
CHAPTER 5

SQL Server Command-
Line Utilities

IN THIS CHAPTER

. What’s New in SQL Server
Command-Line Utilities

. The sqlcmd Command-Line
Utility

. The dta Command-Line Utility

. The tablediff Command-
Line Utility

. The bcp Command-Line Utility

. The sqldiag Command-Line
Utility

. The sqlservr Command-Line
Utility

This chapter explores various command-line utilities that
ship with SQL Server. These utilities give administrators a
different way to access the database engine and its related
components. In some cases, they provide functionality that
is also available with SQL Server’s graphical user interface
(GUI). Other command-line utilities provide functionality
that is available only from the command prompt. For each
utility, this chapter provides the command syntax along
with the most commonly used options. For the full syntax
and options available for the utility, see SQL Server Books
Online.

NOTE

This chapter focuses on command-line utilities that are
core to SQL Server and the SQL Server database
engine. Several other command-line utilities that are
used less frequently or geared toward other SQL
Server services are not covered in this chapter. These
utilities include dtexec and dtutil, which can be
used with SQL Server Integration Services (SSIS).
Reporting Services has the rs, rsconfig, and
rskeymgmt command-line utilities. Lastly, there are
several executable files documented as utilities in
Books Online (such as ssms, which opens the SQL
Server Management Studio) that have limited parame-
ters and are basically used to launch their related
applications.

Table 5.1 lists the command-line utilities discussed in this
chapter. This table lists the physical location of each utility’s

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 103

104 CHAPTER 5 SQL Server Command-Line Utilities

TABLE 5.1 Command-Line Utility Installation Locations

Utility Install Location

sqlcmd x:\Program Files\Microsoft SQL Server\100\Tools\Binn

dta x:\Program Files\Microsoft SQL Server\100\Tools\Binn

tablediff x:\Program Files\Microsoft SQL Server\100\COM

bcp x:\Program Files\Microsoft SQL Server\100\Tools\Binn

sqldiag x:\Program Files\Microsoft SQL Server\100\Tools\Binn

sqlservr x:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\Binn

executable. The location is needed to execute the utility in most cases, unless the associ-
ated path has been added to the Path environmental variable.

NOTE

The tablediff utility is installed when SQL Server replication is installed. If you can’t
find the tablediff.exe in the location specified in Table 5.1, check to see whether the
replication was installed.

When you are testing many of these utilities, it is often easiest to set up a batch file (.BAT)
that contains a command to change the directory to the location shown in Table 5.1.
After you make this directory change, you can enter the command-line utility with the
relevant parameters. Finally, you should enter a PAUSE command so that you can view the
output of the utility in the command prompt window. Following is an example you can
use to test the sqlcmd utility (which is discussed in more detail later in this chapter):

CD “C:\Program Files\Microsoft SQL Server\100\Tools\Binn”

SQLCMD -S(local) -E -Q “select @@servername”

pause

After you save the commands in a file with a .BAT extension, you can simply double-click
the file to execute it. This approach is much easier than retyping the commands many
times during the testing process.

What’s New in SQL Server Command-Line Utilities
The SQL Server command-line utilities available in SQL Server 2008 are basically the same
as those offered with SQL Server 2005. This has some key benefits for those who are famil-
iar with the 2005 utilities. Very little has changed in the syntax, and batch files or scripts
you have used with these utilities in the past should continue to work unchanged.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 104

105The sqlcmd Command-Line Utility
5

A few command-line utilities have been added in SQL Server 2008, however, and some
have been removed. The sqlps utility is new to SQL Server 2008. This utility can be used
to run PowerShell commands and scripts. The sqlps utility and the PowerShell
Windows–based command-line management tool are discussed in detail in Chapter 17,
“Administering SQL Server 2008 with PowerShell.”

Utilities removed from SQL Server 2008 include sac. The sac utility can be used in SQL
Server 2005 to import or export settings available in the graphical Surface Area
Configuration (SAC) tool. Both the sac command-line utility and SAC graphical tool have
been removed. Similar functionality is now available via policy-based management and
the Configuration Manager tool.

The sqlcmd Command-Line Utility
The sqlcmd command-line utility is the next generation of the isql and osql utilities that
you may have used in prior versions of SQL Server. It provides the same type of function-
ality as isql and osql, including the capability to connect to SQL Server from the
command prompt and execute T-SQL commands. The T-SQL commands can be stored in a
script file, entered interactively, or specified as command-line arguments to sqlcmd.

