
118     Digital Identity Management 

authentication, the HTTPS protocol is used; this protocol is also vulnerable 
to MITM attacks, as seen in section 3.2.5.3. 

3.2.4. Biometric authentication systems 

3.2.4.1. Definition and principles of biometry 

Passwords and tokens may be characterized, respectively, as “what the 
user knows” and “what the user possesses”. Biometry represents “what the 
user is”, but also covers “what the user can do”. The aim of biometry is to 
authenticate an individual based on one or more physical or behavioral 
characteristics.  

A variety of biometric methods may be used in authentication protocols: 
fingerprint or handprint analysis, retina or iris scans, signature analysis, 
facial recognition, etc. The identity of a person may be verified by 
comparing the obtained reading with a model stored in a database consulted 
by the authentication server. Two different approaches may be used: 

– verification of a nominative reading, i.e. using a single database entry 
with a known identifier (1:1 comparison); 

– identification of an anonymous reading, tested for all of the samples in 
the database (1:N comparison). 

In both cases, if the correspondence between the reading and the sample is 
judged to be sufficient, the identity of the user is considered to be verified. The 
degree of correspondence is evaluated by a mathematical analysis that defines 
an acceptance threshold above which the identity is verified. A number of 
organizations have worked on the standardization of biometric data; in 
addition to the  International Organization for Standardization (ISO) and the 
International Electrotechnical Commission (IEC), these include the  National 
Institute of Standards and Technology (NIST), which has established the 
Common Biometric Exchange Formats Framework (CBEFF) standard, 
defining the digital format used to exchange biometric data [NIS 04]. 

By construction, biometric authentication can only operate in a 
symmetric model. The essential difference from the notion of a password 
lies in the personal, non-secret, and supposedly non-modifiable and non-
imitable nature of the data. The fact that biometry is based on individual 
characteristics means that “authentication” ceases to be the most appropriate  



Authentication Systems     119 

term; in reality, biometry is used for identification, and the individual 
declares who they are using biometric modalities. This avoids the need to 
memorize information, something that represents one of the major 
drawbacks of password authentication. Moreover, the characteristics of 
biometry guarantee natural association between the supplied information 
(the modality) and the identity of the user.  

There are, however, a number of problems involved in the use of 
biometric authentication systems. In technical terms, biometric modalities 
evolve, and in some cases, can be easily imitated. In economic terms, 
biometric authentication systems require the use of dedicated reading 
equipment, which comes at a price. Finally, the use of these systems raises 
ethical concerns: fingerprinting is already considered as an attack on privacy 
in certain circles, and systems that go even further, such as smart corridors 
(developed by Thalès in 2008), which analyze people’s walking movements 
in order to detect “suspicious” behavior patterns, are liable to generate 
considerable opposition.  

3.2.4.2. Limitations of biometric authentication systems 

In this section, we shall concentrate on the technical limitations of 
biometric systems, which take two forms. 

Biometric modalities are an integral part of human bodies or behaviors, 
meaning that they are necessarily subject to evolution over time and to the 
hazards of everyday life – in other words, to change. A fingerprint may 
deteriorate, a voice may be altered by a person’s state of health, and faces 
change over time. This means that the presented modality may be refused, 
even if the individual is who they claim to be. Moreover, in cases where an 
individual is the victim of severe physical trauma (loss of a finger or hand, 
detached retina, damage to the eyeball, damage to vocal cords, etc.), these 
identification elements cannot be replaced: unlike passwords, which can be 
changed as often as necessary, the affected biometric modality will need to 
be substituted for another same type, wherever possible. This is naturally 
limited, for example, to ten modalities for fingers, two for the eyes, one for 
the voice, handwriting, face, etc. This is a significant limitation, and certain 
precautions need to be taken in defining a modality acceptance threshold.  

Furthermore, it is generally possible to imitate biometric modalities, 
although the quality of imitations and their subsequent ability to trick an  
 



120     Digital Identity Management 

identification system is variable. Although it is not possible, in practice, to 
modify one’s physiognomy or behavior in order to resemble another person 
exactly, it is possible to produce an imitation using a sample retrieved by the 
attacker [MAT 02]. This may be indirect (fingerprint collection, voice 
recording, photography of a face, etc.) or direct and invasive (amputation of 
a finger, removal of an eye, etc.). 

For this reason, biometric readers use a set of countermeasures. One of 
the main methods used is liveness detection, which aims to guarantee a 
genuine link between the presented modality and the individual in question. 
In the case of fingerprints, this method allows the detection of prosthetics or 
false fingers, and even amputated digits (via a measurement of blood 
pressure or natural perspiration, for example). A state of the art of liveness 
detection is presented in [SIN 11]. 

These considerations show that the level of security provided by 
biometric authentication depends largely on the quality of the biometric 
reader. The use of individual physical modalities is not sufficient in order to 
design a faultless authentication system, and should be combined with other 
authentication factors in order to produce a strong solution.  

