
419419

10Chapter10

Objectives

After reading this chapter you should be able to:

 Explain the need for and the responsibility of a privileged
user (root)

 Gain root privileges using su and sudo

 Describe the startup sequence using systemd

 Manage which services start at boot time

 List four characteristics of a well-maintained system

 Start and stop services on a running system

 Boot into single-user mode for system maintenance

 Shut down a running system

 Secure a system by applying updates, monitoring logs,
and controlling access to files using SELinux, setuid
permission, and PAM

 Use system administration tools to monitor and
maintain the system

 List common steps for installing, configuring, and
securing a server

 Configure a system using a static IP address or using
DHCP

In This Chapter

Running Commands with root
Privileges 422

Using su to Gain root Privileges . . 425

Using sudo to Gain root
Privileges 428

The systemd init Daemon. 438

Setting and Changing
Runlevels 444

Configuring Daemons
(Services) 445

Single-User Mode 450

Rescue an Installed System 456

X Window System 459

Textual Administration Utilities . . 464

SELinux . 472

Setting Up a Server 481

Setting Up a chroot Jail 487

DHCP: Configures Network
Interfaces 491

nsswitch.conf: Which Service to
Look at First 495

10
System

Administration:

Core Concepts

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

420 Chapter 10 System Administration: Core Concepts

The job of a system administrator is to keep one or more systems in a useful and con-
venient state for users. On a Linux system, the administrator and user might both be
you, with you and the computer being separated by only a few feet. Alternately, the
system administrator might be halfway around the world, supporting a network of
systems, with you being one of thousands of users. Or a system administrator can be
one person who works part-time taking care of a system and perhaps is also a user
of the system. In some cases several administrators might work together full-time to
keep many systems running.

A well-maintained system:

• Runs quickly enough so users do not get frustrated waiting for the system
to respond or complete a task

• Has enough storage to accommodate the reasonable needs of users

• Provides a working environment appropriate to each user’s abilities and
requirements

• Is secure from malicious and accidental acts altering its performance or
compromising the security of the data it holds and exchanges with other
systems

• Is backed up regularly, with recently backed-up files readily available to
users

• Has recent copies of the software that users need to get their jobs done

• Is easier to administer than a poorly maintained system

In addition, a system administrator should be available to help users with all types
of system-related problems—from logging in to obtaining and installing software
updates to tracking down and fixing obscure network issues.

Part III of this book breaks system administration into nine chapters.

• Chapter 9 covers bash (Bourne Again Shell) to a depth that you can use it
interactively to administer a system and begin to understand complex
administration shell scripts.

• Chapter 10 covers the core concepts of system administration, including
working with root (Superuser) privileges, system operation, configuration
tools and other useful utilities, general information about setting up and
securing a server (including a section on DHCP), and PAM.

• Chapter 11 covers files, directories, and filesystems from an administrator’s
point of view.

• Chapter 12 covers installing software on the system, including the use of
yum, BitTorrent, and curl.

• Chapter 13 discusses how to set up local and remote printers that use the
CUPS printing system.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

421

• Chapter 14 explains how to rebuild the Linux kernel and work with GRUB,
the Linux boot loader.

• Chapter 15 covers additional system administrator tasks and tools, including
setting up users and groups, backing up files, scheduling tasks, printing system
reports, and general problem solving.

• Chapter 16 goes into detail about how to set up a LAN, including setting
up and configuring network hardware and configuring software.

• Chapter 17 describes how to set up virtual machines locally (gnome-boxes,
KVM/QEMU, and VMware) and in the cloud (AWS).

Because Linux is readily configurable and runs on a wide variety of platforms, this
chapter cannot discuss every system configuration or every action you might have to
take as a system administrator. Instead, this chapter seeks to familiarize you with the
concepts you need to understand and the tools you will use to maintain a Linux system.
Where it is not possible to go into depth about a subject, the chapter provides references
to other sources.

This chapter assumes you are familiar with the following terms:

block device (page 1239) filesystem (page 1250) root filesystem (page 1271)
daemon (page 1245) fork (page 1250) runlevel (page 1271)
device (page 1246) kernel (page 1257) signal (page 1273)
device filename (page 1247) login shell (page 1259) spawn (page 1274)
disk partition (page 1247) mount (page 1261) system console (page 1276)
environment (page 1249) process (page 1267) X server (page 1281)

If there is a problem, check the log files

tip If something on the system is not working as expected, check the log files in /var/log. This directory
holds many files and subdirectories. If you cannot connect to a server, also check the log files on the
server.

If something does not work, see if the problem is caused by SELinux

tip If a server or other system software does not work properly, especially if it displays a permissions-
related error message, the problem might lie with SELinux. To see whether SELinux is the cause
of the problem, put SELinux in permissive mode and run the software again. If the problem goes
away, you need to modify the SELinux policy. Remember to turn SELinux back on. See the tip on
page 473 and refer to “Setting the Targeted Policy using system-config-selinux” on page 475.

If you cannot access a remote system, check the firewall
tip If a server does not appear to work or you cannot access a remote system, make sure the firewall

is not the problem. On a non-production system, use systemctl to turn the firewall off (page 900)
and see if the problem goes away. Then turn the firewall back on and open only the necessary port
using firewall-cmd (page 906).

