
163
Malware Forensics Field Guide for Linux Systems. http://dx.doi.org/10.1016/B978-1-59749-470-0.00003-6
Copyright © 2014 Elsevier Inc. All rights reserved.

Postmortem Forensics
Discovering and Extracting Malware and Associated
Artifacts from Linux Systems

Chapter 3

Solutions in this Chapter
	•	 	Linux	Forensic	Analysis	Overview
	•	 	Malware	Discovery	and	Extraction	from	a	Linux	System
	•	 	Examine	Linux	File	System
	•	 	Examine	Linux	Configuration	Files
	•	 	Keyword	Searching
	•	 	Forensic	Reconstruction	of	Compromised	Linux	Systems
	•	 	Advanced	Malware	Discovery	and	Extraction	from	a	Linux	System

INTRODUCTION

If live system analysis can be considered surgery, forensic examination of
Linux systems can be considered an autopsy of a computer impacted by mal-
ware. Trace evidence relating to a particular piece of malware may be found
in various locations on the hard drive of a compromised host, including files,
configuration entries, records in system logs, and associated date stamps. Foren-
sic examination of such trace evidence on a Linux system is an important part
of analyzing malicious code, providing context and additional information that
help us address important questions about a malware incident, including how
malware was placed on the system, what it did, and what remote systems were
involved.

This chapter provides a repeatable approach to conducting forensic
examinations in malware incidents, increasing the consistency across mul-
tiple computers, and enabling others to evaluate the process and results.
Employing this approach, with a measure of critical thinking on the part of
a digital investigator, can uncover information necessary to discover how
malware was placed on the system (a.k.a. the intrusion vector), to determine

164 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

malware functionality and its primary purpose (e.g., password theft, data
theft, remote control), and to detect other infected systems. This forensic
examination process can be applied to both a compromised host and a test
system purposely infected with malware, to learn more about the behavior
of the malicious code.

Investigative Considerations
	 •	 	In	the	past,	it	was	relatively	straightforward	to	uncover	traces	of	malware	

on the file system and in configuration scripts of a compromised Linux
computer. More recently, attackers have been employing anti-forensic
techniques to conceal their activities or make malicious files blend in with
legitimate ones. For instance, intruders may backdate the inode change
time (ctime) date-time stamps on a malicious file to have the same values
as a legitimate system file. Intruders also take banners and other character-
istics from a legitimate service and compile them into a trojanized version
to make it as similar as possible to the legitimate one. Therefore, digital
investigators should be alert for misinformation on compromised systems.

	 •	 	Modern	malware	is	being	designed	to	leave	limited	traces	on	the	compro-
mised host and store more information in memory rather than on disk. A
methodical approach to forensic examination, looking carefully at the sys-
tem from all perspectives, increases the chances of uncovering footprints
that the intruder failed to hide.

LINUX FORENSIC ANALYSIS OVERVIEW

 R After a forensic duplicate of a compromised system has been acquired,
employ a consistent forensic examination approach to extract the maximum
amount of information relating to the malware incident.

 Analysis Tip

System Administration versus Forensics
System administrators of Linux systems are often very knowledgeable and, when
they find malware on a system, they know enough about their systems to start
remediating the problem. However, editing or moving files to “fix” the problem
alters crucial evidence, making it more difficult to reconstruct activities related to
a malware incident. Therefore, to avoid making matters worse, a forensic dupli-
cate of the compromised system should be acquired before system administrators
make alterations.

165Chapter | 3 Postmortem Forensics

 u The hard drive of a Linux computer can contain traces of malware in vari-
ous places and forms, including malicious files, configuration scripts, log
files, Web browser history, and remnants of installation and execution such
as system logs and command history. In addition, forensic examination of
a compromised Linux computer can reveal manipulation such as log dele-
tion and date-time tampering. Some of this information has associated date-
time stamps that can be useful for determining when the initial compromise
occurred and what happened subsequently. The following general approach is
designed to extract the maximum amount of information related to a malware
incident:

	 •	 	Search	for	Known	Malware
	 •	 	Survey	Installed	Programs
	 •	 	Inspect	Executables
	 •	 	Review	Services,	Modules,	and	Auto-start	Locations
	 •	 	Review	Scheduled	Jobs
	 •	 	Examine	Logs	(system	logs,	AntiVirus	logs,	Web	browser	history,	etc.)
	 •	 	Review	User	Accounts
	 •	 	Examine	File	System
	 •	 	Examine	Configuration	Files
	 •	 	Perform	 keyword	 searches	 for	 any	 specific,	 known	 details	 relating	

to	a	malware	 incident.	Useful	keywords	may	come	 from	other	 forms	
of analysis, including memory forensics and analysis of the malware
itself.

	 •	 	Harvest	available	metadata	including	file	system	date-time	stamps,	modi-
fication times of configuration files, e-mails, entries in Web browser his-
tory,	system	logs,	and	other	logs	such	as	those	created	by	AntiVirus,	crash	
dump	monitoring,	and	patch	management	programs.	Use	this	information	
to determine when the malware incident occurred and what else was done
to the system around that time, ultimately generating a time line of poten-
tially malicious events.

	 •	 	Look	for	common	indicators	of	anti-forensics	including	file	system	date-
time stamp alteration, log manipulation, and log deletion.

	 •	 	Look	for	links	to	other	systems	that	may	be	involved.
	 •	 	Look	for	data	that	should	not	be	on	the	system	such	as	directories	full	of	

illegal materials and software or data stolen from other organizations.

 u These goals are provided as a guideline and not as a checklist for per-
forming Linux forensic analysis. No single approach can address all situa-
tions, and some of these goals may not apply in certain cases. In addition,
the specific implementation will depend on the tools that are used and the
type of malware involved. Some malware may leave traces in novel or unex-
pected places on a Linux computer, including in the BIOS or Firmware.
Ultimately,	 the	success	of	 the	investigation	depends	on	the	abilities	of	 the	

166 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

digital investigator to apply digital forensic techniques and adapt them to
new challenges.

