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Exploit development tutorial - Part Deux 

Karthik R, Contributor

 

Read the original story on SearchSecurity.in. 

The previous installment of this exploit development tutorial covered handy tools that 
can be used to write a basic Perl exploit. Now it’s time to get the background knowledge 
required for exploit writing. Basic information about arrangement of pointers and 
memory is critical for this. 

Process memory contains various aspects dedicated to certain activities. The instruction 
pointer lies in the memory’s code segment, whereas buffers can be found at the data 
segment. The stack segment has stack pointers that help us directly access stacks using 
regular functions like PUSH and POP operations. 
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As seen in the above diagram, the memory is divided into two parts between addresses 
0x00000000 and 0xffffffff. The first half goes to the user space, whereas the second 
belongs to the kernel space. As we have seen earlier in our exploit development tutorial, 
there will be an overflow when a program crashes. As the “space for user variable” 
gradually overflows, base pointers and instruction pointers get overwritten. Once we 
confirm (with the help of a debugger) that the instruction pointer is overwritten by user 
values, we can code an exploit to execute data. 

With this brief background, let’s move on to the shell coding aspect of exploit writing. 
Shell codes can be auto generated using the Metasploit framework’s msfpayload 

http://searchsecurity.techtarget.in/tutorial/Exploit-development-tutorial-Part-Deux
http://searchsecurity.techtarget.com/definition/exploit
http://searchenterpriselinux.techtarget.com/definition/Perl
http://searchenterpriselinux.techtarget.com/definition/kernel
http://searchsecurity.techtarget.com/answer/What-is-the-relationship-between-shellcode-and-exploit-code
http://searchsecurity.techtarget.in/definition/Metasploit-Project-Metasploit-Framework


P a g e  | 2 

 

  hhttttpp::////sseeaarrcchhsseeccuurriittyy..tteecchhttaarrggeett..iinn//ttuuttoorriiaall//EExxppllooiitt--ddeevveellooppmmeenntt--ttuuttoorriiaall--PPaarrtt--DDeeuuxx  

module. The following screenshot of our exploit development tutorial shows how you 
can use msfpayload to generate shell codes. 

 

As we can see, there are commands like: 

Msfpayload windows/exec CMD=calc EXITFUNC=she R| ./msfencode –t Perl –e 
x86/alpha_upper 

In this part of our exploit development tutorial, we call the msfpayload module and get 
a Windows executable command. Here, it’s the calculator. We also specify the exploit’s 
exit type as S.E.H. This result is piped to msfencode, which strips the shellcode of bad 
characters. The –t attribute tells the target language, which is Perl in this case. The –e 
attribute tells the type of encoding; x86/alpha_upper in this case. 

The shellcode for Perl script gets returned to the screen as the contents of my $buf in 
Backtrack 5. We can copy paste this code in our Perl script for testing. This is very trivial 
shellcode. A shellcode can be implemented to install a Trojan or backdoor to your 
system — a malicious attack — to exploit vulnerabilities and steal data. 

After we write a Perl script and test it as part of our exploit development tutorial, we 
have to rewrite it for the Metasploit framework. Metaploit requires knowledge of the 
Ruby programming language, since the whole framework was rewritten in Ruby. As part 
of our exploit development tutorial, we have to now examine how to integrate custom 
exploits for the Metasploit framework. 

Let’s look at the Metasploit exploit prototype’s basic structure in the following 
screenshot. 

http://searchsecurity.techtarget.in/tutorial/Backtrack-5-PDF-tutorial-compendium-A-pen-testers-ready-reckoner
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As you can see, the code specifies the requirement of msf/core. The next line has the 
specification for the class of the exploit. Since this is a remote exploit on a TCP server, 
we have included it in the remote category with a sub-category of TCP. Subsequently, 
we specify information about the exploit that a user can see. This information includes 
the exploit’s name, description, author, version and platform. We also get to specify bad 
characters, options to be set for an exploit’s efficient working, and then write the exploit 
script in Ruby. 
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This section of our exploit development tutorial describes the exploit’s actual working. 
This is unlike the previous section, which updated and categorized the information. 

In this part of our exploit writing tutorial, we will define the exploit, and connect to 
exploit. We specify the exploit string which is a combination of header, junk, eip, nops 
and payload. The payload is taken from the various available payloads in the Metasploit 
framework. The advantage of this functionality is to use various payloads like vnc 
injection and meterpreter shell as and when required, instead of leaving the exploit 
non-flexible to other scenarios by explicitly writing the payload. This exploit works 
seamlessly, without the victim aware of being spawned by the attacker. 

Now let’s examine this working exploit in the Metasploit framework, which is added to 
the Windows/misc directory, as vulnserver. I assume the reader has gone through the 
msf tutorial compendium before reading this section. Here is the live demonstration of 
a working exploit ported to Metasploit. 

Step 1: Use the exploit from the location with: use windows/misc vulnserver 

This step loads the exploit. It takes you into the exploit environment. 

Step 2: Check out the options with: show options 

Following this, set the RHOST to the target system shown in the figure. 

 

http://searchsecurity.techtarget.com/definition/payload
http://searchsecurity.techtarget.in/tip/Metasploit-tutorial-part-2-Using-meterpreter
http://searchsecurity.techtarget.in/tutorial/The-Metasploit-Framework-Tutorial-PDF-compendium-Your-ready-reckoner
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Step 3: Exploit the target and confirm exploit 

This screenshot demonstrates the working exploit. It also confirms the target system’s 
compromise (IP address is 192.168.13.130). 

To summarize, we have seen various tools like metasploit’s pattern create, offset and 
pescan modules as part of this exploit development tutorial. We also witnessed the 
SPIKE fuzzer in action, as well as examined how to write exploits in PERL and port 
exploits by scripting in Ruby. It’s now time for you to start adding your own exploits to 
the Metasploit framework.  

>>Read the first tutorial in this series on basic script writing here<< 

 

About the author: Karthik R is a member of the NULL community. 
Karthik completed his training for EC-council CEH in December 2010, 
and is at present pursuing his final year of B.Tech. in Information 
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You can subscribe to our twitter feed at @SearchSecIN. Read the original story on 

SearchSecurity.in.
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More Tutorials 

 Comprehensive tutorials for the infosec pro 
 Metasploit tutorial part 1: Inside the Metasploit framework 
 BackTrack 5 tutorial Part I: Information gathering and VA tools 
 What is Wireshark? 
 Burp Suite Guide: Part I – Basic tools 

 

http://searchsecurity.techtarget.in/tutorial/Comprehensive-tutorials-for-the-infosec-pro
http://searchsecurity.techtarget.in/tip/Metasploit-tutorial-part-1-Inside-the-Metasploit-framework
http://searchsecurity.techtarget.in/tip/BackTrack-5-tutorial-Part-I-Information-gathering-and-VA-tools
http://searchsecurity.techtarget.in/definition/Wireshark
http://searchsecurity.techtarget.in/tutorial/Burp-Suite-Guide-Part-I-Basic-tools