NOTE

The isql and osql command-line utilities are not covered in this chapter. The isql
utility was discontinued in SQL Server 2005 and is not supported in SQL Server 2008.
The osql utility is still supported but will be removed in a future version of SQL Server.
Make sure to use sqlcmd in place of osql to avoid unnecessary reworking in the
future.

The syntax for sqlcmd follows:

sqlcmd

[{ { -U login_id [-P password] } | –E trusted connection }]

[-z new password] [-Z new password and exit]

[-S server_name [\ instance_name]] [-H wksta_name] [-d db_name]

[-l login time_out] [-A dedicated admin connection]

[-i input_file] [-o output_file]

[-f < codepage > | i: < codepage > [< , o: < codepage >]]

[-u unicode output] [-r [0 | 1] msgs to stderr]

[-R use client regional settings]

[-q “cmdline query”] [-Q “cmdline query” and exit]

[-e echo input] [-t query time_out]

[-I enable Quoted Identifiers]

[-v var = “value”...] [-x disable variable substitution]

[-h headers][-s col_separator] [-w column_width]

[-W remove trailing spaces]

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 105

106

FIGURE 5.1 Executing sqlcmd interactively.

[-k [1 | 2] remove[replace] control characters]

[-y display_width] [-Y display_width]

[-b on error batch abort] [-V severitylevel] [-m error_level]

[-a packet_size][-c cmd_end]

[-L [c] list servers[clean output]]

[-p [1] print statistics[colon format]]

[-X [1]] disable commands, startup script, environment variables [and exit]

[-? show syntax summary]

The number of options available for sqlcmd is extensive, but many of the options are not
necessary for basic operations. To demonstrate the usefulness of this tool, we look at
several different examples of the sqlcmd utility, from fairly simple (using few options) to
more extensive.

Executing the sqlcmd Utility

Before we get into the examples, it is important to remember that sqlcmd can be run in
several different ways. It can be run interactively from the command prompt, from a
batch file, or from a Query Editor window in SSMS. When run interactively, the sqlcmd
program name is entered at the command prompt with the required options to connect to
the database server. When the connection is established, a numbered row is made avail-
able to enter the T-SQL commands. Multiple rows of T-SQL can be entered in a batch; they
are executed only after the GO command has been entered. Figure 5.1 shows an example
with two simple SELECT statements that were executed interactively with sqlcmd. The
connection in this example was established by typing sqlcmd at the command prompt to
establish a trusted connection to the default instance of SQL Server running on the
machine on which the command prompt window is opened.

CHAPTER 5 SQL Server Command-Line Utilities

The capability to edit and execute sqlcmd scripts was added to SSMS with SQL Server 2005.
A sqlcmd script can be opened or created in a Query Editor window within SSMS. To edit
these scripts, you must place the editor in SQLCMD Mode. You do so by selecting Query,
SQLCMD Mode or by clicking the related toolbar button. When the editor is put in
SQLCMD Mode, it provides color coding and the capability to parse and execute the

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 106

107

FIGURE 5.2 Executing and editing sqlcmd scripts in SSMS.

The sqlcmd Command-Line Utility
5

commands within the script. Figure 5.2 shows a sample sqlcmd script opened in SSMS in a
Query Editor window set to SQLCMD Mode. The shaded lines are sqlcmd commands.

The most common means for executing sqlcmd utility is via a batch file. This method can
provide a great deal of automation because it allows you to execute a script or many
scripts by launching a single file. The examples shown in this section are geared toward
the execution of sqlcmd in this manner. The following simple example illustrates the
execution of sqlcmd, using a trusted connection to connect to the local database, and the
execution of a simple query that is set using the –Q option:

sqlcmd -S (local) -E -Q”select getdate()”

You can expand this example by adding an output file to store the results of the query and
add the –e option, which echoes the query that was run in the output results:

sqlcmd -S (local) -E -Q”select getdate()” -o c:\TestOutput.txt –e

The contents of the c:\TestOutput.txt file should look similar to this:

select getdate()

———————————-

2008-09-10 20:29:05.645

(1 rows affected)

Using a trusted connection is not the only way to use sqlcmd to connect to a SQL Server
instance. You can use the –U and –P command-line options to specify the SQL Server user
and password. sqlcmd also provides an option to specify the password in an environmen-
tal variable named sqlcmdPASSWORD, which can be assigned prior to the sqlcmd execution
and eliminates the need to hard-code the password in a batch file.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 107