Investigative Considerations

	 •	 	It	is	generally	unrealistic	to	perform	a	blind	review	on	certain	structures	that	
are too large or too complex to analyze without some investigative leads.
Therefore, it is important to use all of the information available from other
sources to direct a forensic analysis of the compromised system, including
interview notes, spearphishing e-mails, volatile data, memory dumps, and
logs from the system and network.

	 •	 	Most	file	system	forensic	tools	do	not	provide	full	metadata	from	an	EXT4	
file system. When dealing with malware that likely manipulated date-time
stamps, it may be necessary to extract additional attributes from inodes for
comparison	 with	 the	 common	 EXT	 attributes.	Tools	 for	 extracting	 attri-
butes	from	EXT	entries	such	as	The	Sleuth	Kit	and	Autopsy	GUI	shown in
Figure 3.1 are presented in the Toolbox section at the end of this chapter. �

 Analysis Tip

Correlating Key Findings
As noted in prior chapters, knowing the time period of the incident and knowing
what evidence of malware was observed can help digital investigators develop
a strategy for scouring compromised computers for relevant digital evidence.
Therefore, prior to performing forensic analysis of a compromised computer,
it	 is	 advisable	 to	 review	 all	 information	 from	 the	 Field	 Interview	 Questions	 in	
Chapter 1 to	avoid	wasted	effort	and	missed	opportunities.	Findings	from	other	
data sources, such as memory dumps and network logs, can also help focus
the forensic analysis (i.e., the compromised computer was sending packets to a
Russian	IP	address,	providing	an	IP	address	to	search	for	in	a	given	time	frame).	
Similarly, the results of static and dynamic analysis covered in later chapters can
help guide forensic analysis of a compromised computer. So, the analysis of one
malware specimen may lead to further forensic examination of the compromised
host, which uncovers additional malware that requires further analysis; this cycli-
cal analysis ultimately leads to a comprehensive reconstruction of the incident.
In	addition,	as	new	traces	of	malicious	activity	are	uncovered	 through	 forensic	
examination of a compromised system, it is important to document them in a
manner	that	facilitates	forensic	analysis.	One	effective	approach	is	to	insert	new	
findings into a time line of events that gradually expands as the forensic analysis
proceeds. This is particularly useful when dealing with multiple compromised
computers. By generating a single time line for all systems, forensic analysts are
more likely to observe relationships and gaps.

167Chapter | 3 Postmortem Forensics

	 •	 	It	is	important	to	look	in	all	areas	of	a	Linux	system	where	traces	of	mal-
ware might be found, even if a quick look in a few common places reveals
obvious signs of infection. There may be multiple types of malware on
a computer, with more obvious signs of infection presenting a kind of
smoke screen that may distract from more subtle traces of compromise.
Being thorough, and correlating other information sources (e.g., initial
incident reports, network logs) with traces found on the system, reduces
the risk that more subtle items will be overlooked.

	 •	 	No	one	approach	or	tool	can	serve	all	needs	in	a	forensic	examination.	To	
avoid mistakes and missed opportunities, it is necessary to compare the
results of multiple tools, to employ different analysis techniques, and to
verify important findings manually.

 R In addition to employing forensic tools, mount the forensic duplicate as a
logical volume to support additional analysis.

 u Although forensic tools can support sophisticated analysis, they cannot solve
every	problem	relating	to	a	malware	incident.	For	instance,	running	AntiVirus	
software and rootkit detection tools against files on the compromised system
is an important step in examining a compromised host. Figure 3.2 shows the
loopback interface being used to mount a forensic duplicate so that it is acces-
sible as a logical volume on the forensic examination system without altering
the original evidentiary data. �

FIGURE 3.1–Linux	system	being	examined	using	The	Sleuth	Kit	Autopsy	GUI

168 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

MALWARE DISCOVERY AND EXTRACTION
FROM A LINUX SYSTEM

 u Employing a methodical approach to examining areas of the compromised
system that are most likely to contain traces of malware installation and use
increases the chances that all traces of a compromise will be uncovered, espe-
cially when performed with feedback from the static and dynamic analysis cov-
ered in Chapters 5 and 6.

Search for Known Malware

 R Use characteristics from known malware to scour the file system for the
same or similar items on the compromised computer.

 u Many intruders will use easily recognizable programs such as known root-
kits, keystroke monitoring programs, sniffers, and anti-forensic tools (e.g.,
touch2, shsniff, sshgrab). There are several approaches to locating known
malware on a forensic duplicate of a compromised computer.

mount –o loop,ro,noatime,noexec adore-sda5.dd /mnt/examine

OR

losetup –r /dev/loop1 adore-sda5.dd
mount /dev/loop1 /mnt/examine –o loop,ro,noatime,noexec
ls /mnt/examine
bin dev home lib misc opt root tftpboot usr
boot etc initrd lost+found mnt proc sbin tmp var

FIGURE 3.2–Linux loopback interface used to mount a forensic duplicate

 Analysis Tip

Trust but Verify
When mounting a forensic duplicate via the Linux loopback interface or using any
other method, it is advisable to perform a test run in order to confirm that it does
not alter the forensic duplicate. This verification process can be as simple as com-
paring the MD5 value of the forensic duplicate before and after mounting the file
system and performing simple operations such as copying files. Some versions of
Linux or some mounting methods may not prevent all changes, particularly when
processes are being run as root.

