
CHAPTER

8String analysis for cyber strings

W. Casey

8.1 STRING ANALYSIS AND CYBER DATA
A string is any sequence of symbols that is interpreted to represent a precise meaning.
Written language, including this sentence, provides strings in which informational
messages may be expressed as a sequence of words (each of which is a sequence
of letters). However, natural languages such as English may give rise to ambiguous
meaning. For example, consider the following statement: “Time flies like an arrow;
fruit flies like a banana.” In computational settings, it’s important that strings (along
with their encoding and interpretation) have discrete, precise meanings. Formal
languages provide the general backdrop for our discussion of strings.

A central goal when analyzing cyber data is to seek a string representation for
the problem’s objects so that similarities in their string representations will provide
a meaningful result for the analysis problem at hand. To emphasize this point,
we consider signature based detection of cyber attacks and how the problem of
determining safety (or that a system may be compromised) may be considered by
the analysis of strings. We set the stage by providing a general background of cyber
data and analysis techniques, followed by our historical examples. Then we focus the
remainder of the chapter on common contemporary techniques used to analyze cyber
sequential or string data.

8.1.1 CYBER DATA
Many different types of data arise from cyber security scenarios—here we will
identify a few prominent data types and outline an organizational framework for
thinking about cyber data. Generally, within cyber security scenarios the objects
studied may or may not have much known about them. One way to think about
information (known and unknown) for digital objects will be similar to that of
physical objects, such as an antique. An antique is affected by a provenance, or a
history of events, which affect its state. In the real world even a valuable historical
object may have partial or disputed information concerning its provenance. For
digital objects we consider provenance similarly; there can also be incomplete

Cybersecurity and Applied Mathematics. http://dx.doi.org/10.1016/B978-0-12-804452-0.00008-7
© 2016 Elsevier Inc. All rights reserved.

135

http://dx.doi.org/10.1016/B978-0-12-804452-0.00008-7

136 CHAPTER 8 String analysis for cyber strings

or partial awareness concerning the origin or histories of data objects (ie, files,
programs, configuration settings, etc). With the notion of provenance in mind we
may consider major types of cyber data.

The three main forms of data we consider are static, dynamic, and behavioral.
A static data analysis will focus on objects such as files, system configuration

parameters, and programs (specified in a programming language or machine
executable). This type of analysis may seek to identify evidence that the security
of a system was breached or that a particular program is capable of breaching the
system either as a direct effort (ie, malware) or indirectly (ie, a vulnerability) if
attacked in a certain way. A computer system is comprised of thousands of programs
and libraries, and for each of them a cyber security operator or analyst may only have
a small amount of information concerning its provenance, so provenance information
is usually thin thereby yielding advantages to attackers who may camouflage
malware within the context of limited awareness (ie, the many system files and what
they do).

A dynamic analysis will focus on data generated within a computer system when
certain stimuli or inputs are provided. One form of dynamic data is a system log
file, which contains metadata concerning the operation of various components. For
example, we may monitor how a Microsoft system registry database changes before
and after a given program is executed, and likewise what (if any) files are created
as a consequence of executing a given program by evaluating logs or designing our
own system monitors. Another and more interactive example arises when monitoring
network traffic and identifying problematic communications (possibly to known
command and control botnet servers). Still another example is fuzz testing in which
a large variety of stimuli is provided to a program or library to find fault conditions,
which may prove to be a software vulnerability. A dynamic analysis may be realized
either as a system monitor or as an experiment in which the cyber analyst has created
meaningful ways to observe system states.

A behavioral analysis will also be focused on dynamic data such as log and
monitor data, but the focus of behavioral analysis will be to consider the sequences
of actions and events as expressions of behaviors. Therefore, this also includes
some model of behavior (such as baseline and anomalous behaviors). One type of
behavioral analysis will include program tracing and a statistical model for learning
a common behavior of a malware group, which distinguishes it from benign software
or other malware groups. In this way, the behavioral data may include both the trace
outputs as well as the model which describes a particular behavior.

8.1.2 MODES OF ANALYZING CYBER DATA
One common operational mode of analysis is a forensic analysis which usually
takes place after an event, for example a data breach, to investigate what happened.
The mode of forensic analysis is similar in nature to that of a crime scene, where
an investigator and focuses on the artifacts left behind in order to gain some
understanding of key questions, for example attribution (ie, who initiated the attack).

8.1 String analysis and cyber data 137

Another mode of analysis is experimental, often testing an object to identify how
it compares to a reference data set. These types of analysis are commonly done for
artifacts of unknown provenance to test if they are malware or contain vulnerabilities.
Still another more operational mode is online analysis, and this may be thought of
as a filter pipeline where actions are tested against a set of signatures in real time,
with the possible outcome that a signature match may invoke a response to keep the
system safe. Examples of this include network filters.

Another type of analysis mode is formal methods and verification and this
approach is more logical in that it considers how programs or data is to be interpreted
by the system and will attempt to compute or verify that certain unsafe states are
not reachable. This type of analysis often employs computational processes to prove
various properties of the software artifact.

Generally, in practice, various types of cyber data and analytical modes are mixed
in ways to provide the best approaches for the problem at hand. In order to introduce
the area of string analysis in cyber data we have selected a few of the most primitive
string comparison methods which often are applied to the various data forms and as
a part of a variety of modes for analyzing cyber data.

8.1.3 ALPHABETS AND FINITE STRINGS
Let Σ be a finite and nonempty set of symbols, also called an alphabet. For example,
Σ = {0, 1} is commonly called the binary alphabet, and its symbols are denoted by
zero and one.

Given two symbols from Σ , that is x, y ∈ Σ , a juxtaposition is an operation
which creates a composite object: either x ◦ y to emphasize that x is joined to y with
an ordering of x before y, or y ◦ x indicating that y is joined to x with an ordering
of y before x. Because x ◦ y may not be a symbol itself, the juxtaposition operation
naturally extends the alphabet to a larger set of objects which can be created by
juxtaposition between these objects or alphabet members. The limiting set of all
objects created from an arbitrary number of juxtaposition operations, along with
either alphabet members or other objects so created, will be the set of all strings
over Σ . Objects that are created with juxtaposition can themselves be juxtaposed
with other such objects, and the resulting the closure represents all such possible
outcomes of objects or strings.