108 CHAPTER 5 SQL Server Command-Line Utilities

sqlcmd also provides a means for establishing a dedicated administrator connection (DAC)
to the server. The DAC is typically used for troubleshooting on a server that is having
problems. It allows an administrator to get onto the server when others may not be able
to. If the DAC is enabled on the server, a connection can be established with the –A option
and a query can be run, as shown in the following example:

sqlcmd -S (local) -A -Q”select getdate()”

If you need to manage more complex T-SQL execution, it is typically easier to store the T-
SQL in a separate input file. The input file can then be referenced as a sqlcmd parameter.
For example, say that you have the following T-SQL stored in a file named
C:\TestsqlcmdInput.sql:

BACKUP DATABASE Master

TO DISK = ‘c:\master.bak’

BACKUP DATABASE Model

TO DISK = ‘c:\model.bak’

BACKUP DATABASE MSDB

TO DISK = ‘c:\msdb.bak’

The sqlcmd execution, which accepts the C:\TestsqlcmdInput.sql file as input and
executes the commands within the file, looks like this:

sqlcmd -S (local) -E -i”C:\TestsqlcmdInput.sql” -o c:\TestOutput.txt –e

The execution of the preceding example backs up three of the system databases and writes
the results to the output file specified.

Using Scripting Variables with sqlcmd

sqlcmd provides a means for utilizing variables within sqlcmd input files or scripts. These
scripting variables can be assigned as sqlcmd parameters or set within the sqlcmd script.
To illustrate the use of scripting variables, let’s change our previous backup example so
that the database that will be backed up is a variable. A new input file named
c:\BackupDatabase.sql should be created, and it should contain the following
command:

BACKUP DATABASE $(DatabaseToBackup)

TO DISK = ‘c:\$(DatabaseToBackup).bak’

The variable in the preceding example is named DatabaseToBackup. Scripting variables are
referenced using the $() designators. These variables are resolved at the time of execu-
tion, and a simple replacement is performed. This allows variables to be specified within
quotation marks, if necessary. The –v option is used to assign a value to a variable at the
command prompt, as shown in the following example, which backs up the model data-
base:

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 108

109The dta Command-Line Utility
5

sqlcmd -S (local) -E -i”C:\BackupDatabase.sql” -v DatabaseToBackup = model

If multiple variables exist in the script, they can all be assigned after the –v parameter.
These variables should not be separated by a delimiter, such as a comma or semicolon.
Scripting variables can also be assigned within the script, using the :SETVAR command.
The input file from the previous backup would be modified as follows to assign the
DatabaseToBackup variable within the script:

:SETVAR DatabaseToBackup Model

BACKUP DATABASE $(DatabaseToBackup)

TO DISK = ‘c:\$(DatabaseToBackup).bak’

Scripts that utilize variables, sqlcmd commands, and the many available options can be
very sophisticated and can make your administrative life easier. The examples in this
section illustrate some of the basic features of sqlcmd, including some of the features that
go beyond what is available with osql.

The dta Command-Line Utility
dta is the command-line version of the graphical Database Engine Tuning Advisor. Both
the command-line utility and graphical tool provide performance recommendations based
on the workload provided to them. The syntax for dta is as follows:

Dta [-?] |

[

[-S server_name[\instance]]

{

{ -U login_id [-P password] }

| –E }

{ -D database_name [,...n] }

[-d database_name]

[-Tl table_list | -Tf table_list_file]

{ -if workload_file | -it workload_trace_table_name }

{ -s session_name | -ID session_ID }

[-F]

[-of output_script_file_name]

[-or output_xml_report_file_name]

[-ox output_XML_file_name]

[-rl analysis_report_list [,...n]]

[-ix input_XML_file_name]

[-A time_for_tuning_in_minutes]

[-n number_of_events]

[-m minimum_improvement]

[-fa physical_design_structures_to_add]

[-fp partitioning_strategy]

[-fk keep_existing_option]

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 109

110 CHAPTER 5 SQL Server Command-Line Utilities

[-fx drop_only_mode]

[-B storage_size]

[-c max_key_columns_in_index]

[-C max_columns_in_index]

[-e | -e tuning_log_name]

[-N online_option]

[-q]

[-u]

[-x]

[-a]

]

An extensive number of options is available with this utility, but many of them are not
required to do basic analysis. At a minimum, you need to use options that provide
connection information to the database, a workload to tune, a tuning session identifier,
and the location to store the tuning recommendations. The connection options include
–S for the server name, –D for the database, and either –E for a trusted connection or –U
and –P, which can be used to specify the user and password.