� Additional	 utilities	 such	 as	 FTK	 Imager,	 EnCase	 modules,	 and	 Daemon	 Tools	
(www.daemon-tools.cc) for mounting a forensic duplicate are discussed in the Tool Box

section at the end of this chapter.

http://www.daemon-tools.cc

169Chapter | 3 Postmortem Forensics

	 •	 	Hashe and File Characteristics: Searching a forensic duplicate of a
compromised system for hash values matching known malware may
identify other files with the same data but different names. In addition
to	using	a	hash	database	such	as	NSRL,	another	approach	to	identifying	
malicious code is to look for deviations from known good configura-
tions of the system. Some Linux systems have a feature to verify the
integrity of many installed components, providing an effective way to
identify unusual or out of place files. For instance, rpm -Va on Linux
is	 designed	 to	 verify	 all	 packages	 that	 were	 installed	 using	 RedHat	
Package	Manager.	For	instance,	the	results	of	this	verification	process	
in the T0rnkit scenario are shown in Figure 3.3 to show binaries that
have	different	filesize	(S),	mode	(M),	and	MD5	(5)	than	expected.	Some	
of	these	binaries	also	have	discrepancies	in	the	user	(U),	group	(G),	and	
modified time (T). With rpm it is also possible to specify a known good
database using the --dbpath option, when there are concerns that the
database on the subject system is not trustworthy.

	 •	 	Rootkit Detectors:	Tools	such	as	Rootkit	Hunter1 and chkrootkit2 have
been developed to look for known malicious code on Linux systems. These
programs contain a regularly updated database of known malware, and
can be used to scan a forensic duplicate. Many of the rootkit checks can
be run against a mounted image as shown in Figure 3.4, but some checks
can only be performed on a running system, such as scanning running
processes for malware. Be aware that these rootkit scanning tools may
only detect rootkit files that are in a specific, default location. Therefore,
a specific rootkit may not be detected by these scanning tools if the files

1 http://rkhunter.sourceforge.net.
2 http://www.chkrootkit.org/.

rpm –Va -–root=/mntpath/evidence | grep SM5
SM5..UG. /sbin/syslogd
SM5..UG. /usr/bin/find
SM5....T c /etc/conf.linuxconf
SM5..UG. /usr/sbin/lsof
SM5..UG. /bin/netstat
SM5..UG. /sbin/ifconfig
SM5..UGT /usr/bin/ssh
SM5..UG. /usr/bin/slocate
SM5..UG. /bin/ls
SM5..UG. /usr/bin/dir
SM5..UG. /usr/bin/md5sum
SM5..UG. /bin/ps
SM5..UG. /usr/bin/top
SM5..UG. /usr/bin/pstree
SM5....T c /etc/ssh/sshd_config

FIGURE 3.3–T0rnkit	rootkit	files	found	using	RPM	verify

170 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

are not in the expected location (false negative). These scanning tools also
often have false positive hits, flagging legitimate files as possible rootkit
components.

	 •	 AntiVirus:	Using	updated	AntiVirus	programs	to	scan	files	within	a	foren-
sic duplicate of a compromised system may identify known malware. To
increase	 the	chances	of	detecting	malware,	multiple	AntiVirus	programs	
can be used with any heuristic capabilities enabled. Such scanning is com-
monly performed by mounting a forensic duplicate on the examination
system	and	configuring	AntiVirus	software	 to	scan	 the	mounted	volume	
as shown in Figure 3.5	using	Clam	AntiVirus.3	Another	AntiVirus	program	
for	Linux	is	F-Prot.4

3 http://www.clamav.net/.
4 http://www.f-prot.com.

rkhunter --check -r /media/_root -l /evidence/rkhunter.log
[Rootkit Hunter version 1.3.8]
Checking system commands...
Performing 'strings' command checks
Checking 'strings' command [OK]

 Performing file properties checks
 Checking for prerequisites [Warning]
 /media/_root/sbin/chkconfig [Warning]
<excerpted for brevity>

Checking for rootkits...
 Performing check of known rootkit files and directories
 55808 Trojan - Variant A [Not found]
 ADM Worm [Not found]
 AjaKit Rootkit [Not found]
 Adore Rootkit [Warning]

 Performing additional rootkit checks
 Suckit Rookit additional checks [OK]
 Checking for possible rootkit files [Warning]
 Checking for possible rootkit strings [Warning]

=====================

Rootkit checks...
 Rootkits checked : 227
 Possible rootkits: 3
 Rootkit names : Adore, Tuxtendo, Rootkit component

One or more warnings have been found while checking the system.
Please check the log file (/evidence/rkhunter.log)

FIGURE 3.4–Scanning a target drive image with rkhunter

171Chapter | 3 Postmortem Forensics

	 •	 	Piecewise Comparison: When known malware files are available for
comparison purposes, a tool such as frag_find5 can be used to search for
parts of the reference dataset on the compromised system. In addition, a
piecewise comparison tool such as ssdeep6 may reveal malware files that
are	largely	similar	with	slight	variations.	Using	the	matching	mode,	with	
a list of fuzzy hashes of known malware, may find specimens that are not
detected with an exact hash match or by current anti-virus definitions (e.g.,
when	embedded	IP	addresses	change).

	 •	 	Keywords:	Searching	for	IRC	commands	and	other	traits	commonly	seen	
in malware, and any characteristics that have been uncovered during the
digital	 investigation	 (e.g.,	 IP	 addresses	 observed	 in	 network-level	 logs)	
may uncover malicious files on the system. Strings within core system
components can reveal that they have been trojanized by the intruder. For
instance, Figure 3.6 shows a shared library from a compromised system

5 https://github.com/simsong/frag_find	(part	of	the	NPS	Bloom	filter	package).
6 http://ssdeep.sourceforge.net.

clamscan –d /examination/clamdb -r -i -l
clamscan.log /mnt/evidence

----------- SCAN SUMMARY -----------
Known viruses: 1256684
Engine version: 0.97.3
Scanned directories: 20
Scanned files: 46
Infected files: 1
Data scanned: 0.29 MB
Data read: 3340.26 MB (ratio 0.00:1)
Time: 6.046 sec (0 m 6 s)

FIGURE 3.5–Clam	AntiVirus	software	scanning	a	mounted	forensic	duplicate

 Analysis Tip

Existing Security Software Logs
Given the prevalence of security monitoring software, it is advisable to review
any logs that were created by AntiVirus software or other programs that were run-
ning on the compromised system for indications of malware. Many AntiVirus pro-
grams have logging and quarantine features that can provide information about
detected malware. When a system is running Tripwire or other system integrity
checking tools that monitor the system for alterations, daily reports might exist
showing which files were added, changed, and deleted during a malware incident.