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

422 Chapter 10 System Administration: Core Concepts

 LE Running Commands with root Privileges

Some commands can damage the filesystem or crash the operating system. Other
commands can invade users’ privacy or make the system less secure. To keep a
Linux system up and running as well as secure, most systems are configured not
to permit ordinary users to execute some commands and access certain files.
Linux provides several ways for a trusted user to execute these commands and
access these files. A user running with these privileges is sometimes referred to as
an administrator, privileged user, or Superuser.

 LE The Special Powers of a Privileged User

root privileges A user running with root privileges has the following powers—and more.

• Some commands, such as those that add new users, partition hard drives,
and change system configuration, can be executed only by a user working
with root privileges. Such a user can configure tools, such as sudo, to give
specific users permission to perform tasks that are normally reserved for a
user running with root privileges.

• Read, write, and execute file access and directory access permissions do not
affect a user with root privileges. A user with root privileges can read from,
write to, and execute all files, as well as examine and work in all directories.

Exceptions to these privileges exist. For example, SELinux mandatory access
can be configured to limit root access to a file. Also, a user working with root
privileges cannot make sense of an encrypted file without possessing the key.

• Some restrictions and safeguards that are built into some commands do not
apply to a user with root privileges. For example, a user with root privileges
can change any user’s password without knowing the old password.

Administrator

security During installation (page 68) and whenever you add or modify a user (pages 112 and 598), you
have the opportunity to specify that user as an administrator. Two characteristics give an
administrator special privileges. First, an administrator is a member of the wheel group
(page 429) and as such can use sudo to authenticate using her password; she does not need
to know the root password. Second, polkit (www.freedesktop.org/wiki/Software/polkit) is set
up so that an administrator can do some kinds of administrative work on the desktop (e.g.,
updating software and adding a printer) without needing to enter a password.

Console security
security Linux is not secure from a person who has physical access to the computer. Additional security

measures, such as setting boot loader and BIOS passwords, can help secure the computer.
However, if someone has physical access to the hardware, as system console users typically do,
it is very difficult to secure a system from that user.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

http://www.freedesktop.org/wiki/Software/polkit

Running Commands with root Privileges 423

prompt When you are running with root privileges in a command-line environment, by con-
vention the shell displays a special prompt to remind you of your status. By default,
this prompt is (or ends with) a hashmark (#).

 LE Gaining root Privileges

Classically a user gained root privileges by logging in as the user named root or by
giving an su (substitute user) command and providing the root password. More
recently the use of sudo has taken over this classic technique of gaining root privi-
leges. With sudo, the user logs in as herself, gives an sudo command, and provides
her own password (not the root password) to gain root privileges. “Advantages of
sudo” on page 428 discusses some of the advantages of sudo.

Graphical
environment

When an ordinary user executes a privileged command in a graphical environment,
the system prompts for the root password or the user’s password, depending on how
the system is set up.

Some distributions lock the root account by not assigning a root password. On these
systems, you cannot gain root privileges using a technique that requires you to supply
the root password unless you unlock the root account as explained on page 438.
Fedora/RHEL assigns a root password when the system is installed, so you can use
these techniques from the start.

The following list describes some of the ways you can gain or grant root privileges.
Some of these techniques depend on you supplying the password for the root

Least privilege

caution When you are working on any computer system, but especially when you are working as the sys-
tem administrator (working with root privileges), perform any task while using the least privilege
possible. When you can perform a task logged in as an ordinary user, do so. When you must
run a command with root privileges, do as much as you can as an ordinary user, log in or use
su or sudo so you have root privileges, complete the part of the task that has to be done with
root privileges, and revert to being an ordinary user as soon as you can. Because you are more
likely to make a mistake when you are rushing, this concept becomes even more important when
you have less time to apply it.

There is a root account, but no root password
tip As installed, some systems (not Fedora/RHEL) lock the root account by not providing a root

password. This setup prevents anyone from logging in to the root account (except when you
bring the system up in single-user mode [page 450]). There is, however, a root account (a user
with the username root—look at the first line in /etc/passwd). This account/user owns files (give
the command ls –l /usr/bin) and runs processes (give the command ps –ef and look at the left
column of the output). The root account is critical to the functioning of a Linux system.

When properly set up, the sudo utility enables you to run a command as though it had been run
by a user logged in as root. This book uses the phrase working (or run) with root privileges to
emphasize that, although you might not be logged in as root, when you use su or sudo you have
the powers of the root user.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

424 Chapter 10 System Administration: Core Concepts

account. Again, if the root account is locked, you cannot use these techniques unless
you unlock the root account (set up a root password), as explained on page 438.
Other techniques depend on the sudoers file being set up to allow you to gain root
privileges (page 433). If this file is not set up in this manner, you cannot use these
techniques.

• When you bring the system up in single-user/rescue mode (page 450), you
log in as the user named root.

• You can give an su (substitute user) command while you are logged in as
yourself. When you then provide the root password, you will be running
with root privileges. See page 425.