The workload to tune is either a workload file or workload table. The –if option is used to
specify the workload file location, and the –it option is used to specify a workload table.
The workload file must be a Profiler trace file (.trc), SQL script (.sql) that contains T-SQL
commands, or SQL Server trace file (.log). The workload table is a table that contains
output from a workload trace. The table is specified in the form
database_name.owner_name.table_name.

The tuning session must be identified with either a session name or session ID. The
session name is character based and is specified with the –s option. If the session name is
not provided, a session ID must be provided instead. The session ID is numeric and is set
using the –ID option. If the session name is specified instead of the session ID, the dta
generates an ID anyway.

The last options required for a basic dta execution identify the destination to store the dta
performance recommendations, which can be stored in a script file or in XML. The –of
option is used to specify the output script filename. XML output is generated when the
–or or –ox option is used. The –or option generates a filename if one is not specified, and
the –ox option requires a filename. The –F option can be used with any of the output
options to force an overwrite of a file with the same name, if one exists.

To illustrate the use of dta with basic options, let’s look at an example of tuning a simple
SELECT statement against the AdventureWorks2008R2 database. To begin, you use the
following T-SQL, which is stored in a workload file named c:\myScript.sql:

USE AdventureWorks2008R2 ;

GO

select *

from Production.transactionHistory

where TransactionDate = ‘9/1/04’

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 110

111The dta Command-Line Utility
5

The following example shows the basic dta execution options that can be used to acquire
performance recommendations:

dta -S xpvirtual1 -E -D AdventureWorks2008R2 -if c:\MyScript.sql

-s MySessionX -of C:\MySessionOutputScript.sql -F

NOTE

dta and other utilities executed at the command prompt are executed with all the
options on a single line. The preceding example and any others in this chapter that are
displayed on more than one line should actually be executed at the command prompt
or in a batch file on a single line. They are broken here because the printed page can
accommodate only a fixed number of characters.

The preceding example utilizes a trusted connection against the AdventureWorks2008R2
database, a workload file named c:\MyScript.sql, and a session named MySessionX, and
it outputs the performance recommendations to a text file named
c:\MySessionOutputScript.sql. The –F option is used to force a replacement of the
output file if it already exists. The output file contains the following performance recom-
mendations:

se [AdventureWorks2008R2]

go

CREATE NONCLUSTERED INDEX [_dta_index_TransactionHistory_5]

ON [Production].[TransactionHistory]

(

[TransactionDate] ASC

)

INCLUDE ([TransactionID],

[ProductID],

[ReferenceOrderID],

[ReferenceOrderLineID],

[TransactionType],

[Quantity],

[ActualCost],

[ModifiedDate])

WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY]

go

In short, the dta output recommends that a new index be created on the TransactionDate
column in the TransactionHistory table. This is a viable recommendation, considering
that there was no index on the TransactionHistory.TransactionDate column, and it was
used as a search argument in the workload file.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 111

112 CHAPTER 5 SQL Server Command-Line Utilities

Many other options (that go beyond basic execution) can be used to manipulate the way
dta makes recommendations. For example, a list can be provided to limit which tables
the dta looks at during the tuning process. Options can be set to limit the amount of
time that the dta tunes or the number of events. These options go beyond the scope of
this chapter, but you can gain further insight into them by looking at the graphical DTA,
which contains many of the same types of options. You can refine your tuning options in
the DTA, export the options to an XML file, and use the –ix option with the dta utility to
import the XML options and run the analysis.

The tablediff Command-Line Utility
The tablediff utility enables you to compare the contents of two tables. It was originally
developed for replication scenarios to help troubleshoot nonconvergence, but it is also
very useful in other scenarios. When data in two tables should be the same or similar, this
tool can help determine whether they are the same, and if they are different, it can iden-
tify what data in the tables is different.