172 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

with unusual functions named proc_hackinit and proc_istrojaned,
fp_hack, hack_list and proc_childofhidden, which demonstrates that
“trojan,” “hack,” and “hidden” may be useful keywords when investigating
some malware incidents.

Investigative Considerations
	 •	 	Some	malware	provides	an	installation	option	to	delete	the	executable	from	

disk after loading into memory. Therefore, in addition to scanning logical
files, it can be worthwhile to carve all executables out of the swap partition
and	unallocated	space	in	order	to	scan	them	using	AntiVirus	software	as	
well, particularly when malware has been deleted by the intruder (or by
AntiVirus	software	that	was	running	on	the	compromised	system).

	 •	 	Some	 malware	 is	 specifically	 designed	 to	 avoid	 detection	 by	 hash	
values,	AntiVirus	signatures,	rootkit	detection	software,	or	other	similarity	
characteristics.	Therefore,	 the	 absence	of	 evidence	 in	 an	AntiVirus	 scan	
or hash analysis should not be interpreted as evidence that no malware is
on	the	system.	For	example,	the	Phalanx2	rootkit	periodically	changes	the	
name of its executables and now stores its components and TTY sniffer
logs in a randomly named directory. For instance, in one incident the /etc/
khubd.p2	directory	contained	files	related	to	the	Phalanx2	rootkit	shown	
in Figure 3.7.7	However,	every	part	of	the	rootkit	and	hidden	directory	is	
subject	to	change	in	later	versions	of	Phalanx2,	including	the	location	and	
names of files.

7 http://hep.uchicago.edu/admin/report_072808.html.

from_gid·getgrgid·bad_user_access_length·openproc·opendir·closeproc·closedir·
freeproc·status2proc·sscanf·stat2proc·strrchr·statm2proc·nulls2sep·file2str·f
ile2strvec·readproc·readdir·strcat·proc_istrojaned·ps_readproc·look_up_our_se
lf·getpid·LookupPID·readproctree·readproctab·freeproctab·list_signals·stdout·
_IO_putc·get_signal·get_signal2·status·uptime·_exit·lseek·Hertz·four_cpu_numb
ers·loadavg·meminfo·read_total_main·procps_version·display_version·sprint_upt
ime·time·localtime·setutent·getutent·endutent·av·print_uptime·pname·hname·pro
c_addpid·pidsinuse·pids·pid·proc_hackinit·xor_buf·h_tmp·fp_hack·tmp_str·fgets
·hack_list·strp·strtok·proc_childofhidden·libc.so.6·___brk_addr·__curbrk·__en
viron·atexit·_etext·_edata·__bss_start·_end·libproc.so.2.0.6·GLIBC_2.1·GLIBC_
2.0

FIGURE 3.6–Extract from a trojanized shared library (/lib/libproc.so.2.0.6) with unusual function
names

-rw-r--r-- 1 root root 1356 Jul 24 19:58 .p2rc
-rwxr-xr-x 1 root root 561032 Jul 24 19:58 .phalanx2*
-rwxr-xr-x 1 root root 7637 Jul 28 15:04 .sniff*
-rw-r--r-- 1 root 53746 1063 Jul 24 20:56 sshgrab.py

FIGURE 3.7–Phalanx2	rootkit	and	TTY	sniffer	components	located	in	a	hidden	directory

173Chapter | 3 Postmortem Forensics

	 •	 	Given	that	intruders	can	make	a	trojanized	application	look	very	similar	to	
the legitimate one that was originally installed on the compromised sys-
tem,	it	is	advisable	to	compare	critical	applications	such	as	SSH	with	the	
original package obtained from a trusted source. Any discrepancies
between	the	MD5	hash	values	of	SSH	binaries	on	a	compromised	system	
and those from a trusted distribution of the same version warrant further
investigation.

	 •	 	If	 backups	 of	 the	 compromised	 system	 exist,	 they	 can	 be	 used	 to	
create a customized hashset of the system at various points in time.
Such a customized hashset can be used to determine which files
were added or changed since the backup was created. In one case,
intruders	made	a	trojanized	SSH	package	indistinguishable	from	the	
original, legitimate package, making it necessary to perform hashset
comparisons with files from backups. This comparison also helped
narrow down the time frame of the intrusion, because the trojanized
files were on a backup from February but not an earlier backup from
January.

	 •	 	Keyword	searches	for	common	characteristics	in	malware	can	also	trigger	
on	AntiVirus	definition	files,	resulting	in	false	positives.

Survey Installed Programs and Potentially Suspicious
Executables

 R Review the programs that are installed on the compromised system for
potentially malicious applications.

 u Surveying the names and installation dates of programs and executable files
that were installed on the compromised computer may reveal ones that are sus-
picious, as well as legitimate programs that can be used to gain remote access or
to facilitate data theft.

	 •	 	This	process	does	not	require	in-depth	analysis	of	each	program.	Instead	
look for items that are unexpected, questionable, or were installed around
the time of the incident.