• The sudo utility allows specified users to run selected commands with root
privileges while they are logged in as themselves. You can set up sudo to
allow certain users to perform specific tasks that require root privileges
without granting these users systemwide root privileges. See page 428.

• Once the system is up and running in multiuser mode (page 452), you can
log in as root. When you then supply the root password, you will be running
with root privileges.

• Some programs ask for a password (either your password or the root password,
depending on the command and the configuration of the system) when they start
or when you ask them to perform certain tasks. When you provide a password,
the program runs with root privileges. You stop running as a privileged user
when you quit using the program. This setup keeps you from remaining logged
in with root privileges when you do not need or intend to be.

 LE+ Setuid file • Any user can create a setuid (set user ID) file. Setuid programs run on behalf
of the owner of the file and have all the access privileges the owner has. While
you are working with root privileges, you can change the permissions of a file
owned by root to setuid. When an ordinary user executes a file that is owned
by root and has setuid permissions, the program has effective root privileges.
In other words, the program can do anything a program running with root
privileges can do that the program normally does. The user’s privileges do not
change. When the program finishes running, all user privileges are as they
were before the program started. Setuid programs owned by root are both
extremely powerful and extremely dangerous to system security, which is why
a system contains very few of them. Examples of setuid programs that are
owned by root include passwd, at, and crontab. For more information refer
to “Setuid and Setgid Permissions” on page 196 and “Real UID Versus Effec-
tive UID” (next).

Logging in The /etc/securetty file controls which terminals (ttys) a user can log in on as root.

Using the /etc/security/access.conf file, PAM controls the who, when, and how of
logging in. Initially this file contains only comments. See page 476, the comments in
the file, and the access.conf man page for details.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

Running Commands with root Privileges 425

 LE Real UID Versus Effective UID

UID and username A UID (user ID) is the number the system associates with a username. UID 0 is typ-
ically associated with the username root. To speed things up, the kernel keeps track
of a user by UID, not username. Most utilities display the associated username in
place of a UID.

The kernel associates two UIDs with each process: a real UID and an effective UID. The
third column of the /etc/passwd file (or NIS/LDAP) specifies your real UID. When you
log in, your real UID is associated with the process running the login shell. Because you
have done nothing to change it, the effective UID associated with the process running the
login shell is the same as the real UID associated with that process.

process privilege The kernel determines which privileges a process has based on that process’ effective
UID. For example, when a process asks to open a file or execute a program, the kernel
looks at the effective UID of the process to determine whether it is allowed to do so.
When a user runs a setuid program (page 196), the program runs with the UID of the
owner of the program, not the user running the program.

terminology: root
privileges

When this book uses the phrase run with root privileges or gain root privileges, it
means run with an effective UID of 0 (root).

 LE+ Using su to Gain root Privileges

When you install Fedora/RHEL, you assign a password to the root account. Thus you
can use su to gain root privileges without any further setup.

The su (substitute user) utility can spawn a shell or execute a program with the identity
and privileges (effective UID) of a specified user, including root:

root-owned setuid programs are extremely dangerous
security Because root-owned setuid programs allow someone who does not know the root password and

cannot use sudo to gain root privileges, they are tempting targets for a malicious user. Also, pro-
gramming errors that make normal programs crash can become root exploits in setuid programs.
A system should have as few of these programs as possible. You can disable setuid programs at
the filesystem level by mounting a filesystem with the nosuid option (page 522). You can also use
SELinux (page 472) to disable setuid programs. See page 458 for a find command that lists all
setuid files on the local system. Future releases of Fedora/RHEL will remove most setuid files; see
fedoraproject.org/wiki/Features/RemoveSETUID.

Do not allow root access over the Internet

security Prohibiting a user from logging in as root over a network is the default policy of Fedora/RHEL. The
/etc/securetty file must contain the names of all devices you want a user to be able to log in on as root.

You can, however, log in as root over a network using ssh (page 685). As shipped by Fedora/RHEL,
PAM configuration for ssh does not call the modules that use the securetty or access.conf con-
figuration files. Also, in /etc/ssh/sshd_config, Fedora/RHEL sets PermitRootLogin to yes (it is set
by default) to permit root to log in using ssh (page 705). For a more secure system, change
PermitRootLogin to no.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

426 Chapter 10 System Administration: Core Concepts

• Follow su on the command line with the name of a user; if you are working
with root privileges or if you know the user’s password, the newly spawned
shell will take on the identity (effective UID) of that user.

• When you give an su command without an argument, su defaults to spawning
a shell with root privileges (you have to supply the root password). That shell
runs with an effective UID of 0 (root).

Spawning a root Shell

When you give an su command to work with root privileges, su spawns a new shell,
which displays the # prompt. That shell runs with an effective UID of 0 (root). You
can return to your normal status (and your former shell and prompt) by terminating
this shell: Press CONTROL-D or give an exit command.

 LE who, whoami The who utility, when called with the arguments am i, displays the real UID (translated
to a username) of the process that called it. The whoami utility displays the effective UID
(translated to a username) of the process that called it. As the following example shows,
the su utility (the same is true for sudo) changes the effective UID of the process it
spawns but leaves the real UID unchanged.