Following in this way, we provide a theoretical method to construct recursively
the set of all strings over Σ . We will do this by creating an set of objects called Σk,
which is the set of all strings constructible from Σ with k − 1 juxtapositions. We let
Σ1 = Σ , and next, we describe the recursion:

Σk = {x ◦ y|x ∈ Σk−1 and y ∈ Σ}.
Notice that Σ2 is the set of all strings created by one juxtaposition, and it includes all
such single juxtapositions over all possible pairs of symbols. From the recursive form

138 CHAPTER 8 String analysis for cyber strings

above, we see that Σk is constructed from k − 1 juxtapositions. An inductive proof
would check the base case and notice that the recursive equation juxtaposes x ∈ Σk−1

to a symbol. Therefore there is one greater juxtaposition than the number used to
create objects in Σk−1, which we can take as k − 2 (ie, the inductive hypothesis),
thus adding together to show our claim that objects in Σk are created with k − 1
juxtapositions of symbols from Σ .

Given a string x (ie, an object created from juxtaposition), the length of string x,
denoted |x|, may be defined as the first k : x ∈ Σk. Said differently, the string’s length
is the number of symbols comprising the string.

The Kleene closure, denoted Σ∗, is defined as

Σ∗ = ∪∞k=0Σ
k,

and it includes all finite strings over Σ .
A string over Σ may also be thought of as an ordered list of symbols. Here, the

order of symbols is represented by natural number indices (denoted with a subscript).
A string s of length n (ie, |s| = n) can list out the ordered sequence of symbols as
s = s1s2 . . . sk . . . sn, with the kth symbol denoted as sk ∈ Σ for k ∈ {1, 2, . . . , n}.

Letting λ, ω be strings over Σ , we may make explicit the outcome of juxtaposition
also called concatenation:

λ ◦ ω = λ1λ2 . . . λ|λ|︸ ︷︷ ︸
λ

ω1ω2 . . . ω|ω|︸ ︷︷ ︸
ω

.

The kth symbol of λ◦ω can be computed from the indices of λ and ω by considering
the shifting of indices needed to join the head ω to the tail of λ. Letting φ = λ◦ω, the
kth symbol is:

φk =
{

λk if k ≤ |λ|
ωk−|λ| if k > |λ|.

For most string implementations and pseudo code, we use indices of nonnegative
integers starting from 0 used for the first symbol of each string. Therefore, for a string
of length k, the last symbol is referenced by the index k − 1. For a string s, we refer
to the jth element as s[j]. A substring is a contiguous region of the sting denoted as
s[j : k] to indicate the string of symbols s[j] ◦ s[j + 1] ◦ · · · ◦ s[k], meaning that
it is inclusive of indices on both ends. The notation s[j : k) indicates the substring
s[j : (k − 1)] which is not inclusive of k. A prefix of s is any substring of the form
s[0 : j] , for j ∈ {1, 2, . . . |s|}. A suffix is any substring of the form s[k : |s|).

8.1.4 FORMAL LANGUAGES
The concatenation operation provides a way to construct larger strings from smaller
strings. When we consider how to complete the concatenation operation on strings,

8.1 String analysis and cyber data 139

we also consider the empty string, denoted as ε, which serves as both a left and right
idempotent for concatenation. An idempotent leaves the object unchanged; therefore
the following equations hold for all strings λ, ω:

λ ◦ ε = λ.

ε ◦ ω = ω.

Languages and regular expressions
A language over Σ is any subset of Σ∗. A language recognizer is a function, which
given a string, decides (yes/no) if the string belongs to a certain language. Theoretical
computer science is interested in the types of computing machines necessary to
identify languages. One of the simplest machine models is the FSA, which may be
thought of as a finite set of graph vertices called states; one of these vertices will
have a special designation as a start state, and any subset of the vertices will also be
designated as accept states. In addition, there is a state transition rule which is a set of
labeled directional edges emanating from each state. To simplify the discussion, we
continue to describe a deterministic finite automata (DFA), which is a type of FSA
simpler than the non-deterministic variety. For the DFA we use an alphabet Σ to
label edges. In a DFA each vertex is the source of exactly one directed edge labeled
by each symbol of an alphabet. Given a string input, a DFA may decide (yes/no)
to accept it as follows: We place a token on a vertex designated as the start state.
Given a string s, we inspect one symbol at a time and apply the following rule to
move the token to the next vertex: starting from the vertex with the token, we use
the edge labeled with the current symbol to move the token to the next vertex (the
edge is directed). Finally, after the last symbol of the string, we accept the string
as a member of the language if the last vertex transitioned to is designated as an
accept state.

Although simple and limited in memory (by the set of states), a DFA machine
is able to recognize a language as the subset of all strings that it accepts.
The types of languages that DFAs recognize turn out to be the same class
as the non deterministic variety of FSA recognize, and are called the regular
languages. Regular languages are well known to computer users who have used
simple wild card substitutions (eg, ’ls *.py’ to list all the Python programs
in a directory) or formed complicated regular-expression–based manipulation
(eg, sed ’s/\(0[Xx][0-9A-Fa-f]\)/HEX-ADDRESS-FOUND:\1/g). Known more
commonly by their regular expression representations, the regular languages are a
powerful and useful tool for computing. The usefulness of regular expressions is
due to how they can be efficiently compiled into a DFA matcher. It is also possible
to show an equivalence between regular languages, DFA recognizers, and regular
expressions, therefore indicating that these are three ways of discussing the same
thing. Regular expression matching is computationally very efficient and contributes
to the underlying model for most malware signature-detection methods.

140 CHAPTER 8 String analysis for cyber strings

8.2 DISCRETE STRING MATCHING
8.2.1 HASHING
A hash function is a deterministic function which projects a domain of strings
(or keys) into a range of bounded integers. The domain of a hash function is the
space of all strings. However, with the use of an object’s serialization function, we
may extend the domain of a hash function to include objects, data structures, or,
generally, anything which admits to an unambiguous string representation. Originally
developed for information retrieval algorithms such as a hash table implementations,1

the properties which make hash functions effective have become well known and
useful for a number of computational tasks.

A particularly important consideration for a hash function concerns the distri-
bution of range values for a randomly sampled set of keys. In particular, a hash
function is said to be a universal hash function when the hash values of random
samples tend to distribute uniformly over the range space. Notice also that the
domain of a hash function is the set of all strings (infinite), and the range is a
bounded set of integers (finite); therefore, the hash function will also be many
to one. A hash collision occurs when two distinct key values map to the same
integer value, and when a collision occurs in a hash table, extra steps will be
required. Hash functions that are universal are very useful in information retrieval
tasks because they can be analyzed probabilistically to understand the likelihood of
hash collisions.2 Despite the possibility of collisions, hash functions have enormous
practical use because they can be computed efficiently, and in order to deal with
collisions, the designer can select parameters of the hash function, the table, and
the collision resolution strategy in order to tailor the efficient hashing techniques to
particular problems.