	 •	 	Many	 applications	 for	 Linux	 systems	 are	 distributed	 as	 “packages”	
that	automate	their	installation.	On	Debian-based	systems,	the	/var/
lib/dpkg/status file contains details about installed packages and
the /var/log/dpkg.log file records information when a package
is	 installed.	 For	 instance,	 entries	 in	 the	 dpkg.log	 file	 on	 an	 Ubuntu	
system revealing that nmap was installed are shown in Figure 3.8.
On	 RedHat	 and	 related	 Linux	 distributions	 the	 rpm -qa --root=/

mntpath/var/lib/rpm	 command	 will	 list	 the	 contents	 of	 an	 RPM	
database on a subject systems.

174 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Not	all	installed	programs	will	be	listed	by	the	above	commands	because	
some applications are not available as packages for certain systems and
must be installed from source. Therefore, a review of locations such as
/usr/local and /opt may reveal other applications that have been com-
piled	and	installed	from	source	code.	On	RedHat	and	related	Linux	dis-
tributions the command find /mntpath/sbin –exec rpm -qf {} \; |
grep “is not” command will list all executables in the /sbin directory on
a mounted forensic duplicate that are not associated with a package.

	 •	 	A	malicious	program	may	be	apparent	from	a	file	in	the	file	system	(e.g.,	
sniffer	logs,	RAR	files,	or	configuration	scripts).	For	example,	Figure 3.9
shows sniffer logs on a compromised system that network traffic is being
recorded by malware on the system.

FIGURE 3.9–Sniffer	logs	on	a	compromised	system	viewed	using	The	Sleuth	Kit

tail -15 /mntpath/var/log/dpkg.log

2012-06-12 14:48:20 startup archives unpack

2012-06-12 14:48:22 install nmap <none> 5.21-1.1

2012-06-12 14:48:22 status half-installed nmap 5.21-1.1

2012-06-12 14:48:23 status triggers-pending man-db 2.6.0.2-2

2012-06-12 14:48:23 status half-installed nmap 5.21-1.1

2012-06-12 14:48:23 status unpacked nmap 5.21-1.1

2012-06-12 14:48:23 status unpacked nmap 5.21-1.1

2012-06-12 14:48:23 trigproc man-db 2.6.0.2-2 2.6.0.2-2

2012-06-12 14:48:23 status half-configured man-db 2.6.0.2-2

2012-06-12 14:48:27 status installed man-db 2.6.0.2-2

2012-06-12 14:48:28 startup packages configure

2012-06-12 14:48:28 configure nmap 5.21-1.1 <none>

2012-06-12 14:48:28 status unpacked nmap 5.21-1.1

2012-06-12 14:48:28 status half-configured nmap 5.21-1.1

2012-06-12 14:48:28 status installed nmap 5.21-1.1

FIGURE 3.8–Log entries (/var/log/dpkg.log) showing installation of potentially malicious
program	(nmap)	on	a	Debian-based	Linux	system	(Ubuntu)

175Chapter | 3 Postmortem Forensics

	 •	 	Legitimate	programs	installed	on	a	computer	can	also	play	a	role	in	mal-
ware	 incidents.	 For	 instance,	 PGP	 or	 remote	 desktop	 programs	 (e.g.,	
X)	installed	on	a	system	may	be	normal	in	certain	environments,	but	its	
availability may have enabled intruders to use it for malicious purposes
such as encrypting sensitive information before stealing it over the net-
work. Coordination with the victim organization can help determine if
these are legitimate typical business use applications. Even so, keep in
mind that they could be abused/utilized by the intruder and examination
of associated logs may be fruitful.

Investigative Considerations
	 •	 	Reviewing	 every	 potential	 executable	 on	 a	 computer	 is	 a	 time-con-

suming process and an important file may be missed in the mass of
information.	Digital	investigators	can	generally	narrow	their	focus	to	a	
particular time period or region of the file system in order to reduce the
number of files that need to be reviewed for suspicious characteristics.
In addition, look for executable files in locations that are commonly
accessed by users but that do not normally contain executables such as
an	IRC	bot	running	from	a	compromised	user	account.

	 •	 	Malware	on	Linux	systems	is	often	simply	a	modified	version	of	a	legiti-
mate	system	binary,	making	it	more	difficult	to	distinguish.	However,	digi-
tal investigators may find malware that has been Base64 encoded or packed
using	common	methods	such	as	UPX	or	Burneye.

	 •	 	The	 increase	 in	 “spearphishing	 attacks,”	 which	 employ	 social	 engineer-
ing to trick users to click on e-mail attachments, combined with malware
embedded	 in	Adobe	PDFs	 as	discussed	 in	Chapter	 5	means	 that	 digital	
investigators need to expand searches for malware to include objects
embedded in documents and e-mail attachments.

 Analysis Tip

Look for Recently Installed or Out-of-Place Executables
Not all installed programs will be listed by the above commands because intrud-
ers might put executables in unexpected locations. Therefore, it may be necessary
to look for recently installed programs that coincide with the timing of the mal-
ware incident, or use clues from other parts of the investigation to focus attention
on	potentially	suspicious	applications.	In	addition,	look	for	executable	files	in	user	
home directories and other locations that are commonly accessed by users but
that do not normally contain executables.

176 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Inspect Services, Modules, Auto-Starting Locations,
and Scheduled Jobs

 R Look for references to malware in the various startup locations on com-
promised systems to determine how malware managed to remain running on
a Linux system after reboots.

 u To remain running after reboots, malware is usually relaunched using
some persistence mechanism available in the various startup methods on a
Linux system, including services, drivers, scheduled tasks, and other startup
locations.

	 •	 	Scheduled Tasks: Some malware uses the Linux cronjob scheduler to
periodically execute and maintain persistence on the system. Therefore, it
is important to look for malicious code that has been scheduled to execute
in the /var/spool/cron/crontabs and /var/spool/cron/atjobs con-
figuration files.