$ who am i
sam pts/2 2013-06-12 13:43 (192.168.206.1)
$ whoami
sam
$ su
Password:
who am i
sam pts/2 2013-06-12 13:43 (192.168.206.1)
whoami
root

 LE id Giving an su command without any arguments changes your effective user and group
IDs but makes minimal changes to the environment. For example, PATH has the
same value as it did before you gave the su command. The id utility displays the effec-
tive UID and GID of the process that called it as well as the groups the process is
associated with. In the following example, the information that starts with context
pertains to SELinux:

$ pwd
/home/sam
$ echo $PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/sam/.local/bin:/home/sam/bin
$ id
uid=1000(sam) gid=1400(pubs) groups=1400(pubs),10(wheel) context=unconfined_u: ...
$ su
Password:
pwd
/home/sam
echo $PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/sam/.local/bin:/home/sam/bin

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

Running Commands with root Privileges 427

id
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u: ...
exit
exit
$

When you give the command su – (you can use –l or ––login in place of the hyphen),
su provides a root login shell: It is as though you logged in as root. Not only do the
shell’s effective user and group IDs match those of root, but the environment is the
same as when you log in as root. The login shell executes the appropriate startup files
(page 329) before displaying a prompt, and the working directory is set to what it
would be if you had logged in as root (/root). PATH is also set as though you had
logged in as root. However, as who shows, the real UID of the new process is not
changed from that of the parent process.

$ su -
Password:
pwd
/root
echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin
who am i
sam pts/2 2013-06-12 13:43 (192.168.206.1)

Executing a Single Command

You can use su with the –c option to run a command with root privileges, returning to
the original shell when the command finishes executing. In the following example, Sam
tries to display the /etc/shadow file while working as himself, a nonprivileged user. The
cat utility displays an error message. When he uses su to run cat to display the file, su
prompts him for a password, he responds with the root password, and the command
succeeds. The quotation marks are necessary because su –c takes the command it is to
execute as a single argument.

$ cat /etc/shadow
cat: /etc/shadow: Permission denied

$ su -c 'cat /etc/shadow'
Password:
root:6il96HvSfmvep.m2F$2RI1LZ ... fYc3wYZFQ/:15861:0:99999:7:::
bin:*:15839:0:99999:7:::
daemon:*:15839:0:99999:7:::
adm:*:15839:0:99999:7:::
...

The next example first shows that Sam is not permitted to kill (page 465) a process.
With the use of su –c and the root password, however, Sam is working with root
privileges and is permitted to kill the process.

$ kill -15 4982
-bash: kill: (4982) - Operation not permitted
$ su -c "kill -15 4982"
Password:
$

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

428 Chapter 10 System Administration: Core Concepts

The final example combines the – and –c options to show how to run a single command
with root privileges in the root environment:

$ su -c pwd
Password:
/home/sam
$ su - -c pwd
Password:
/root

 LE+ Using sudo to Gain root Privileges

If sudo (www.sudo.ws) is not set up so you can use it, and a root password exists and
you know what it is, see “Administrator and the wheel group” on the next page for
instructions on setting up sudo so you can use it to gain root privileges.

Advantages of sudo
Using sudo rather than the root account for system administration offers many
advantages.

• When you run sudo, it requests your password—not the root password—
so you have to remember only one password.

• The sudo utility logs all commands it executes. This log can be useful for
retracing your steps for system auditing and if you make a mistake.

• The sudo utility logs the username of a user who issues an sudo command.
On systems with more than one administrator, this log tells you which users
have issued sudo commands. Without sudo, you would not know which
user issued a command while working with root privileges.

• The sudo utility allows implementation of a finer-grained security policy
than does the use of su and the root account. Using sudo, you can enable
specific users to execute specific commands—something you cannot do
with the classic root account setup.

• Using sudo makes it harder for a malicious user to gain access to a system.
When there is an unlocked root account, a malicious user knows the user-
name of the account she wants to crack before she starts. When the root
account is locked, the user has to determine the username and the password
to break into a system.

Root privileges, PATH, and security
security The fewer directories you keep in PATH when you are working with root privileges, the less likely

you will be to execute an untrusted program while working with root privileges. If possible, keep
only the default directories, along with /usr/bin and /usr/sbin, in root’s PATH. Never include the
working directory in PATH (as . or : : anywhere in PATH, or : as the last element of PATH). For more
information refer to “PATH: Where the Shell Looks for Programs” on page 359.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

http://www.sudo.ws

Running Commands with root Privileges 429

• Managing root passwords over many systems is challenging. Remembering
each system’s password is difficult without writing them down (and storing
them in a safe), and then retrieving a password is time-consuming. Keeping
track of which users know which root passwords is impossible. Using sudo,
even for full root-shell access, makes the tasks of gaining root privileges on
a large number of systems and tracking who can gain root privileges on each
system much easier.

Security of sudo
Some users question whether sudo is less secure than su. Because both rely on pass-
words, they share the same strengths and weaknesses. If the password is compromised,
the system is compromised. However, if the password of a user who is allowed by sudo
to do one task is compromised, the entire system might not be at risk. Thus, if used
properly, the finer granularity of sudo’s permissions structure can make it a more
secure tool than su. Also, when sudo is used to invoke a single command, it is less likely
that a user will be tempted to keep working with root privileges than if the user opens
a root shell using su.