Closely related to uniform hash functions are cryptographic hash functions,
which are functions designed to be difficult to invert. A type of cryptoanalysis tech-
nique called frequency analysis, which studies a cryptographic function statistically,
can be used to find the weaknesses of a cryptographic hash function. Therefore,
in order to be secure, a cryptographic hash function must also be a universal hash
function. Cryptographic hashes such as MD5, SHA256, and SHA1 are commonly
used to perform integrity checks of communicated messages. The wide-scale use of
cryptographic hash functions has also taken root in the security community where
hash functions are also used to identify artifacts. It is common to refer to malware,
binary artifacts, and library and reference objects by the 32 hex digits comprising its
MD5 sum.

1A hash table can be used to implement an associative array for organizing a key-value store where a
user may wish to add and remove data dynamically.
2A hash collision occurs when two keys map to the same output value.

8.2 Discrete string matching 141

Birthday party and universal hash function collisions
The range of a hash function is a finite (bounded) set of integers R, but the domain
is an infinite set of strings. Therefore hash collisions are possible, and among a set
of n objects, there is some probability that any two of them will have a common
hash value. For example, if n is greater than |R|, a hash collision is guaranteed (eg,
with probability 1) by the pigeon hole principle. Given a universal hash function, the
question of a collision’s likelihood among n objects arises naturally. This problem is
widely known in probability as the birthday problem. Among n peoples we ask what
is the probability that any two of them have the same birthday? A related question
is how many people n do we need before the probability that two birthdays collide
exceeds a certain value?

To consider the possibilities of a hash collision for universal hash functions we
ask the same question for a set of n keys, or strings, or binary artifacts. Lets fix
MD5 as the universal hash function under consideration. Under the assumption that
the function is universal (ie, the outputs are uniformly distributed), the probability
that any particular string hashes to a given value may be considered to be 1

264 . The
probability that any pair of n strings hash to the same value can be considered with its
complement event; that is, given n distinct strings, we wish to know the probability
that the hash values are all distinct (ie, no collisions). We compute this probability in
the context of universal hash functions for binary artifacts.

Let us assume that we have a random sample of n distinct binary strings (artifacts)
and a universal hash function. Given an arbitrary order of binaries, let event Ek

describe the event that the kth binary artifact hashes to a value different from each of
the previous distinct k − 1 hash values:

Prob(Ek) = Prob(Ek−1)×
(

1− k − 1

264

)
︸ ︷︷ ︸

Avoids previous values

.

With the obvious base case that Prob E1 = 1, letting R be the range of the
universal hash function, we obtain the probability that, among n artifacts, all n
binaries will hash to differing range values with probability:

Prob(En) =
n∏

k=1

(
1− k − 1

|R|
)

. (8.1)

Additionally, we may be interested in the birthday problem; that is, for what value
of n will Prob(En) < κ , implying that, with probability greater than κ , a collision
is found. We now present an approximation method used to solve for such an n. To
approximate these probabilities, we consider the product of exponents

Pn =
n∏

k=1

exp
(
−k− 1

|R|
)

,

142 CHAPTER 8 String analysis for cyber strings

and we notice that the inequality 1− x ≤ exp(−x), for all x ∈ [0, 1], can be applied
term by term to bound Prob(En) by Pn:

Prob (En) < Pn, for every n > 0.

Therefore, with this bound, Pn < kappa indicates that Prob(En) < κ .
Notice that Pn can also rewritten with an exponential sum:

Pn = exp−
(

1

|R|
n∑

i=1

(k− 1)

)
= exp

(
−n(n− 1)

2|R|
)

.

For example, the bound implies that the probability of a hash collision exceeds 1
2

when n is sufficiently large that Pn < 1
2 or

exp
(
−n(n − 1)

2|R|
)

<
1

2
,(

−n(n − 1)

2|R|
)

< log
1

2
, and

n(n− 1) > 2|R| log 2. (8.2)

Therefore, the minimum value of n that satisfies Eq. (8.2) also implies that a hash
collision occurs with probability 1

2 or greater. To approximate such a minimum value
for n, we approximate the left hand side of Eq. (8.2) as n2 and solve the following
test equation:

n2 = 2|R| log(2). (8.3)

When |R| is itself a power of 2, say |R| = 2w, the solution to the test equation (ie,

Eq. (8.3)) is n = 2
w+1

2 log(2). Therefore, the probability of a hash collision for MD5
(where w = 64) exceeds 1

2 when n ≈ 232.5 log(2) or when n is around 4.2 billion
objects. Starting from this value of n, we can determine more a accurate minimum
value for n; however, the described bounds and approximations help us to obtain an
estimate quickly.

Determining a hash collision itself may amount to an important finding for
cybersecurity. For cryptographic hash functions, the ease with which a hash collision
can be found or constructed may be exploited to subvert the integrity of a message.
Generally, an application which uses a universal hash function will also consider the
probability of collisions which is guaranteed when the input space is infinite and
range values are bounded.

8.2.2 APPLICATIONS OF HASHING
With this understanding of hash functions and their inherent limitations due to hash
collisions themselves due to hash functions’ finite range, we next focus on how their
efficiency can be used to study strings that are relevant in cybersecurity.

8.2 Discrete string matching 143

Hash functions are efficient when identifying matching strings. Given that data
and code objects may be represented by strings, a hash function can be used to match
objects as well. Take, for example, a binary executable of unknown origin as M.
Often, the executable file format includes a natural division of code and data into
sections, segments, or pages which we may use to represent M as a list of constituent
string objects M = [m1, m2, . . . , mK]. Moreover these constituent strings may often
be readily broken down further into data (as known data structures are simple to
extract) or code (sections may be have a listing of functions making their extraction
straightforward). Although further resolution of a data object into constituent objects
is typically very powerful and revealing, for illustrative purposes, we need only
consider the first-order division of M into constituent strings [m1, . . . , mK].

An adversary, aware that hashing techniques may be used to identify provenance
in malware, may attempt to obscure the provenance information, but this extra
effort will be costly due to the typical software pattern of code reuse. This inherent
tradeoff faced by the adversary gives rise to the possibility that provenance may be
recovered from binary artifacts such as malware. To detect the presence of code reuse
with hash functions, we present several techniques below.

Bag of hashes, or bag of numbers
Given a universal hash function U (a mapping Σ∗ → R), and an artifact naturally
divided into constituent strings M = [m1, m2, . . . , mK], we may use U to derive a set
called a bag of numbers representing the artifact as RU(M):

RU(M) = {U(m1), U(m2), . . . , U(mK)}.

Using hash function U with range R, an object comprised of K constituent objects is
therefore mapped into a set of RK . This set, the bag of numbers, can be compared with
other bags derived from reference objects. Bags can be compared with the Jaccard
coefficient to measure similarity to previously known objects.