	 •	 	Services: It is extremely common for malware to entrench itself as
a new, unauthorized service. Linux has a number of scripts that are
used to start services as the computer boots. The initialization startup
script /etc/inittab calls other scripts such as rc.sysinit and vari-
ous startup scripts under the /etc/rc.d/ directory, or /etc/rc.boot/
in	some	older	versions.	On	other	versions	of	Linux,	such	as	Debian,	
startup scripts are stored in the /etc/init.d/ directory. In addition,
some common services are enabled in /etc/inetd.conf or /etc/
xinetd/	 depending	 on	 the	 version	 of	 Linux.	 Digital	 investigators	
should inspect each of these startup scripts for anomalous entries. For
example, in one intrusion, the backdoor was restarted whenever the
compromised system rebooted by placing the entries in Figure 3.10 at
the end of the /etc/rc.d/rc.sysinit system startup file.

The	Phalanx2	rootkit	is	launched	from	a	separate	startup	script	under	the	
/etc/rc.d/ directory with the same randomly generated name as the
hidden directory where the rootkit components are stored. Be warned

Xntps (NTPv3 daemon) startup..

/usr/sbin/xntps -q

Xntps (NTPv3 deamon) check..

/usr/sbin/xntpsc 1>/dev/null 2>/dev/null

FIGURE 3.10–Malicious entries in /etc/rc.d/rc.sysinit file to restart backdoor on
reboot

177Chapter | 3 Postmortem Forensics

that	Phalanx2	also	hides	the	startup	script	from	users	on	the	system,	
making forensic examination of the file system an important part of
such malware investigations.

	 •	 	Kernel Modules: On Linux systems, kernel modules are commonly used
as	 rootkit	components	 to	malware	packages.	Kernel	modules	are	 loaded	
when the system boots up based on the configuration information in
the /lib/modules/’uname -r’ and /etc/modprobe.d directories, and
the /etc/modprobe or /etc/modprobe.conf file. These areas should be
inspected for items that are related to malware.

	 •	 	Autostart Locations: There are several configuration files that Linux
uses to automatically launch an executable when a user logs into the sys-
tem that may contain traces of malware. Items in the /etc/profile.d
directory and the /etc/profile and /etc/bash.bashrc files are exe-
cuted when any user account logs in and may be of interest in malware
incident. In addition, each user account has individual configuration files
(∼/.bashrc, ∼/.bash_profile and ∼/.config/autostart) that can
contain entries to execute malware when a specific user account logs into
the system.

Investigative Considerations
	 •	 	Check	all	programs	that	are	specified	in	startup	scripts	to	verify	that	they	

are correct and have not been replaced by trojanized programs.
	 •	 	Intruders	sometimes	enable	services	that	were	previously	disabled,	so	

it is also important to check for legitimate services that should be dis-
abled.

Examine Logs

 R Look in all available log files on the compromised system for traces
of malicious execution and associated activities such as creation of a new
 service.

 u Linux systems maintain a variety of logs that record system events and user
account activities. The main log on a Linux system is generally called messages
or syslog, and the security log records security-specific events. Some Linux
systems also have audit subsystems (e.g., SELinux) configured to record spe-
cific events such as changes to configuration files. The degree of detail in these
logs varies, depending on how logging is configured on a given machine.

	 •	 	System Logs: Logon events recorded in the system and security logs,
including logons via the network, can reveal that malware or an intruder
gained access to a compromised system via a given account at a specific
time. Other events around the time of a malware infection can be captured

178 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

in system logs, including the creation of a new service or new accounts
around the time of an incident. Most Linux logs are in plain text and can
be searched using a variety of tools, including grep and Splunk8 with the
ability to filter on specific types of events.

Certain attacks create distinctive patterns in logs that may reveal
the vector of attack. For instance, buffer overflow attacks may cause
many log entries to be generated with lengthy input strings as shown
in Figure 3.11 from the messages log.

This log entry shows the successful buffer overflow had “/bin/sh” at
the end, causing the system to launch a command shell that the intruder
used to gain unauthorized access to the system with root level privileges.

	 •	 	Web Browser History: The records of Web browsing activity on a com-
promised computer can reveal access to malicious Web sites and subse-
quent download of malware. In addition, some malware leaves traces in
the Web browser history when it spreads to other machines on the network.
Firefox is a common Web browser on Linux systems and historical records
of browser events are stored in a user profile under the ∼/.mozilla/
firefox directory for each user account.

	 •	 	Command History: As detailed in Chapter 1, many Linux systems
are configured to maintain a command history for each user account
(e.g., .bash_history, .history, .sh_history). Figure 3.12 shows a
command history from a Linux system that had its entire hard drive
copied over the network using netcat. Although entries in a command
history file are not time stamped (unless available in memory dumps
as discussed in Chapter 2), it may be possible to correlate some entries
with the last accessed dates of the associated executables, in an effort
to determine when the events recorded in the command history log
occurred. Some Linux systems maintain process accounting (pacct)
logs, which can be viewed using the lastcomm command. These logs
record every command that was executed on the system along with the
time and user account.

8 http://www.splunk.com/.

Apr 8 07:47:26 localhost SERVER[5151]: Dispatch_input: bad request line
'BBàóÿ¿áóÿ¿âóÿ¿ãóÿ¿XXXXXXXXXXXXXXXXXX00
000
0004800000001073835088security000000000
000
000
000000000000000000000000000061Û1É1À°FÍ€‰å1Ò²f‰Ð1É‰ËC‰]øC‰]ôK‰Mü
ìfÇEî^O'‰Mð
ó

FIGURE 3.11–Log entry showing buffer overflow attack against a server to launch a command
shell

179Chapter | 3 Postmortem Forensics

	 •	 	Desktop Firewall Logs:	Linux	host-based	firewalls	such	as	IPtables	and	
other security programs (e.g., tcp_wrappers) function at the packet level,
catching each packet before it is processed by higher level applications
and, therefore, may be configured to create very detailed logs of malicious
activities on a compromised system.