Using sudo might not always be the best, most secure way to set up a system. On a
system used by a single user, there is not much difference between using sudo and
carefully using su and a root password. In contrast, on a system with several users,
and especially on a network of systems with central administration, sudo can be set
up to be more secure than su.

Using sudo
Administrator and

the wheel group
When you add or modify a user, you can specify that the user is an administrator by
making the user a member of the wheel group. When you specify an account type of
Administrator in the Users window (Figure 4-17, page 112), the user becomes a
member of the wheel group. Based on the following line in the /etc/sudoers file, mem-
bers of the wheel group can use sudo to gain root privileges:

%wheel ALL=(ALL) ALL

To make a user a member of the wheel group, working with root privileges, run
usermod with the –a and –G wheel options to add the user to the wheel group. Sub-
stitute a username for sam in the following example.

usermod -a -G wheel sam
grep wheel /etc/group
wheel:x:10:root,sam

The grep command shows Sam as a member of the wheel group. See /etc/group on
page 506 for more information on groups.

Timestamp By default, sudo asks for your password (not the root password) the first time you run
it. At that time, sudo sets your timestamp. After you supply a password, sudo will not
prompt you again for a password for five minutes (by default), based on your timestamp.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

430 Chapter 10 System Administration: Core Concepts

Executing a Single Command

In the following example, Sam tries to set the system clock while working as himself,
a nonprivileged user. The date utility displays an error message followed by the
expanded version of the date Sam entered. When he uses sudo to run date to set the
system clock, sudo prompts him for his password, and the command succeeds.

$ date 12121500
date: cannot set date: Operation not permitted
Thu Dec 12 15:00:00 PST 2013

$ sudo date 12121500
[sudo] password for sam:
Thu Dec 12 15:00:00 PST 2013

Next Sam uses sudo to unmount a filesystem. Because he gives this command
within five minutes of the previous sudo command, he does not need to supply a
password:

$ sudo umount /music
$

Now Sam uses the –l option to check which commands sudo will allow him to run.
Because the sudoers file is set up as explained in “Administrator and the wheel
group,” on the previous page, he is allowed to run any command as any user.

$ sudo -l
...
User sam may run the following commands on this host:
 (ALL) ALL

Spawning a root Shell

When you have several commands you need to run with root privileges, it might be
easier to spawn a root shell, give the commands without having to type sudo in front
of each one, and exit from the shell. This technique defeats some of the safeguards
built into sudo, so use it carefully and remember to return to a nonroot shell as soon

Granting root privileges to edit a file

tip With the –e option, or when called as sudoedit, sudo edits with root privileges the file named by
its argument. By default sudo uses the vi editor; see page 432 for instructions on how to specify
a different editor.

Any user who can run commands with root privileges can use the –e option. To give other users
permission to edit any file using root privileges, specify in the sudoers file that that user can exe-
cute the command sudoedit. For more information refer to “User Privilege Specifications” on
page 433.

Calling an editor in this manner runs the editor in the user’s environment, maintaining the concept
of least privilege. The sudo utility first copies the file to be edited to a temporary file that is owned
by the user. If the file does not exist, sudo creates a new file that is owned by the user. Once the
user has finished editing the file, sudo copies it back in place of the original file (maintaining the
original permissions).

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

Running Commands with root Privileges 431

as possible. See the caution on least privilege on page 423. Use the sudo –i option
(page 432) to spawn a root shell:

$ pwd
/home/sam
$ sudo -i
id
uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys) ...
pwd
/root
exit
logout
$

In this example, sudo spawns a root shell, which displays a # prompt to remind Sam
that he is running with root privileges. The id utility displays the effective UID of the
user running the shell. The exit command (you can also use CONTROL-D) terminates the
root shell, returning Sam to his normal status and his former shell and prompt.

sudo’s environment The pwd builtin in the preceding example shows one aspect of the modified environ-
ment created by the –i option. This option spawns a root login shell (a shell with the
same environment as a user logging in as root would have) and executes root’s startup
files (page 329). Before issuing the sudo –i command, the pwd builtin shows
/home/sam as Sam’s working directory; after the command, it shows /root, root’s
home directory, as the working directory. Use the –s option (page 432) to spawn a
root shell without modifying the environment. When you call sudo without an
option, it runs the command you specify in an unmodified environment. To demon-
strate this feature, the following example calls sudo without an option to run pwd.
The working directory of a command run in this manner does not change.

$ pwd
/home/sam
$ sudo pwd
/home/sam

Redirecting output The following command fails because although the shell that sudo spawns executes
ls with root privileges, the nonprivileged shell that the user is running redirects the
output. The user’s shell does not have permission to write to /root.

$ sudo ls > /root/ls.sam
-bash: /root/ls.sam: Permission denied

There are several ways around this problem. The easiest is to pass the whole command
line to a shell running under sudo:

$ sudo bash -c "ls > /root/ls.sam"

The bash –c option spawns a shell that executes the string following the option and
then terminates. The sudo utility runs the spawned shell with root privileges. You
must quote the string to prevent the nonprivileged shell from interpreting special
characters. You can also spawn a root shell using sudo –i, execute the command, and
exit from the privileged shell. (See the preceding section.)