An important caveat to this analysis is the possibility of hash collisions which
would introduce a false sense of similarity. For this reason it’s important to
understand the design goals and properties of the employed hash function U and
under what conditions hash collisions become likely.

This technique may be applied in the study of portable document format (PDF)
based malware. The PDF format defines a tree of constituent objects and stores
these objects as streams (serialized representations). So, letting U be MD5, we
can consider the bag of numbers to identify common objects across multiple PDF
files. Similarly, binary executables are comprised of sections, segments, and pages;
therefore, executables in a given file format may be compared using bag of numbers.
Of particular interest are the strings which express the functions, procedures, and
data objects within an executable. Although function specification strings may be
made more difficult to extract from code, they can also be observed during runtime
by monitoring the execution trace.

144 CHAPTER 8 String analysis for cyber strings

Normalizing bag of numbers
In many settings the use of a hash function is overly sensitive to small but
unimportant modifications within a set of related strings. While we later present
techniques which inherently address small string modifications, we now consider
techniques which compensate for the overly sensitive universal hash functions,
thus retaining the efficiency of hashing. This simple augmentation of the bag
of numbers can broaden its use and also focus its precision tremendously. The
technique presented here can be thought of as a simple bag of words that employs a
string-rewriting function φ prior to the application of the hash function U. The string-
rewriting function can modify strings to reduce variance either by the removal of
noisy elements or the presentation of a string in a standard or canonical form in a
process we refer to as normalizing.

Given a universal hash function U (a mapping Σ∗ → R), a string-rewriting
function φ : Σ∗ → Σ∗, and an artifact naturally divided into constituent strings
M = [m1, m2, . . . , mK], we may use U to derive a set called a normalized bag of
numbers, representing the artifact as RU◦φ(M):

RU◦φ(M) = {U(φ(m1)), U(φ(m2)), . . . , U(φ(mK))}.

We next illustrate these techniques on two functions listed in Table 8.1 and extracted
from a binary executables. The functions are specified in assembly language and are
not identical, but they are structurally similar and functionally related. Letting U be
the MD5 hash function, we consider two functions φPIC and φRIC, which will provide
a means to compute a position-independent code (PIC) normalized bag of numbers,
as well as a a register-independent code (RIC) normalized bag of words. The
selected functions show a case where similarities and matching provide meaningful
conclusions concerning related functions and come with few data manipulations in
addition to the basic hash function.

To illustrate our string-rewriting functions φPIC and φRIC, we select the function
labeled Ispunct, and for each line of code, we attribute positional data (second
column) and register data (third column). These attributes are used to group lines of
code into sets with a common attribute defining the method we use to split function
into constituent parts. Further, while rewriting each line of code, we replace each
item with a parameterized string (Table 8.2).

For each line of code, the function φPIC can be executed by identifying all
hexadecimal numbers (using a regular expression) and extracting them into a buffer.
The distinct extracted numbers, in left to right order, as found in the line of code,
become the attribute for the line of code. Next, to rewrite the line of code, each
distinct hexadecimal number is replaced with a string. For example, we replace the
jth distinct hexadecimal number with string P.j everywhere it occurs in the line of
code. Next, the rewritten lines of code are reordered first by attributes and second by
original index. Finally, the strings with a common attribute are concatenated into
a constituent string. So, for example, function Ispunct is rewritten and grouped
by attribute in Table 8.3; therefore, the function Ispunct will be represented by

8.2 Discrete string matching 145

Table 8.1 Two Functions Expressed in Assembly and
Extracted From the Program “gawk”

Ispunct Isspace

pushq %rbp pushq %rbp
movq %rsp, %rbp movq %rsp, %rbp
cmpl $127, %edi cmpl $127, %edi
ja 0x100021f0f ja 0x100021bcf
movslq %edi, %rax movslq %edi, %rax
movq 229669(%rip), %rcx movq 230501(%rip), %rcx
movl 60(%rcx,%rax,4), %eax movl 60(%rcx,%rax,4), %eax
shrl $13, %eax shrl $14, %eax
andl $1, %eax andl $1, %eax
popq %rbp popq %rbp
ret ret
movl $8192, %esi ; 0x100021f0f movl $16384, %esi ; 0x100021bcf
callq 0x10004bd7a callq 0x10004bd7a
testl %eax, %eax testl %eax, %eax
setne %al setne %al
movzbl %al, %eax movzbl %al, %eax
popq %rbp popq %rbp
ret ret
nopw %cs:(%rax,%rax) nopw %cs:(%rax,%rax)

Functions ISPUNCT and ISSPACE exhibit a high degree of similarity in their
structure. The callq commands indicate that flow of control is transferred to
differing locations where specific actions are performed, and the brevity and
similarity of these functions indicate that they may be wrappers or templates.
Notice there are only a few differences in lines of code, including differing jump
locations at line 4 represented in hexadecimal notation.

[f0, f1, f2] with f0 being the concatenated code of the first 17 lines of Table 8.3 and
refer to the lines of Ispunct without hexadecimal numbers. On the other hand, f1 is
line ja P.0, and string f2 is the string callq P.0. The bag of numbers for function
Ispunct, normalized with φPIC, is shown in Table 8.5.

For each line of code, the function ΦRIC can be executed by identifying all register
addresses and extracting them into a buffer. The distinct register addresses, in left to
right order, as found in the line of code, become the attribute for the line of code.
Next, to rewrite the line of code, each distinct register address will be replaced with
a string: we replace the jth distinct register address with string P[j] everywhere it
occurs in the line of code. Next, the rewritten lines of code are reordered first by
attributes and second by original index. Finally, the strings with a common attribute
are concatenated into a constituent string. So, for example, function Ispunct is
rewritten and grouped by attribute in Table 8.4; therefore, the function Ispunct is
represented by [f0, f1, f2, . . . , f13], with f0 being the concatenation of the first four

146 CHAPTER 8 String analysis for cyber strings

Table 8.2 The Function ISPUNCT With Attributes

ISPUNCT (Lines of asm) Positional Attribute Register Attribute

1 pushq %rbp 0 {rbp}
2 movq %rsp, %rbp 0 {rsp, rbp}
3 cmpl $127, %edi 0 {edi}
4 ja 0x100021f0f 0x100021f0f {}
5 movslq %edi, %rax 0 {edi, rax}
6 movq 229669(%rip), %rcx 0 {rip, rcx}
7 movl 60(%rcx,%rax,4), %eax 0 {rcx, rax, eax}
8 shrl $13, %eax 0 {eax}
9 andl $1, %eax 0 {eax}
10 popq %rbp 0 {rbp}
11 ret 0 {}
12 movl $8192, %esi ; 0x100021f0f 0 {esi}
13 callq 0x10004bd7a 0x10004bd7a {}
14 testl %eax, %eax 0 {eax , eax}
15 setne %al 0 {al}
16 movzbl %al, %eax 0 {al, eax}
17 popq %rbp 0 {rbp}
18 ret 0 {}
19 nopw %cs:(%rax,%rax) 0 {cs, rax , rax}

Each line of code is attributed with various values depending on content. The positional attribute
column identifies a hexadecimal address (if one exists within the line of code) or otherwise
evaluates to zero. The register attribute column identifies the set of registers implemented for
each line of code; these values are indicated with a set whose default value is an empty set.

lines in Table 8.4. The bag of numbers for function Ispunct, normalized with φPIC,
is shown in Table 8.6.