The syntax for tablediff is as follows:

tablediff

[-?] |

{

-sourceserver source_server_name[\instance_name]

-sourcedatabase source_database

-sourcetable source_table_name

[-sourceschema source_schema_name]

[-sourcepassword source_password]

[-sourceuser source_login]

[-sourcelocked]

-destinationserver destination_server_name[\instance_name]

-destinationdatabase subscription_database

-destinationtable destination_table

[-destinationschema destination_schema_name]

[-destinationpassword destination_password]

[-destinationuser destination_login]

[-destinationlocked]

[-b large_object_bytes]

[-bf number_of_statements]

[-c]

[-dt]

[-et table_name]

[-f [file_name]]

[-o output_file_name]

[-q]

[-rc number_of_retries]

[-ri retry_interval]

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 112

113The tablediff Command-Line Utility
5

[-strict]

[-t connection_timeouts]

}

The tablediff syntax requires source and destination connection information to perform
a comparison. This information includes the servers, databases, and tables that will be
compared. Connection information must be provided for SQL Server authentication but
can be left out if Windows authentication can be used. The source and destination para-
meters can be for two different servers or the same server, and the tablediff utility can
be run on a machine that is neither the source nor the destination.

To illustrate the usefulness of this tool, let’s look at a sample comparison in the
AdventureWorks2008R2 database. The simplest way to create some data for comparison is
to select the contents of one table into another and then update some of the rows in one
of the tables. The following SELECT statement makes a copy of the AddressType table in
the AdventureWorks2008R2 database to the AddressTypeCopy table:

select *

into Person.AddressTypeCopy

from Person.AddressType

In addition, the following statement updates two rows in the AddressTypeCopy table so
that you can use the tablediff utility to identify the changes:

UPDATE Person.AddressTypeCopy

SET Name = ‘Billing New’

WHERE AddressTypeId = 1

UPDATE Person.AddressTypeCopy

SET Name = ‘Shipping New’,

ModifiedDate = ‘20090918’

WHERE AddressTypeId = 5

The tablediff utility can be executed with the following parameters to identify the differ-
ences in the AddressType and AddressTypeCopy tables:

tablediff -sourceserver “(local)” -sourcedatabase “AdventureWorks2008R2”

-sourceschema “Person”-sourcetable “AddressType”

-destinationserver “(local)” -destinationdatabase “AdventureWorks2008R2”

-destinationschema “Person” -destinationtable “AddressTypeCopy”

-f c:\TableDiff_Output.txt

The destination and source parameters are the same as in the previous example, except for
the table parameters, which have the source AddressType and the destination
AddressTypeCopy. The execution of the utility with these parameters results in the follow-
ing output to the command prompt window:

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 113

114 CHAPTER 5 SQL Server Command-Line Utilities

User-specified agent parameter values:

-sourceserver (local)

-sourcedatabase AdventureWorks2008R2

-sourceschema Person

-sourcetable AddressType

-destinationserver (local)

-destinationdatabase AdventureWorks2008R2

-destinationschema Person

-destinationtable AddressTypeCopy

-f c:\TableDiff_Output

Table [AdventureWorks2008R2].[Person].[AddressType] on (local)

and Table [AdventureWorks2008R2].[Person].[AddressTypeCopy] on (local)

have 2 differences.

Fix SQL written to c:\TableDiff_Output.sql.

Err AddressTypeID Col

Mismatch 1 Name

Mismatch 5 ModifiedDate Name

The requested operation took 0.296875 seconds.

The output first displays a summary of the parameters used and then shows the compari-
son results. In this example, it found the two differences that are due to updates
performed on AddressTypeCopy. In addition, the –f parameter used in the example caused
the tablediff utility to output a SQL file that can be used to fix the differences in the
destination table. The output file from this example looks as follows:

— Host: (local)

— Database: [AdventureWorks2008R2]

— Table: [Person].[AddressTypeCopy]

SET IDENTITY_INSERT [Person].[AddressTypeCopy] ON

UPDATE [Person].[AddressTypeCopy]

SET [Name]=’Billing’

WHERE [AddressTypeID] = 1

UPDATE [Person].[AddressTypeCopy]

SET [ModifiedDate]=’2002-06-01 00:00:00.000’,

[Name]=’Shipping’ WHERE [AddressTypeID] = 5

SET IDENTITY_INSERT [Person].[AddressTypeCopy] OFF

NOTE

The tablediff utility requires the source table to have at least one primary key, identi-
ty, or ROWGUID column. This gives the utility a key that it can use to try to match a cor-
responding row in the destination table. If the –strict option is used, the destination
table must also have a primary key, identity, or ROWGUID column.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 114

115The bcp Command-Line Utility
5

Keep in mind that several different types of comparisons can be done with the tablediff
utility. The –q option causes a quick comparison that compares only record counts and
looks for differences in the schema. The –strict option forces the schemas of each table
to be the same when the comparison is run. If this option is not used, the utility allows
some columns to be of different data types, as long as they meet the mapping require-
ments for the data type (for example, INT can be compared to BIGINT).