	 •	 	AntiVirus Logs:	When	 a	 Linux	 system	 is	 compromised,	AntiVirus	
software may detect and even block some malicious activities. Such
events will be recorded in a log file with associated date-time stamps
(e.g., under /var/log/clamav/	 for	 ClamAV),	 and	 any	 quarantined	
items	may	still	be	stored	by	the	AntiVirus	software	in	a	holding	area.

	 •	 	Crash Dump: When configured, the abrt service can capture infor-
mation about programs that crashed and produced debug information.
When abrtd traps a crashing program, it creates a file named coredump
(under /var/spool/abrt by default) containing memory contents from
the	 crash,	 which	 may	 provide	 useful	 information	 such	 as	 attacker	 IP	
addresses.

Investigative Considerations
	 •	 	Log	files	can	reveal	connections	from	other	computers	that	provide	links	

to other systems on the network that may be compromised.

FIGURE 3.12–Command	history	contents	viewed	using	The	Sleuth	Kit	and	Autopsy	GUI

180 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Not	all	programs	make	an	entry	in	Linux	logs	in	all	cases,	and	malware	
installed by intruders generally bypass the standard logging mecha-
nisms.

	 •	 	Linux	system	logs	and	audit	subsystems	may	be	disabled	or	deleted	
in an intrusion or malware incident. In fact, because logs on Linux
systems generally contain some of the most useful information about
malicious activities, intruders routinely delete them. Therefore,
when examining available log files, it is important to look for gaps
or out of order entries that might be an indication of deletion or
tampering. Because Linux generates logs on a regular basis during
normal operation, a system that is not shut down frequently, such as
a server, should not have prolonged gaps in logs. For instance, when
logs are loaded into Splunk, a histogram of events by day is gen-
erated automatically and can show a gap that suggests log deletion.
In addition, it is generally advisable to search unallocated space for
deleted log entries as discussed in the Examine Linux File System
later in this chapter.

	 •	 	Keep	in	mind	that	log	entries	of	buffer	overflows	merely	show	that	a	
buffer overflow attack occurred, and not that the attack was success-
ful. To determine whether the attack was successful, it is necessary to
examine activities on the system following the attack.

	 •	 	Rootkits	and	trojanized	services	have	a	tendency	to	be	unstable	and	crash	
periodically.	Even	if	a	service	such	as	the	ABRT	package	is	not	installed,	
kernel activity logs (e.g., dmesg, kern.log, klog) can show that a particu-
lar service crashed repeatedly, potentially indicating that an unstable tro-
janized version was installed.

Review User Accounts and Logon Activities

 R Verify that all accounts used to access the system are legitimate accounts
and determine when these accounts were used to log onto the compromised
system.

 Analysis Tip

Centralized Syslog Server
In	some	enterprise	environments,	syslog	servers	are	relied	on	to	capture	logging	
and so local security event logging is sparse on individual Linux computers. Given
the volume of logs on a syslog server, there may be a retention period of just a
few days and digital investigators must preserve those logs quickly or risk losing
this information.

181Chapter | 3 Postmortem Forensics

 u Look for the unauthorized creation of new accounts on the compromised
system, accounts with no passwords, or existing accounts added to Administra-
tor groups.

	 •	 	Unauthorized Account Creation: Examine the /etc/passwd, /etc/
shadow and security logs for unusual names or accounts created and/or
used in close proximity to known unauthorized events.

	 •	 	Administrator Groups: It is advisable to check /etc/sudoers files for
unexpected accounts being granted administrative access and check /etc/
groups for unusual groups and for user accounts that are not supposed to
be in local or domain-level administrator groups. In addition, consult with
system administrators to determine whether a centralized authorization
mechanism	is	used	(e.g.,	NIS,	Kerberos).

	 •	 	Weak/Blank Passwords: In some situations it may be necessary to look
for accounts with no passwords or easily guessed passwords. A variety of
tools	are	designed	for	this	purpose,	including	John	the	Ripper9 and Cain &
Abel.10	Rainbow	tables	are	created	by	precomputing	the	hash	representa-
tion of passwords and creating a lookup table to accelerate the process of
checking for weak passwords.11

Investigative Considerations
	 •	 	Failed	authentication	attempts,	including	sudo attempts, can be important

when repeated efforts were made to guess the passwords. In one investi-
gation, after gaining access to a Linux server via a normal user account,
the intruders used sudo repeatedly until they guessed the password of an
account with root privileges. The multiple failed sudo attempts were cap-
tured in system logs, but the intruders deleted these logs after obtaining
root. The deleted log entries were salvaged by performing a keyword
search of unallocated space.

	 •	 	Malware	or	intruders	may	overwrite	log	entries	to	eliminate	trace	evidence	
of unauthorized activities. Therefore, keep in mind that activities may
have occurred that are not evident from available and salvaged logs, and
it may be necessary to pay greater attention to details and correlation of
information from multiple sources to get a more complete understanding
of a malware incident. In such situations, a centralized syslog server or
network-level logs such as NetFlow can be invaluable for filling in gaps of
activities on a compromised host.

9 www.openwall.com/john/.
10 http://www.oxid.it/cain.html.
11 http://project-rainbowcrack.com or http://www.antsight.com.

182 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

EXAMINE LINUX FILE SYSTEM

 R Explore the file system for traces left by malware.

 u File system data structures can provide substantial amounts of information
related to a malware incident, including the timing of events and the actual
content	 of	 malware.	 Various	 software	 applications	 for	 performing	 forensic	
examination are available but some have significant limitations when applied to
Linux file systems. Therefore, it is necessary to become familiar with tools that
are specifically designed for Linux forensic examination, and to double check
important findings using multiple tools. In addition, malware is increasingly
being designed to thwart file system analysis. Some malware alter date-time
stamps on malicious files to make it more difficult to find them with time line
analysis. Other malicious code is designed to only store certain information in
memory to minimize the amount of data stored in the file system. To deal with
such anti-forensic techniques, it is necessary to pay careful attention to time line
analysis of file system date-time stamps and to files stored in common locations
where malware might be found.

