folder that holds a set of objects. By default, the kubectl command-
line tool interacts with the default namespace. If you want to use a different name‐
space, you can pass kubectl the --namespace flag. For example,
kubectl --namespace=mystuff references objects in the mystuff namespace.

Contexts
If you want to change the default namespace more permanently, you can use a con‐
text. This gets recorded in a kubectl configuration file, usually located at
$HOME/.kube/config. This configuration file also stores how to both find and
authenticate to your cluster. For example, you can create a context with a different
default namespace for your kubectl commands using:

$ kubectl config set-context my-context --namespace=mystuff

This creates a new context, but it doesn’t actually start using it yet. To use this newly
created context, you can run:

$ kubectl config use-context my-context

5

Contexts can also be used to manage different clusters or different users for authenti‐
cating to those clusters using the --users or --clusters flags with the set-context
command.

Viewing Kubernetes API Objects
Everything contained in Kubernetes is represented by a RESTful resource. Through‐
out this book, we refer to these resources as Kubernetes objects. Each Kubernetes
object exists at a unique HTTP path; for example, https://your-k8s.com/api/v1/name
spaces/default/pods/my-pod leads to the representation of a pod in the default name‐
space named my-pod. The kubectl command makes HTTP requests to these URLs to
access the Kubernetes objects that reside at these paths.

The most basic command for viewing Kubernetes objects via kubectl is get. If you
run kubectl get <resource-name> you will get a listing of all resources in the cur‐
rent namespace. If you want to get a specific resource, you can use kubectl get
<resource-name> <object-name>.

By default, kubectl uses a human-readable printer for viewing the responses from
the API server, but this human-readable printer removes many of the details of the
objects to fit each object on one terminal line. One way to get slightly more informa‐
tion is to add the -o wide flag, which gives more details, on a longer line. If you want
to view the complete object, you can also view the objects as raw JSON or YAML
using the -o json or -o yaml flags, respectively.

A common option for manipulating the output of kubectl is to remove the headers,
which is often useful when combining kubectl with Unix pipes (e.g., kubectl … |
awk …). If you specify the --no-headers flag, kubectl will skip the headers at the top
of the human-readable table.

Another common task is extracting specific fields from the object. kubectl uses the
JSONPath query language to select fields in the returned object. The complete details
of JSONPath are beyond the scope of this chapter, but as an example, this command
will extract and print the IP address of the pod:

$ kubectl get pods my-pod -o jsonpath --template={.status.podIP}

If you are interested in more detailed information about a particular object, use the
describe command:

$ kubectl describe <resource-name> <obj-name>

This will provide a rich multiline human-readable description of the object as well as
any other relevant, related objects and events in the Kubernetes cluster.

6 | Chapter 1: Common kubectl Commands

https://your-k8s.com/api/v1/namespaces/default/pods/my-pod
https://your-k8s.com/api/v1/namespaces/default/pods/my-pod

Creating, Updating, and Destroying Kubernetes Objects
Objects in the Kubernetes API are represented as JSON or YAML files. These files are
either returned by the server in response to a query or posted to the server as part of
an API request. You can use these YAML or JSON files to create, update, or delete
objects on the Kubernetes server.

Let’s assume that you have a simple object stored in obj.yaml. You can use kubectl to
create this object in Kubernetes by running:

$ kubectl apply -f obj.yaml

Notice that you don’t need to specify the resource type of the object; it’s obtained
from the object file itself.

Similarly, after you make changes to the object, you can use the apply command
again to update the object:

$ kubectl apply -f obj.yaml

If you feel like making interactive edits, instead of editing a local
file, you can instead use the edit command, which will download
the latest object state, and then launch an editor that contains the
definition:

$ kubectl edit <resource-name> <obj-name>

After you save the file, it will be automatically uploaded back to the
Kubernetes cluster.

When you want to delete an object, you can simply run:

$ kubectl delete -f obj.yaml

But it is important to note that kubectl will not prompt you to confirm the delete.
Once you issue the command, the object will be deleted.

Likewise, you can delete an object using the resource type and name:

$ kubectl delete <resource-name> <obj-name>

Labeling and Annotating Objects
Labels and annotations are tags for your objects. We’ll discuss the differences in
Chapter 6, but for now, you can update the labels and annotations on any Kubernetes
object using the annotate and label commands. For example, to add the color=red
label to a pod named bar, you can run:

$ kubectl label pods bar color=red

Creating, Updating, and Destroying Kubernetes Objects | 7

The syntax for annotations is identical.