The tablediff utility can be used for many different types of comparisons. How you use
this tool depends on several factors, including the amount and type of data you are
comparing.

The bcp Command-Line Utility
You use the bcp (bulk copy program) tool to address the bulk movement of data. This utility
is bidirectional, allowing for the movement of data into and out of a SQL Server database.

bcp uses the following syntax:

bcp {[[database_name.][owner].]{table_name | view_name} | “query”}

{in | out | queryout | format} data_file

[-mmax_errors] [-fformat_file] [-x] [-eerr_file]

[-Ffirst_row] [-Llast_row] [-bbatch_size]

[-n] [-c] [-N] [-w] [-V (60 | 65 | 70 | 80)] [-6]

[-q] [-C { ACP | OEM | RAW | code_page }] [-tfield_term]

[-rrow_term] [-iinput_file] [-ooutput_file] [-apacket_size]

[-Sserver_name[\instance_name]] [-Ulogin_id] [-Ppassword]

[-T] [-v] [-R] [-k] [-E] [-h”hint [,...n]”]

Some of the commonly used options—other than the ones used to specify the database,
such as user ID, password, and so on—are the –F and –L options. These options allow you
to specify the first and last row of data to be loaded from a file, which is especially helpful
in large batches. The –t option allows you to specify the field terminator that separates
data elements in an ASCII file. The –E option allows you to import data into SQL Server
fields that are defined with identity properties.

TIP

The BULK INSERT T-SQL statement and SSIS are good alternatives to bcp. The BULK
INSERT statement is limited to loading data into SQL Server, but it is an extremely fast
tool for loading data. SSIS is a sophisticated GUI that allows for both data import and
data export, and it has capabilities that go well beyond those that were available in
SQL Server 2000’s Data Transformation Services (DTS).

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 115

116 CHAPTER 5 SQL Server Command-Line Utilities

This section barely scratches the surface when it comes to the capabilities of bcp. For a
more detailed look at bcp, refer to the section, “Using bcp” in Chapter 52, “SQL Server
Integration Services.”

The sqldiag Command-Line Utility
sqldiag is a diagnostic tool that you can use to gather diagnostic information about
various SQL Server services. It is intended for use by Microsoft support engineers, but you
might also find the information it gathers useful in troubleshooting a problem. sqldiag
collects the information into files that are written, by default, to a folder named SQLDIAG,
which is created where the file sqldiag.exe is located (for example, C:\Program
Files\Microsoft SQL Server\100\Tools\binn\SQLDIAG\). The folder holds files that
contain information about the machine on which SQL Server is running in addition to
the following types of diagnostic information:

. SQL Server configuration information

. SQL Server blocking output

. SQL Server Profiler traces

. Windows performance logs

. Windows event logs

The syntax for sqldiag changed quite a bit in SQL Server 2005, but very little has changed
in SQL Server 2008. Some of the options that were used in versions prior to SQL Server
2005 are not compatible with the current version. The full syntax for sqldiag is as
follows:

sqldiag

{ [/?] }

|

{ [/I configuration_file]

[/O output_folder_path]

[/P support_folder_path]

[/N output_folder_management_option]

[/C file_compression_type]

[/B [+]start_time]

[/E [+]stop_time]

[/A SQLdiag_application_name]

[/T { tcp [,port] | np | lpc | via }]

[/Q] [/G] [/R] [/U] [/L] [/X] }

|

{ [START | STOP | STOP_ABORT] }

|

{ [START | STOP | STOP_ABORT] /A SQLdiag_application_name }

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 116

117The sqldiag Command-Line Utility
5

NOTE

Keep in mind that many of the options for sqldiag identify how and when the sqldiag
utility will be run. The utility can be run as a service, scheduled to start and stop at a
specific time of day, and it can be configured to change the way the output is generat-
ed. The details about these options are beyond the scope of this chapter but are cov-
ered in detail in SQL Server Books Online. This section is intended to give you a taste
of the useful information that this utility can capture.