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

432 Chapter 10 System Administration: Core Concepts

optional Another way to deal with the issue of redirecting output of a command run by sudo
is to use tee (page 162):

$ ls | sudo tee /root/ls.sam
...

This command line sends standard output of ls through sudo to tee, which copies its stan-
dard input to the file named by its argument and to standard output. If you do not want
to display the output, you can have the nonprivileged shell redirect the output to
/dev/null (page 503). The next example uses this technique to do away with the dis-
played output and uses the –a option to tee to append to the file instead of overwriting it:

$ ls | sudo tee -a /root/ls.sam > /dev/null

Options

You can use command-line options to control how sudo runs a command. Following
is the syntax of an sudo command line:

sudo [options] [command]

where options is one or more options and command is the command you want to
execute. Without the –u option, sudo runs command with root privileges. Some of
the more common options follow; see the sudo man page for a complete list.

–b (background) Runs command in the background.

–e (edit) With this option, command is a filename and not a command. This option
causes sudo to edit the file named command with root privileges using the editor
named by the SUDO_EDITOR, VISUAL, or EDITOR environment variable. Default
is the vi editor. Alternately, you can use the sudoedit utility without any options. Using
this technique, the editor does not run with root privileges. See the tip on page 430.

–i (initial login environment) Spawns the shell that is specified for root (or another user
specified by –u) in /etc/passwd, running root’s (or the other user’s) startup files, with
some exceptions (e.g., TERM is not changed). Does not take a command. See
“Spawning a root Shell” on page 426 for an example.

–k (kill) Resets the timestamp (page 429) of the user running the command, which
means the user must enter her password the next time she runs sudo.

–L (list defaults) Lists the parameters that you can set on a Defaults line (page 436) in
the sudoers file. Does not take a command.

–l (list commands) Lists the commands the user who is running sudo is allowed to run
on the local system. Does not take a command.

–s (shell) Spawns a new root (or another user specified by –u) shell as specified in the
/etc/passwd file. Similar to –i but does not change the environment. Does not take a
command.

–u user Runs command with the privileges of user. Without this option, sudo runs command
with root privileges.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

Running Commands with root Privileges 433

 LPI sudoers: Configuring sudo

As installed, sudo is not as secure and robust as it can be if you configure it carefully.
The sudo configuration file is /etc/sudoers. You can edit this file to give specific users
the ability to run only certain commands with root privileges as opposed to any com-
mands. You can also limit these users to running commands only with certain options
or arguments. Or you can set up sudo so a specific user cannot use a specific option
or argument when running a command with root privileges.

The best way to edit sudoers is to use visudo by giving the command: su -c visudo or
sudo visudo. The visudo utility locks, edits, and checks the grammar of the sudoers
file. By default, visudo calls the vi editor. You can set the SUDO_EDITOR, VISUAL,
or EDITOR environment variable to cause visudo to call a different editor. The fol-
lowing command causes visudo to use the nano editor (page 270):

$ export EDITOR=$(which nano)

Replace nano with the textual editor of your choice. Put this command in a startup
file (page 329) to set this variable each time you log in.

In the sudoers file, comments, which start with a hashmark (#), can appear anywhere
on a line. In addition to comments, this file holds three types of entries: user privilege
specifications, aliases, and defaults. Each of these entries occupies a line. You can
continue a line by terminating it with a backslash (\).

User Privilege Specifications

The format of a line that specifies user privileges is as follows (the whitespace around
the equal sign is optional). In each case,

user_list host_list = [(runas_list)] command_list

• The user_list specifies the user(s) this specification line applies to. This list can
contain usernames, groups (prefixed with %), and user aliases (next section).
You can use the builtin alias ALL to cause the line to apply to all users.

• The host_list specifies the host(s) this specification line applies to. This list can
contain one or more hostnames, IP addresses, or host aliases (next section).
You can use the builtin alias ALL to cause the line to apply to all systems that
refer to this sudoers file.

• The runas_list specifies the user(s) the commands in the command_list
can be run as when sudo is called with the –u option (page 432). This list

Always use visudo to edit the sudoers file

caution A syntax error in the sudoers file can prevent you from using sudo to gain root privileges. If you
edit this file directly (without using visudo), you will not know that you introduced a syntax error
until you find that you cannot use sudo. The visudo utility checks the syntax of sudoers before
it allows you to exit. If it finds an error, it gives you the choice of fixing the error, exiting without
saving the changes to the file, or saving the changes and exiting. The last choice is usually a poor
one, so visudo marks it with (DANGER!).

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

434 Chapter 10 System Administration: Core Concepts

can contain usernames, groups (prefixed with %), and runas aliases
(next section). It must be enclosed within parentheses. Without
runas_list, sudo assumes root. You can use the builtin alias ALL to cause
the line to apply to all usernames and groups.

• The command_list specifies the utilities this specification line applies to.
This comma-separated list can contain names of utilities, names of direc-
tories holding utilities, and command aliases (next section). All names
must be absolute pathnames; directory names must end with a slash (/).
Precede a command with an exclamation point (!) to exclude that com-
mand. You can use the builtin alias ALL to cause the line to apply to all
commands.