Notice that the resulting set of integers, represented in Tables 8.5 and 8.6 as
hexadecimal strings, are independent of the attribute values and indicate the bag
of numbers for code-independent code groupings and register-independent code
groupings.

With these two normalized bags of words described, we return to the problem of
comparing related functions. In this case, Ispunct and Isspace shown in Table 8.1
are mapped to the PIC-normalized bag of numbers:

RMD5◦φPIC(Ispunct) = [8853573ca3512634642a5f 574d1df 63a,

2dc4564e7ac59eb6c0ab4fb9aff 26bbc,

9679a36898b4fd96f 15936295ea146b5], and

RMD5◦φPIC(Isspace) = [a612737df 118f 1dd73a5dd88fd78ba7e,

2dc4564e7ac59eb6c0ab4fb9aff 26bbc,

9679a36898b4fd96f 15936295ea146b5].

8.2 Discrete string matching 147

Table 8.3 Address-Sensitive Regrouping of Function
Contents for Hashing

ISPUNCT (Lines Organized by Position) Positional Attribute

pushq %rbp

0

movq %rsp, %rbp
cmpl $127, %edi
movslq %edi, %rax
movq 229669(%rip), %rcx
movl 60(%rcx,%rax,4), %eax
shrl $13, %eax
andl $1, %eax
popq %rbp
ret
movl $8192, %esi ; 0x100021f0f
testl %eax, %eax
setne %al
movzbl %al, %eax
popq %rbp
ret
nopw %cs:(%rax,%rax)
ja P.0 0x100021f0f
callq P.0 0x10004bd7a

Notice the parameterized replacement of attribute values, thereby
normalizing away the variability but maintaining the a structural meaning.

The PIC-normalized bags of numbers between the two functions have two
numbers (out of three) in common.

We now display a shortened form of the RIC-normalized bag of numbers:

RMD5◦φRIC(Ispunct) = [1636.48f 1, 1179.62ff , 01f 7.eb04, f 377.9eaf ,

ef 3a.26ab, 0fba.128f , ca2a.08c0, 1760.b11e,

9464.ef 9f , 2991.8ea5, 8eaf .2a6f , 525d.874b,

54cf .176a], and

RMD5◦φRIC (Isspace) = [b9d5.c06f , 1179.62ff , 01f 7.eb04, f 377.9eaf ,

bf 08.8804, 0fba.128f , ca2a.08c0, 1760.b11e,

b7e0.efb6, 2991.8ea5, 8eaf .2a6f , 9dd5.59a2,

54cf .176a].
The RIC-normalized bag of numbers for the two functions has nine numbers

(of 13) matching. Both results show strong similarities, and more importantly, we
illustrate with this example how an analyst (familiar with various data/executable
file formats) may use hash functions to great effect by combining them with data

148 CHAPTER 8 String analysis for cyber strings

Table 8.4 Regrouping Lines of Code by the Register
Groupings

ISPUNCT (Lines Organized by Position) Register Attribute

ja 0x100021f0f

{}
ret
callq 0x10004bd7a
ret
setne P[0] {al}
movzbl P[0], P[1] {al, eax}
nopw P[0]:(P[1],P[1]) {cs, rax , rax}
shrl $13, P[0]

{eax}
andl $1, P[0]
testl P[0], P[0] {eax , eax}
cmpl $127, P[0] {edi}
movslq P[0], P[1] {edi, rax}
movl $8192, P[0] {esi}
pushq P[0]

{rbp}popq P[0]
popq P[0]
movl 60(P[0],P[1],4), P[2] {rcx, rax, eax}
movq 229669(P[0]), P[1] {rip, rcx}
movq P[0], P[1] {rsp, rbp}

The function contents are reorganized for hashing. Notice the
parameterized replacement of registers, thereby normalizing away the
variable while maintaining the meaning with the attribute known.

Table 8.5 ISPUNCT Hashes by Positional Value

Positional Attribute Hash Value

0 8853573ca3512634642a5f574d1df63a
0x100021f0f 2dc4564e7ac59eb6c0ab4fb9aff26bbc
0x10004bd7a 9679a36898b4fd96f15936295ea146b5

normalization functions φ that remove the unimportant variations in data to induce
a common hash. In this way, the technique may be extended generally to many
problems.

Cryptographic hashing and universal hash functions are simplistic, efficient, and
useful for digesting large and complex data objects into a bag of numbers where they
can be compared to a reference set. For large data sets, it’s important to understand the
properties of the underlying universal hashing properties. With additional knowledge
of how unimportant variations in data may be normalized, the normalized bag of
words offers endless possibilities to capture similarity signals in data. However, it’s
not always the case that we have knowledge of how our data should be interpreted,

8.2 Discrete string matching 149

Table 8.6 ISPUNCT Hashes by Register Use Attribute

Register Attribute Hash Value

{} 1636e4a1b173928d704847bde7ec48f1
{al} 11790bdd714acb69d25005272c6562ff
{al, eax} 01f7993fcda73368dbd21eb36ce8eb04
{cs, rax, rax} f377c762ce0a6ca886b668696f659eaf
{eax} ef3a597d462aaa438580218f89bd26ab
{eax, eax} 0fba84064444a0580c0c30844bc9128f
{edi} ca2a4f537d823ddedaa58baa6ad908c0
{edi, rax} 1760137b565cff8d0362f3ffec48b11e
{esi} 9464fee12647af58e837fb0b7a04ef9f
{rbp} 29912154aa22885ccb685f10ff5b8ea5
{rcx, rax, eax} 8eaf278cbeac5b50765b97d9e5842a6f
{rip, rcx} 525db9fa4ef126036667343cbd94874b
{rsp’, rbp} 54cf2569d9d48a75a2bb76131e29176a

and for this reason, it’s important to consider more generally methods for reasoning
about string similarity with few assumptions. We conclude this section with a
discussion of several other techniques that have various degrees of implementation
in cybersecurity practice.