By default, the sqldiag utility must be run by a member of the Windows Administrators
group, and this user must also be a member of the sysadmin fixed SQL Server role. To get
a flavor for the type of information that sqldiag outputs, open a command prompt
window, change the directory to the location of the sqldiag.exe file, and type the follow-
ing command:

sqldiag

No parameters are needed to generate the output. The command prompt window scrolls
status information across the screen as it collects the diagnostic information. You see the
message “SQLDIAG Initialization starting...” followed by messages that indicate what
information is being collected. The data collection includes a myriad of system informa-
tion from MSINFO32, default traces, and SQLDumper log files. When you are ready to stop
the collection, you can press Ctrl+C.

If you navigate to the sqldiag output folder, you find the files created during the collec-
tion process. In this output folder, you should find a file with MSINFO32 in its name. This
file contains the same type of information that you see when you launch the System
Information application from Accessories or when you run MSINFO32.EXE. This is key
information about the machine on which SQL Server is running. This information
includes the number of processors, the amount of memory, the amount of disk space, and
a slew of other hardware and software data.

You also find a file named xxx_sp_sqldiag_Shutdown.out, where xxx is the name of the
SQL Server machine. This file contains SQL Server–specific information, including the SQL
Server error logs, output from several key system stored procedures, including sp_helpdb

and sp_configure, and much more information related to the current state of SQL Server.

You find other files in the sqldiag output directory as well. Default trace files, log files
related to the latest sqldiag execution, and a copy of the XML file containing configura-
tion information are among them. Microsoft documentation on these files is limited, and
you may find that the best way to determine what they contain is simply to open the files
and review the wealth of information therein.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 117

118 CHAPTER 5 SQL Server Command-Line Utilities

The sqlservr Command-Line Utility
The sqlservr executable is the program that runs when SQL Server is started. You can use
the sqlservr executable to start SQL Server from a command prompt. When you do that,
all the startup messages are displayed at the command prompt, and the command prompt
session becomes dedicated to the execution of SQL Server.

CAUTION

If you start SQL Server from a command prompt, you cannot stop or pause it by using
SSMS, Configuration Manager, or the Services applet in the Control Panel. You should
stop the application only from the command prompt window in which SQL Server is run-
ning. If you press Ctrl+C, you are asked whether you want to shut down SQL Server. If
you close the command prompt window in which SQL Server is running, SQL Server is
automatically shut down.

The syntax for the sqlserver utility is as follows:

sqlservr [-sinstance_name] [-c] [-dmaster_path] [-f]

[-eerror_log_path] [-lmaster_log_path] [-m]

[-n] [-Ttrace#] [-v] [-x] [-gnumber] [-h]

Most commonly, you start SQL Server from the command prompt if you need to trou-
bleshoot a configuration problem. The –f option starts SQL Server in minimal configura-
tion mode. This allows you to recover from a change to a configuration setting that
prevents SQL Server from starting. You can also use the –m option when you need to start
SQL Server in single-user mode, such as when you need to rebuild one of the system data-
bases.

SQL Server functions when started from the command prompt in much the same way as
it does when it is started as a service. Users can connect to the server, and you can
connect to the server by using SSMS. What is different is that the SQL Server instance
running in the command prompt appears as if it is not running in some of the tools.
SSMS and SQL Server Service Manager show SQL Server as being stopped because they are
polling the SQL Server service, which is stopped when running in the command prompt
mode.

TIP

If you simply want to start the SQL Server service from the command prompt, you can
use the NET START and NET STOP commands. These commands are not SQL Server
specific but are handy when you want to start or stop SQL Server, especially in a batch
file. The SQL Server service name must be referenced after these commands. For
example, NET START MSSQLSERVER starts the default SQL Server instance.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 118

119Summary
5

Summary
SQL Server provides a set of command-line utilities that allow you to execute some of
the available SQL Server programs from the command prompt. Much of the functional-
ity housed in these utilities is also available in graphical tools, such as SSMS. However,
the capability to initiate these programs from the command prompt is invaluable in
certain scenarios.

Chapter 6, “SQL Server Profiler,” covers a tool that is critical for performance tuning in
SQL Server 2008. SQL Server Profiler provides insight by monitoring and capturing the
activity occurring on a SQL Server instance. It is a “go-to” tool for many DBAs and devel-
opers because of the wide variety of information that it can capture.

05_9780672330568_ch05.qxp 8/19/10 3:26 PM Page 119