Including the string sudoedit in the command_list gives users in the user_list
permission to edit files using root privileges. See the tip on page 430 for
more information.

If you follow a command in the command_list with two adjacent double quotation
marks (""), the user will not be able to specify any command-line arguments, including
options to that command. Alternately, you can specify arguments, including wildcards,
to limit the arguments a user is allowed to specify with that command.

Examples The following user privilege specification allows Sam to use sudo to mount and
unmount filesystems (run mount and umount with root privileges) on all systems (as
specified by ALL) that refer to the sudoers file containing this specification:

sam ALL=(root) /bin/mount, /bin/umount

The (root) runas_list is optional. If you omit it, sudo allows the user to run the
commands in the command_list with root privileges. In the following example,
Sam takes advantage of these permissions. He cannot run umount directly; instead,
he must call sudo to run it.

$ whoami
sam
$ umount /music
umount: only root can unmount /dev/sdb7 from /music
$ sudo umount /music
[sudo] password for sam:
$

If you replace the line in sudoers described above with the following line, Sam is not
allowed to unmount /p03, although he can still unmount any other filesystem and
can mount any filesystem:

sam ALL=(root) /bin/mount, /bin/umount, !/bin/umount /p03

The result of the preceding line in sudoers is shown next. The sudo utility does not
prompt for a password because Sam has entered his password within the last five
minutes.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

Running Commands with root Privileges 435

$ sudo umount /p03
Sorry, user sam is not allowed to execute '/bin/umount /p03' as root on localhost.

The following line limits Sam to mounting and unmounting filesystems mounted on
/p01, /p02, /p03, and /p04:

sam ALL= /bin/mount /p0[1-4], /bin/umount /p0[1-4]

The following commands show the result:

$ sudo umount /music
Sorry, user sam is not allowed to execute '/bin/umount /music' as root on localhost.
$ sudo umount /p03
$

Administrator: using
the wheel group

As explained under “Administrator and the wheel group” on page 429, the following
lines in sudoers allow users who are members of the wheel group (administrators) to
use sudo to gain root privileges:

Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL

This user privilege specification applies to all systems (as indicated by the ALL to the
left of the equal sign). As the comment indicates, this line allows members of the wheel
group (specified by preceding the name of the group with a percent sign: %wheel) to
run any command (the rightmost ALL) as any user (the ALL within parentheses).
When you call it without the –u option, the sudo utility runs the command you specify
with root privileges, which is what sudo is used for most of the time.

If you modified the preceding line in sudoers as follows, it would allow members of
the wheel group to run any command as any user with one exception: They would
not be allowed to run passwd to change the root password (although they could gain
root privileges and edit it manually).

%wheel ALL=(ALL) ALL, !/usr/bin/passwd root

optional In the %wheel ALL=(ALL) ALL line in /etc/sudoers, if you replaced (ALL) with (root)
or if you omitted (ALL), you would still be able to run any command with root privileges.
You would not, however, be able to use the –u option to run a command as another user.
Typically, when you can have root privileges, this limitation is not an issue. Working as
a user other than root allows you to use the least privilege possible to accomplish a task,
which is a good idea.

For example, if you are in the wheel group, the default entry in the sudoers file allows
you to give the following command to create and edit a file in Sam’s home directory.
Because you are working as Sam, he will own the file and be able to read from and
write to it.

$ sudo -u sam vi ~sam/reminder
$ ls -l ~sam/reminder
-rw-r--r--. 1 sam pubs 15 03-09 15:29 /home/sam/reminder

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

436 Chapter 10 System Administration: Core Concepts

Aliases

An alias enables you to rename and/or group users, hosts, or commands. Following
is the format of an alias definition:

alias_type alias_name = alias_list

where alias_type is the type of alias (User_Alias, Runas_Alias, Host_Alias,
Cmnd_Alias), alias_name is the name of the alias (by convention all uppercase), and
alias_list is a comma-separated list of one or more elements that make up the alias.
Preceding an element of an alias with an exclamation point (!) negates it.

User_Alias The alias_list for a user alias is the same as the user_list for a user privilege specifi-
cation (previous section). The following lines from a sudoers file define three user
aliases: OFFICE, ADMIN, and ADMIN2. The alias_list that defines the first alias
includes the usernames zach, sam, and sls; the second includes two usernames and
members of the admin group; and the third includes all members of the admin group
except Sam.

User_Alias OFFICE = zach, sam, sls
User_Alias ADMIN = max, zach, %admin
User_Alias ADMIN2 = %admin, !sam

Runas_Alias The alias_list for a runas alias is the same as the runas_list for a user privilege spec-
ification (previous section). The following SM runas alias includes the usernames sam
and sls:

Runas_Alias SM = sam, sls

Host_Alias Host aliases are meaningful only when the sudoers file is referenced by sudo running
on more than one system. The alias_list for a host alias is the same as the host_list
for a user privilege specification (previous section). The following line defines the
LCL alias to include the systems named guava and plum:

Host_Alias LCL = guava, plum

If you want to use fully qualified hostnames (hosta.example.com instead of just
hosta) in this list, you must set the fqdn flag (next section). However, doing so might
slow the performance of sudo.