8.2.3 OTHER METHODS
Fuzzy hashing techniques include a large number of approximate techniques,
including context-sensitive hashing, which may be considered a means to derive
natural boundaries in a string by use of context clues within the string. Another
common hashing technique is Bloom filters, often used to determine set membership.

A Bloom filter is a randomized algorithm for testing whether a given object is
a set member, and it is built on top of a set of k independent hash functions (recall
each hash function outputs a bounded integer) which establish a set of bits to set
within a fixed-width byte array. Therefore, if we are checking set membership, we can
determine the bits which would necessarily be set (assuming the object is a member
of the set), and with this, we have a way of accurately refuting the set membership
and checking set membership probabilistically.

Another method which introduces a modulus of continuity to a hashing function
is to consider the histogram or counts over various symbols in the alphabet. These
values have many of the desired reduction properties of a hash function, and they are
sensitive to slight variations arising from string mutations.

Suppose that Σ is the alphabet with k symbols. Given a string s of length n, let

cj =
n∑

i=1

δ(s[i], Σj),

150 CHAPTER 8 String analysis for cyber strings

where δ(x, Σj) is 1 if a given symbol x is equal to the jth symbol from Σ and is
0 otherwise. The histogram hash is H : Σ∗ → [0, 1]k : s → 〈 cj

n 〉kj=1, where n =
|s|. This hash can be used to create a k-dimensional probability vector projection
of a given string. When a string s is modified to string s′ via a few mutations or
otherwise minor changes, we can expect H(s), H(s′) vectors to be close in distance
as well. A final heuristic method which may prove to be very useful for the analysis
of cyber data is the method called winnowing which was developed for detecting
code plagiarism.

Additionally, many subgraph matching and approximate matching techniques
exist for analyzing control flow structures in code, and we forego the discussion of
those methods here.

8.3 AFFINE ALIGNMENT STRING SIMILARITY
In some cybersecurity-data–driven problems, we wish to reason about data for
which we may have no or little information concerning how it is to be formally
interpreted. In this scenario, we may be analyzing a firmware program within a
poorly documented file format, or we may be reverse-engineering a program that uses
some nonstandard data structures and function calling conventions. Often times these
problems may focus on finding patterns which indicate data structures, objects, or the
entry/return structures of function calls. To consider these problems, we generally
imagine strings with common prefixes and suffixes but having interesting forms
of variations in-between, and to address this we broaden our approach to consider
string-alignment techniques from biology. In this section, we consider several
important measures from bioinformatics and their application to code comparison
by focusing on the Needleman-Wunsch global affine alignment algorithm. We
summarize the common optimization technique known as dynamic programming
which underlies the major string similarity measures, including Levenshtein distance,
Needleman-Wunsch, and Smith-Waterman similarities. The underling optimization
concept is summarized in the principle of optimality which is used to construct
dynamic programming implementations for optimal alignments. We construct the
Needleman-Wunsch alignment algorithm to illustrate dynamic programming and
show how it may be used to explore the functions of a binary program, such as would
be necessary in a reverse-engineering task.

8.3.1 OPTIMALITY AND DYNAMIC PROGRAMMING
In optimization problems where a solution can be built or synthesized from the
solutions of smaller subproblems, a particularly interesting property has been
discovered called the principle of optimality. As an example of a problem whose
solution can be synthesized from like or similar subproblems, consider the problem
of determining a minimal distance path through a graph starting from a vertex A and
ending at vertex Z. Because a minimal distance path may itself go through some

8.3 Affine alignment string similarity 151

intermediate point (P), we may ask how the problem of minimizing a path between
any of the two endpoints and the intermediate point P may relate to the problem of
minimizing a path from A to Z. Naturally, these problems are directly related in that
the optimal solution, the minimal distance path from A to Z, will also have to be
constructed from optimal paths of subproblems in particular for any pair of verities
named in the solution. Let Opath(X, Y) be the optimal path from vertex X to vertex
Y, listed as a string over vertices. If the optimal solution from A to Z computed as
Opath(A, Z) includes a vertex P, then we reason that there is a prefix relation among
the solutions to subproblem Opath(A, P) and Opath(A, Z). This reasoning maybe
supported by exploring the logical possibility that P is found in Opath(A, Z) and
the optimal path Opath(A, P), somehow doesn’t match a prefix of Opath(A, Z), then
would there not be a more optimal path from A to Z? The previous argument can form
a proof by contradiction that the optimal solutions must be a synthesis of solutions to
related subproblems.

When an optimization problem can be seen as a synthesis of optimal solutions for
subproblems, the principle of optimality applies. The principle of optimality leads to
a solution in the form of dynamic programming where solutions are constructed for
the most trivial subproblems first and those solutions are extended with branch and
bound to larger problems.

8.3.2 GLOBAL AFFINE ALIGNMENT
We begin by describing the problem and related subproblems. We then show the
principle of optimality and define a recursion to solve the problem as a Needleman-
Wunsch algorithm. Given two lists of integers L1, L2 of length n, m, we imagine an
edit procedure which turns L1 into L2. We let the alphabet Σ be a bounded set of
integers including all the symbols of L1 and L2. We envision a cursor position in both
L1 and L2 at position (i, j), with 0 ≤ i < n, 0 ≤ j < m, and for each cursor position,
one of three edits operations can be performed:

• Mutate, modifying L1[i] to match that of L2[j] and increment i, j
• Insert, moving cursor i ahead one position leaving j constant
• Delete, moving cursor j ahead one position leaving i constant

When a mutate operation is performed, a cost depending on the two characters will
be assessed. All costs are parameterized by a substitution matrix S : Σ × Σ → R

as S(L1[i], L2[j]). After a mutate operation, the cursor will be updated from (i, j) to
(i+ 1, j+ 1).

When an insert operation is performed, it will cost either ε, if an insert was
previously performed, or otherwise δ. This differing cost is intended to model a
onetime cost of δ (usually large in magnitude) for initializing a cut-and-paste and cost
ε (usually smaller in magnitude) for extending the cut-and-paste patch of symbols.
Together, these two parameters provide a linear or affine function y = εx+ δ which
gives our problem its name. Notice that, in Levenshtein distance, we would have
ε = δ.

152 CHAPTER 8 String analysis for cyber strings

Similarly, when a delete operation is performed, it will cost either ε, if a delete
operation was previously used, or δ otherwise. A deletion maybe thought of as an
insertion for the other string.

Given the two strings and these edit operations, the problem of global affine
alignment is to modify L1[i] into L2[j] with a maximum reward. To be clear, we
will have δ < ε < 0 as cost penalties, and S(σ , σ) ≥ 0 for σ ∈ Σ . Further, we will
require that S is symmetric and S(σ , σ) ≥ S(σ , λ) for any σ , λ ∈ Σ . The solution
will be comprised of both a score which is optimal and a sequence of edit operations
which will modify L1 into L2 in order to attain the optimal score.