3.2.5. The TLS protocol 

Password systems, whether static or dynamic, and biometric systems are 
fundamentally symmetrical, i.e. based on preliminary sharing of a secret.  

TLS [RFC 08] is based on PKIs (see section 3.1.4.2), and therefore uses 
an asymmetric architecture. This authentication method uses the principles 
of asymmetric cryptography, i.e. the complementarity between a private key, 
never transmitted over a network, and a public key, linked to the identity of 
the user via an X.509 certificate. TLS is therefore different from all of the 
other authentication systems presented above, and is currently a fundamental 
protocol for network security. 

3.2.5.1. Definition and principles of the TLS protocol 

The TLS protocol, formerly known as Secure Sockets Layer (SSL), was 
developed by Netscape in the 1990s. The protocol is situated between the 
transport layer and the application layer, providing an additional security  
 



Authentication Systems     121 

layer for the protection of application data. This is the manner in which the 
protocol is generally used: the TLS protocol uses an encrypted channel to 
add security for all application-level protocols (File Transfer Protocol (FTP), 
HTTP, Simple Mail Transfer Protocol (SMTP), etc.), with no 
interoperability constraints. It requires a reliable connection at transport 
level, such as the TCP protocol. By default, application-level protocols 
exchange data in unencrypted format, creating a number of risks; the use of a 
standardized, interoperable protocol offering confidentiality and data 
integrity is therefore highly recommended, something that goes a long way 
to explaining the success of TLS. 

The TLS protocol allows us to establish the following security services 
between two entities in a network: 

– data confidentiality, obtained by creating a secure tunnel between the 
client and the server, in which data are encrypted using a symmetric 
cryptography algorithm, such as RC4 or AES. 

– data integrity via the calculation of a message authentication code 
(MAC) for each exchanged fragment of application data. This is generally 
carried out using a HMAC [RFC 97] algorithm, based on classic hash 
functions such as MD5 or SHA-1. 

– replay protection by adding a sequence number, used in the calculation 
of the MAC. 

– simple or mutual authentication using X.509 digital certificates. 

The TLS protocol has been subject to a number of security analyses, such 
as [PAU 99] and [HE 05], which guarantee its robustness. Generally 
speaking, the only problem with mutual TLS authentication lies in the 
trustworthiness of PKIs, and TLS cannot be overcome by any classic forms 
of attack. However, it is not widely used, as it requires users to manage their 
own certificate. Simple authentication, where the server is authenticated to 
the client, is generally preferred, as the client is then able to authenticate 
using another method (the classic “username/password” combination, in 
most cases), benefitting from the secure tunnel that ensures the 
confidentiality and integrity of exchanges at application level. This approach 
remains very different from mutual authentication, where a single protocol is 
used to authenticate two entities to each other.  



122     Digital Identity Management 

To illustrate this difference, let us consider the classic case, used by most 
banks, where users are authenticated using a password once the server has 
been authenticated and the TLS tunnel established. Eavesdropping attacks 
will not be possible in this case, and brute force or dictionary attacks will 
also be invalid, in terms of identity theft, due to the limited number of 
authorized authentication attempts. However, phishing attacks work well in 
this context: unsuspecting users will not think to check whether or not a TLS 
session has been established, and are therefore susceptible to provide their 
details to an attacker. 

3.2.5.2. Digital identity in the TLS protocol 

The digital identity model used in TLS is unlike the classic paradigms 
used in symmetric models and requires more detailed consideration. 

Currently, TLS authentication is based almost exclusively on the use of 
X.509 certificates. This means that the digital identity of an individual or a 
machine is entirely represented by the certificate. The main (but not the sole) 
advantage of this approach is that a denomination (the Common Name, 
usually abbreviated to CN, for example the uniform resource locator (URL) 
of a server or a user name) is linked to an asymmetric public key. The entity 
holding the certificate therefore also holds the associated private key, which 
is used, without being transmitted, to prove the entity’s status as the 
legitimate holder of the certificate. 

In accordance with the PKI model, certificates are obtained on request 
from a recognized CA. Certificates generated by these authorities carry a 
digital signature, preventing third parties from modifying the contents of the 
certificate, which would invalidate the signature. Security is thus dependent 
on the solidity of the hashing function used for the signature, and 
weaknesses in this element may lead to collision problems between 
certificates, as in the case of the MD5 function [STE 07]. In the case of a 
server certificate, verification involves the following steps:  

– verification of the validity date of the certificate; 

– verification of the trustworthiness of the CA. Given that a CA may 
delegate certificate generation to other organizations, the verification process 
requires verification of the certificates of the full chain of CAs involved in 
certification until a recognized CA, predefined by the verifying entity, is  
 



Authentication Systems     123 

found. For a user verifying the certificate of a Web server, for example, the 
root CA must feature in a list stored by the browser; 

– verification of the digital signature of the certificate using the public 
key of the CA. This involves decrypting the digital signature using the CA’s 
public key, and calculating the hash of the certificate using the same function 
used by the CA in producing the signature, typically MD5 or SHA-1. If the 
two values are equal, then the signature is verified. 