Cmnd_Alias The alias_list for a command alias is the same as the command_list for a user priv-
ilege specification (previous section). The following command alias includes three
files and by including a directory (denoted by its trailing /), incorporates all the files
in that directory:

Cmnd_Alias BASIC = /bin/cat, /usr/bin/vi, /bin/df, /usr/local/safe/

Defaults (Options)

You can change configuration options from their default values by using the Defaults
keyword. Most values in this list are flags that are implicitly Boolean (can either be
on or off) or strings. You turn on a flag by naming it on a Defaults line, and you turn
it off by preceding it with a !. The following line in the sudoers file turns off the lecture
and fqdn flags and turns on tty_tickets:

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

Running Commands with root Privileges 437

Defaults !lecture,tty_tickets,!fqdn

This section lists some common flags; see the sudoers man page for a complete list.

env_reset Causes sudo to reset the environment variables to contain the LOGNAME, SHELL,
USER, USERNAME, MAIL, and SUDO_* variables only. Default is on. See the
sudoers man page for more information.

fqdn (fully qualified domain name) Performs DNS lookups on FQDNs (page 1250) in
the sudoers file. When this flag is set, you can use FQDNs in the sudoers file, but
doing so might negatively affect sudo’s performance, especially if DNS is not
working. When this flag is set, you must use the local host’s official DNS name,
not an alias. If hostname returns an FQDN, you do not need to set this flag.
Default is on.

insults Displays mild, humorous insults when a user enters a wrong password. Default is off.
See also passwd_tries.

lecture=freq Controls when sudo displays a reminder message before the password prompt. Pos-
sible values of freq are never, once, and always. Specifying !lecture is the same as
specifying a freq of never. Default is once.

mail_always Sends email to the mailto user each time a user runs sudo. Default is off.

mail_badpass Sends email to the mailto user when a user enters an incorrect password while running
sudo. Default is off.

mail_no_host Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run commands on the local host runs sudo. Default
is off.

mail_no_perms Sends email to the mailto user when a user whose username is in the sudoers file
but who does not have permission to run the requested command runs sudo.
Default is off.

mail_no_user Sends email to the mailto user when a user whose username is not in the sudoers file
runs sudo. Default is on.

mailsub=subj (mail subject) Changes the default email subject for warning and error messages from
the default *** SECURITY information for %h *** to subj. The sudo utility
expands %h within subj to the local system’s hostname. Place subj between quotation
marks if it contains shell special characters.

mailto=eadd Sends sudo warning and error messages to eadd (an email address; default is root).
Place eadd between quotation marks if it contains shell special characters.

passwd_timeout=mins
The mins is the number of minutes before a sudo password prompt times out. A value
of 0 (zero) indicates the password does not time out. Default is 5.

passwd_tries=num
The num is the number of times the user can enter an incorrect password in response
to the sudo password prompt before sudo quits. Default is 3. See also insults and
lecture.

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

438 Chapter 10 System Administration: Core Concepts

rootpw Causes sudo to accept only the root password in response to its prompt. Because sudo
issues the same prompt whether it is asking for your password or the root password,
turning this flag on might confuse users. Default is off, causing sudo to accept the
password of the user running sudo.

shell_noargs Causes sudo, when called without any arguments, to spawn a root shell without
changing the environment. Default is off. This option causes the same behavior as the
sudo –s option.

timestamp_timeout=mins
The mins is the number of minutes that the sudo timestamp (page 429) is valid. Set
mins to –1 to cause the timestamp to be valid forever; set to 0 (zero) to cause sudo
to always prompt for a password. Default is 5.

tty_tickets Causes sudo to authenticate users on a per-tty basis, not a per-user basis. Default is on.

umask=val The val is the umask (page 469) that sudo uses to run the command that the user
specifies. Set val to 0777 to preserve the user’s umask value. Default is 0022.

Locking the root Account (Removing the root Password)

If you decide you want to lock the root account, give the command su –c 'passwd –l
root'. This command renders the encrypted password in /etc/shadow invalid by pre-
pending two exclamation points (!!) to it. You can unlock the account again by
removing the exclamation points or by giving the command shown in the following
example.

Unlocking the root
account

If you decide you want to unlock the root account after locking it, give the following
command. This command assumes you can use sudo to gain root privileges and
unlocks the root account by assigning a password to it:

$ sudo passwd root
[sudo] password for sam:
Changing password for user root.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

 LPI The systemd init Daemon

The init daemon is the system and service manager for Linux. As explained on
page 374, it is the first true process Linux starts when it boots and, as such, has a PID
of 1 and is the ancestor of all processes. The init daemon has been around since the
early days of UNIX, and many people have worked to improve it. The first Linux init
daemon was based on the UNIX System V init daemon and is referred to as SysVinit
(System V init daemon).

Because SysVinit does not deal well with modern hardware, including hotplug
(page 516) devices, USB hard and flash drives, and network-mounted filesystems,

7th Ed., "A Practical Guide to Fedora and Red Hat Enterprise Linux"; sobell.com