To organize subproblems, we consider the substrings of L1, L2 as L1[a1 : b1] and
L2[a2 : b2] with ai ≤ bi. To establish the principle of optimality, we need to show
that, if an optimal global affine alignment between L1, L2 also forms an alignment
between substrings L[a1 : b1] and L[a2 : b2], then the alignment of L[a1 : b1] and
L[a2 : b2] must also be optimal. This optimization principle can be established with
a proof by contradiction argument similar to that of the minimal path problem.

In Algorithm 8.1 and supporting routines Algorithms 8.2–8.4, we outline a global
affine alignment algorithm known as Needleman-Wunsch for any two sequences of
integer values L1 and L2. Throughout, the algorithms will assume a setting for δ and
ε and S.

ALGORITHM 1 NEEDLEMAN-WUNSCH ALGORITHM
Data: Given L1, L2 ordered lists of integers of length n, m, parameters ε, δ, and S are given.
Result: Global alignment similarity score,
InitializeBoundaryConditions(m, n) % to initialize M, E, F, PM , PE, PF
for (i, j) in IndexOrder (m,n) do

vM = max(M[i− 1, j− 1], E[i− 1, j− 1], F[i− 1, j− 1])

PM[i, j] =

⎧⎪⎨
⎪⎩

(i− 1, j− 1) if vM = M[i− 1, j− 1]
(i, j− 1) if vM = E[i− 1, j− 1]
(i− 1, j) if vM = F[i− 1, j− 1]

M[i, j] = vM + S(L1[i− 1], L2[j− 1]) % Similarity contribution
vE = max(M[i− 1, j] − δ, E[i− 1, j] − ε, F[i− 1, j] − δ)

PE[i, j] =

⎧⎪⎨
⎪⎩

(i− 1, j− 1) if vE = M[i− 1, j] − δ

(i, j− 1) if vE = E[i− 1, j] − ε

(i− 1, j) if vE = F[i− 1, j] − δ

E[i, j] = vE
vF = max(M[i, j− 1] − δ, E[i, j− 1] − δ, F[i, j− 1] − ε)

PF[i, j] =

⎧⎪⎨
⎪⎩

(i− 1, j− 1) if vF = M[i, j− 1] − δ

(i, j− 1) if vF = E[i, j− 1] − δ

(i− 1, j) if vF = F[i, j− 1] − ε

F[i, j] = vF
end
return max(M[n, m], E[n, m], F[n, m])

At the core of Needleman-Wunsch algorithm are the decisions about which edit
history advances the cursor position from (0, 0) to (i, j) in the optimal manner. At
each cursor position, various optimal histories are considered in correspondence with
the three edit operations. Notice that Algorithm 8.3 specifies that the cursor positions

8.3 Affine alignment string similarity 153

are explored as a wavefront starting from (0, 0), and in such a way that prior to
the exploration of (i, j), M, E, and F are computed for cells (i − 1, j − 1), (i, j − 1),
and (i − 1, j). At each cursor position, Algorithm 8.1 explores edit histories, but
advances the histories that are scoring optimally, thereby implementing a branch-
and-bound strategy cutting out the considerations of a vast number of edit histories at
each step. The algorithm cuts these suboptimal possibilities because of the principal
of optimality which essentially guarantees that the histories which are cut cannot in
some way contribute to an overall optimal solution to the full problem.

To initialize the recurrence, the following boundary values are set in
Algorithm 8.2.

ALGORITHM 2 INITIALIZE BOUNDARY CONDITIONS
Result: Initialize data M, E, F, PM , PE, PF for Needleman-Wunsch.
Data: Given lengths m, n, and parameters δ, ε,
M = Zeros(n, m), E = Zeros(n, m), F = Zeros(n, m),
PM = Zeros(n, m), PE = Zeros(n, m), PF = Zeros(n, m)

for i in [1, . . . , (n+ 1)] do
E[i, 0] = −δ − ε(i− 1)

PE[i, 0] = (i− 1, 0)% Set the back-pointer
F[i, 0] = −∞
M[i, 0] = −∞

end
for j in [1, . . . , (m+ 1)] do

F[0, j] = −δ − ε(j− 1)

PF[0, j] = (0, j− 1) % Set the back-pointer
E[0, j] = −∞
M[0, j] = −∞

end
M[0, 0] = 0
B[0, 0] = 0
E[0, 0] = −∞
F[0, 0] = −∞

To create an ordering over the array that guarantees that M, E, and F are computed
for cells (i − 1, j − 1), (i, j − 1), and (i − 1, j) prior to (i, j), we create a wavefront
ordering using the following Algorithm 8.3. This ordering can be used in all of the
dynamic programming alignment algorithms.

ALGORITHM 3 INDEX ORDER
Data: Given lengths m, n.
Result: An array index order or itinerary listing indices for dynamic programming.
order = []
for d in [1, . . . , (m+ n+ 1)] do

for s in [max(1, d − (m− 1)), min(d, n)] do
order.append([d − s, s])

end
end
return order

154 CHAPTER 8 String analysis for cyber strings

Finally, we provide a simple edit-history recovery method which operates on the
values in M, E, and F in order to recover an edit transcript. The transcript is recovered
from a traceback of optimal values in the array indices starting from (n, m) and going
back to (0, 0). The steps are sketched in Algorithm 8.4.

ALGORITHM 4 TRACEBACK
Data: Given arrays M, E, F, PM , PE, and PF .
Result: Traceback for the optimal solution given as an edit transcript path listed as coordinates.
v = max(M[m, n], E[m, n], F[m, n])
path = []
i, j = (n, m)

path.append((i, j))
while (i, j) �= (0, 0) do

v = max(M[i, j], E[i, j], F[i, j])

i, j←

⎧⎪⎨
⎪⎩

(i− 1, j− 1) if v = M[i, j]
(i, j− 1) if v = E[ij]
(i− 1, j) if v = F[i, j]

path.append((i, j))
end

8.3.3 EXAMPLE ALIGNMENTS
To normalize two functions for comparison, we define a tokenization technique. Each
token is compared to dictionary keys which map to integer values when they have
been previously observed. If they have not been observed, new integers distinct from
all the other values of the dictionary are assigned to them (Table 8.7).