Once these three stages have been successfully passed, a server certificate 
will be considered valid. However, an additional step is required to avoid 
vulnerability to MITM attacks, and it is surprising that this step is not 
explicitly included in the TLS protocol. This step involves verification of the 
server domain name, which is compared to the distinguished name (DN) of 
the supplied certificate. 

Note that this final verification is impossible in the case of a client 
certificate. However, clients are required to produce a digital signature for 
certain data exchanged during the establishment of a TLS session, in order 
for the server to ensure that the user holds the private key associated with the 
public key concerned by the certificate. 

Other PKI models may be envisaged for more specific contexts, for 
example limiting the influence of CAs in certificate creation [BOU 11]. 
However, the reference model, as summarized in this section, is currently 
unrivaled; the widespread success of TLS naturally leads to the use of X.509 
certificates, legitimizing their mode of management. 

3.2.5.3. Limitations of the TLS protocol 

The main limitation of the TLS protocol, as we have stated, is associated 
with the use of PKIs. In addition to genuine questions concerning the trust 
placed in CAs [SOG 11], or considerations regarding complexity and the 
cost of establishing the necessary architecture, a problem has arisen in 
current Internet use whereby legitimate servers are subject to a relatively 
high number of authentication failures, due to the use of out-of-date 
certificates or simple non-recognition by browsers. This is far from ideal, 
and also generates a certain level of confusion for users who are frequently 
faced with benign errors, which they can choose to ignore; these users will 
then be unable to identify a genuine attack.  



124     Digital Identity Management 

However, another important weakness makes TLS vulnerable to MITM 
attacks. This vulnerability does not concern the protocol itself, but its 
implementation in the HTTPS (HTTP over SSL) protocol. Attackers may 
prevent the victim from creating HTTPS connections with a server, i.e. by 
replacing all HTTPS requests with HTTP requests. To do this, the attacker 
launches an MITM attack, intercepting the first request sent to the secure 
server, benefitting from the fact that the first request is rarely in HTTPS, and 
often in simple HTTP, as the victim does not type “https” explicitly into  
the URL. In other words, the TLS session is not initiated immediately, and 
the aim of the attacker is to prevent this session from being established. As 
we see in Figure 3.7, having intercepted an HTTP request, the attacker sends 
an HTTPS request to the server, and receives an HTML page in response. 
The attacker then replaces all of the HTTPS links in the HTML, replacing 
them with HTTP. In this manner, the victim communicates data to the 
attacker in unencrypted form, while the attacker continues to exchange 
encrypted information with the server. From the victim’s perspective, only 
subtle indications, for example the color of the URL bar used to show the 
security of exchanges in certain browsers, will be missing; this will have no 
impact on non-specialist users. This weakness was identified by Marlinspike 
[MAR 09]. The author also developed a tool known as SSLstrip as proof of 
the concept involved in this weakness. 

 

Figure 3.7. Man-in-the-middle attack on the HTTPS protocol 

Although we need to be aware of these limitations, we should note the 
considerable significance of this protocol, which plays a key role in network 
security, notably in securing protocols at application level. When used for  
 
 



Authentication Systems     125 

mutual authentication, it represents a genuinely strong solution, as long as 
sufficient precautions are taken to conserve the private key.  

3.2.6. The role of smart cards 

While they do not constitute an authentication system in their own right, 
it is useful to discuss the specific points of secure microcontrollers, such as 
smart cards, due to the key role they play in the design of strong 
authentication procedures.  

The storage of secrets, whether passwords, symmetric keys or private 
asymmetric keys, has been mentioned on several occasions in this chapter. 
We have implicitly presumed that this storage is secure, without considering 
the meaning or the way in which this is implemented. These questions, 
however, are important.  

One approach consists of storing these secrets in encrypted form, using a 
symmetric key derived from a password which the user needs to memorize. 
This password will be required when the user wishes to use one of their 
secrets. While this solution does offer secure storage, it is not particularly 
user-friendly. Moreover, the use of a password, even if it is not stored, is not 
satisfactory in the long term; malware such as keyloggers may be used to 
retrieve passwords used for secret encryption, making the information 
available to an attacker. 

Smart cards offer another approach, as they constitute a trusted 
environment, with physical and logical countermeasures against attacks 
aiming to read or copy data in a fraudulent manner. If secrets, such as  
the private asymmetric key, are stored on a smart card, it is almost 
impossible for an attacker to retrieve them. The use of a PIN protects the 
card against use by a third party. As a physical object that must be  
in the possession of the legitimate user, a smart card is an excellent 
complement to robust authentication systems that require a trusted 
environment of this type for the storage of private elements. Smart cards 
may notably be used in addition to the TLS protocol, following the 
PKCS#15 standard [RSA 00], where they are used to store the private key 
and, sometimes, the corresponding certificate, in order to facilitate mutual 
authentication. 