By default, label and annotate will not let you overwrite an existing label. To do this,
you need to add the --overwrite flag.

If you want to remove a label, you can use the -<label-name> syntax:

$ kubectl label pods bar color-

This will remove the color label from the pod named bar.

Debugging Commands
kubectl also makes a number of commands available for debugging your containers.
You can use the following to see the logs for a running container:

$ kubectl logs <pod-name>

If you have multiple containers in your pod you can choose the container to view
using the -c flag.

By default, kubectl logs lists the current logs and exits. If you instead want to con‐
tinuously stream the logs back to the terminal without exiting, you can add the -f
(follow) command-line flag.

You can also use the exec command to execute a command in a running container:

$ kubectl exec -it <pod-name> -- bash

This will provide you with an interactive shell inside the running container so that
you can perform more debugging.

Finally, you can copy files to and from a container using the cp command:

$ kubectl cp <pod-name>:/path/to/remote/file /path/to/local/file

This will copy a file from a running container to your local machine. You can also
specify directories, or reverse the syntax to copy a file from your local machine back
out into the container.

Summary
kubectl is a powerful tool for managing your applications in your Kubernetes cluster.
This chapter has illustrated many of the common uses for the tool, but kubectl has a
great deal of built-in help available. You can start viewing this help with:

kubectl help

or:

kubectl help command-name

8 | Chapter 1: Common kubectl Commands

About the Authors
Kelsey Hightower has worn every hat possible throughout his career in tech, and
enjoys leadership roles focused on making things happen and shipping software. Kel‐
sey is a strong open source advocate focused on building simple tools that make peo‐
ple smile. When he is not slinging Go code, you can catch him giving technical
workshops covering everything from programming to system administration.

Joe Beda started his career at Microsoft working on Internet Explorer (he was young
and naive). Throughout 7 years at Microsoft and 10 at Google, Joe has worked on
GUI frameworks, real-time voice and chat, telephony, machine learning for ads, and
cloud computing. Most notably, while at Google, Joe started the Google Compute
Engine and, along with Brendan and Craig McLuckie, created Kubernetes. Joe is now
CTO of Heptio, a startup he founded along with Craig. Joe proudly calls Seattle
home.

Brendan Burns began his career with a brief stint in the software industry followed
by a PhD in Robotics focused on motion planning for human-like robot arms. This
was followed by a brief stint as a professor of computer science. Eventually, he
returned to Seattle and joined Google, where he worked on web search infrastructure
with a special focus on low-latency indexing. While at Google, he created the Kuber‐
netes project with Joe and Craig McLuckie. Brendan is currently a Director of Engi‐
neering at Microsoft Azure.

Colophon
The animal on the cover of Kubernetes: Up and Running is an Atlantic white-sided
dolphin (Lagenorhynchus acutus). As its name suggests, the white-sided dolphin has
light patches on its sides and a light gray strip that runs above the eye to below the
dorsal fin. It is among the largest species of oceanic dolphins, and ranges throughout
the north Atlantic Ocean. It prefers open water, so it is not often seen from the shore,
but will readily approach boats and perform various acrobatic feats.

White-sided dolphins are social animals commonly found in large groups (known as
pods) of about 60 individuals, though the size will vary depending on location and
the availability of food. Dolphins often work as a team to harvest schools of fish, but
they also hunt individually. They primarily search for prey using echolocation, which
is similar to sonar. The bulk of this marine mammal’s diet consists of herring, mack‐
erel, and squid.

The average lifespan of the white-sided dolphin is between 22–27 years. Females only
mate every 2–3 years, and the gestation period is 11 months. Calves are typically born
in June or July, and are weaned after 18 months. Dolphins have very great intelligence

and display complex social behaviors like grieving, cooperation, and problem-solving,
due to their high brain-to-body ratio (the highest among aquatic mammals).

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from British Quadrupeds. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Chapter 1. Common kubectl Commands
	Namespaces
	Contexts
	Viewing Kubernetes API Objects
	Creating, Updating, and Destroying Kubernetes Objects
	Labeling and Annotating Objects
	Debugging Commands
	Summary

	About the Authors
	Colophon