The normalized view of our functions are ispunct represented by the following
sequence: 0 1 2 3 1 13 120 101 121 15667 26 101 8 2 15668 52 31 9 71 31 8 110 21
111 1017 21 112 90 21 44 1 45 9 4583 10 29 97 22 21 21 98 66 99 66 21 44 1 45 46
47 8 8; and isspace represented by the following sequence: 0 1 2 3 1 13 120 101 121
242 26 101 8 2 243 52 31 9 71 31 8 110 21 111 244 21 112 90 21 44 1 45 9 245 10
29 97 22 21 21 98 66 99 66 21 44 1 45 46 47 8 8.

Both sequences have length 52.
The global alignment can be represented by the view

!"#$".;(<‘;()#aU@*h@)162n63{6M"N*h+>$766%c&c6M"NOP))
|||||||||X||||X|||||||||X||||||||X||||||||||||||||||
!"#$".;(<W;()#XU@*h@)162Y63{6M"N*Z+>$766%c&c6M"NOP))

In this edit view, we can see the symbols which align with a pipe symbol linking
them (ie, “—”), when mutations are introduced an “X” represents the edit which took
place.

We include a few additional function comparisons which show a more interesting
ability to create and extend a gap in order to accommodate additional matching later
on in the string. Take, for example, the two functions lookup and remove-symbol
with the following alignment:

8.3 Affine alignment string similarity 155

Table 8.7 Two Functions and Their Dictionary-Normalized Integer
Representations

ISPUNC Normalized ISSPACE Normalized

pushq %rbp 0 1 pushq %rbp 0 1
movq %rsp, %rbp 2 3 1 movq %rsp, %rbp 2 3 1
cmpl 27, %edi 13 120 101 cmpl 27, %edi 13 120 101
ja 0x100021f0f 121 15667 ja 0x100021bcf 121 242
movslq %edi, %rax 26 101 8 movslq %edi, %rax 26 101 8
movq 229669(%rip),
%rcx

2 15668 52 31 movq 230501(%rip),
%rcx

2 243 52 31

movl
60(%rcx,%rax,4),%eax

9 71 31 8 110 21 movl 60(%rcx,%rax,4),
%eax

9 71 31 8 110 21

shrl 3, %eax 111 1017 21 shrl 4, %eax 111 244 21
andl, %eax 112 90 21 andl , %eax 112 90 21
popq %rbp 44 1 popq %rbp 44 1
ret 45 ret 45
movl 192, %esi 9 4583 10 movl 6384, %esi 9 245 10
callq 0x10004bd7a 29 97 callq 0x10004bd7a 29 97
testl %eax, %eax 22 21 21 testl %eax, %eax 22 21 21
setne %al 98 66 setne %al 98 66
movzbl %al, %eax 99 66 21 movzbl %al, %eax 99 66 21
popq %rbp 44 1 popq %rbp 44 1
ret 45 ret 45
nopw %cs:(%rax,%rax) 46 47 8 8 nopw %cs:(%rax,%rax) 46 47 8 8

!"#$"!&!’!R!(#-&>Q#)RJNNS]U)#&-#R=*$xJpp>)#)(<,(KˆU(p_HKL(#((A((B‘,RC
(Za#:(-#&=#
|||||||||||||||X|||| X|X|||X||X|||||||||||X||X|X|X| XXX|X
XX|X|||||X||
!"#$"!&!’!R!(#-’>Q#)---&SvU)#’-#&=*$xJpp>)#)R<,RKwURp----------x:),C
(&Zy#:(-#’=#

RW>v766--------------Z--------a#r(---’#’)M(MRM’M&M"NOP))
X|||||| | X|X| X|X||||||||||||| ||
&W>v766BzKL(#(R#R(A((Z{J,,p|R}U#H()#)R#()M(MRM’M&M"NO-))

This alignment, represented in two alignment rows of 80 symbols each, reveals

that the algorithm with δ, ε = −10,−1, and S(a, b) =
{

10ifa = b

0o.w.
, can introduce

sizable gaps (on both sides) in order to preserve string matching such as what we see
early on in the head, as well as the tail.

When we reconsider the alignment with δ, ε = −50,−10, we get a slightly
different answer which is likely to use mutation:

156 CHAPTER 8 String analysis for cyber strings

!"#$"!&!’!R!(#-&>Q#)RJNNS]U)#&-#R=*$xJpp>)#)(<,(KˆU(p---------------
_HKL(#((A((B
|||||||||||||||X|||| X|X|||X||X|||||||||||X||X|X|X|
XXXXXXXXXXXX
!"#$"!&!’!R!(#-’>Q#)---&SvU)#’-#&=*$xJpp>)#)R<,RKwURpx:),C(&Zy#:(-#’
=#&W>v766BzK

‘,RC(Za#:(-#&=#RW>v766Za#r(’#’)M(MRM’M&M"NOP))
XXXXXXXXX|XXXXXXXXXXXXXXXXXX|X||||||||||||| ||
L(#(R#R(A((Z{J,,p|R}U#H()#)R#()M(MRM’M&M"NO-))

This simple example with various affine alignment parameters shows that the
method is flexible and able to accommodate a large number of similarity concepts.
In particular, it forms a demonstration that alignment algorithms are valuable
computational tools capable of identifying various similarity notions in comparable
objects.

8.4 SUMMARY
Strings are common in cybersecurity data. String data in cybersecurity problems are
usually formal encodings of data, objects, or functions. Due to large volumes of data,
efficient techniques for analyzing strings are needed. Cryptographic and universal
hash functions have also been utilized for their efficiencies; however, it’s important
to understand both their properties and limitations concerning the possibility of hash
collisions. We present several examples of how hash functions may be used to find
common objects with the bag of numbers technique. The bag of numbers technique is
extended with the normalized bag of numbers to retain the efficiencies and precision
of hashing but address the effects of noise patterns in data.

In the context of reverse engineering and code analysis, where little or nothing
is known about the code’s provenance, the alignment algorithms offer distinct value
in finding pattern motifs, such as calling conventions, or in identifying commonly
occurring structures. In the design of protocols, we often hear the analogy that signals
can be constructed like trains (a sequence of engines and cars comprise a train),
and we may expect common patterns and sequences in particular in the header and
trailer sections. So, perhaps one way to consider the utility of alignment algorithms
is that it can do well in matching such preserved patterns and identifying the variants.
The Needleman-Wunsch algorithm can be used to determine motifs and sources of
variations even when we know little about its origin or history.

	String analysis for cyber strings
	String analysis and cyber data
	Cyber Data
	Modes of analyzing cyber data
	Alphabets and Finite Strings
	Formal Languages
	Languages and regular expressions

	Discrete string matching
	Hashing
	Birthday party and universal hash function collisions

	Applications of Hashing
	Bag of hashes, or bag of numbers
	Normalizing bag of numbers

	Other Methods

	Affine alignment string similarity
	Optimality and Dynamic Programming
	Global Affine Alignment
	Example Alignments

	Summary