	 •	 	One	of	the	first	challenges	is	to	determine	what	time	periods	to	focus	on	ini-
tially. An approach is to use the mactime	histogram	feature	in	the	Sleuth	Kit	
to find spikes in activity as shown in Figure 3.13. The output of this command
shows the most file system activity on April 7, 2004, when the operating
system was installed, and reveals a spike in activity on April 8, 2004, around
07:00 and 08:00, which corresponds to the installation of a rootkit.

mactime -b /tornkit/body -i hour index.hourly 04/01/2004-
04/30/2004

Hourly Summary for Timeline of /tornkit/body
Wed Apr 07 2004 09:00:00: 43511
Wed Apr 07 2004 13:00:00: 95
Wed Apr 07 2004 10:00:00: 4507
Wed Apr 07 2004 14:00:00: 4036
Thu Apr 08 2004 07:00:00: 6023
Thu Apr 08 2004 08:00:00: 312

FIGURE 3.13–Histogram	of	file	system	date-time	stamps	created	using	mactime

 Analysis Tip

Correlation with Logons
Combine a review of user accounts with a review of Linux security logs on the
system to determine logon times, dates of account creation, and other activities
related to user account activity on the compromised system. This can reveal unau-
thorized access, including logons via SSH or other remote access methods

183Chapter | 3 Postmortem Forensics

	 •	 	Search	for	file	types	that	attackers	commonly	use	to	aggregate	and	exfil-
trate	information.	For	example,	if	PGP	files	are	not	commonly	used	in	the	
victim	 environment,	 searching	 for	 .asc	 file	 extensions	 and	 PGP	 headers	
may reveal activities related to the intrusion.

	 •	 	Review	the	contents	of	the	/usr/sbin and /sbin directories for files with
date-time stamps around the time of the incident, scripts that are not nor-
mally located in these directories (e.g., .sh or .php scripts), or executables
not associated with any known application (hash analysis can assist in this
type of review to exclude known files).

	 •	 	Since	many	of	the	items	in	the	/dev directory are special files that refer
to a block or character device (containing a “b” or “c” in the file per-
missions), digital investigators may find malware by looking for normal
(non-special) files and directories.

	 •	 	Look	for	unusual	or	hidden	files	and	directories,	such	as	“..	”	(dot	dot	
space)	or	“..^G	”	(dot	dot	control-G),	as	these	can	be	used	to	conceal	
tools and information stored on the system.

	 •	 	Intruders	 sometimes	 leave	 setuid	 copies	 of	 /bin/sh on a system to
allow	 them	root	 level	access	at	a	 later	 time.	Digital	 investigators	can	
use the following commands to find setuid root files on the entire file
system:
find /mnt/evidence -user root -perm -04000 –print

	 •	 	When	 one	 piece	 of	 malware	 is	 found	 in	 a	 particular	 directory	
(e.g., /dev or /tmp), an inspection of other files in that directory may
reveal additional malware, sniffer logs, configuration files, and stolen
files.

	 •	 	Looking	for	files	that	should	not	be	on	the	compromised	system	(e.g.,	ille-
gal music libraries, warez, etc.) can be a starting point for further analysis.
For instance, the location of such files, or the dates such files were placed
on the system, can narrow the focus of forensic analysis to a particular area
or time period.

	 •	 	Time	line	analysis	is	one	of	the	most	powerful	techniques	for	organizing	
and analyzing file system information. Combining date-time stamps of
malware-related files and system-related files such as startup scripts and
application configuration files can lead to an illuminating reconstruction
of events surrounding a malware incident, including the initial vector of
attack and subsequent entrenchment and data theft.

� Tools for generating time lines from Linux file systems, includ-
ing plaso, which incorporates log entries, are discussed in the Tool Box
section.

184 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Review	date-time	stamps	of	deleted	inodes	for	large	numbers	of	files	being	
deleted around the same time, which might indicate malicious activity such
as installation of a rootkit or trojanized service.

	 •	 	Because	inodes	are	allocated	on	a	next	available	basis,	malicious	files	placed	
on the system at around the same time may be assigned consecutive inodes.
Therefore, after one component of malware is located, it can be productive to
inspect neighboring inodes. A corollary of such inode analysis is to look for
files with out-of-place inodes among system binaries (Altheide and Casey,
2010). For instance, as shown in Figure 3.14, if malware was placed in /
bin or /sbin directories, or if an application was replaced with a trojanized
version, the inode number may appear as an outlier because the new inode
number would not be similar to inode numbers of the other, original files.

	 •	 	Some	 digital	 forensic	 tools	 sort	 directory	 entries	 alphabetically	 rather	
than keeping them in their original order. This can be significant when
malware creates a directory and the entry is appended to the end of the
directory listing. For example, Figure 3.15	 shows	 the	Digital	Forensic	
Framework displaying the contents of the /dev directory in the left win-
dow pane with entries listed in the order that they exist within the direc-
tory file rather than ordered alphabetically (the tyyec entry was added

FIGURE 3.14–Trojanized binaries ifconfig and syslogd in /sbin have inode numbers that differ
significantly from the majority of other (legitimate) binaries in this directory

185Chapter | 3 Postmortem Forensics

	 •	 	Once	malware	is	 identified	on	a	Linux	system,	examine	the	file	permis-
sions to determine their owner and, if the owner is not root, look for other
files owned by the offending account.

Investigative Considerations

	 •	 	It	 is	often	possible	 to	narrow	down	 the	 time	period	when	malicious	
activity occurred on a computer, in which case digital investigators
can create a time line of events on the system to identify malware and
related components, such as keystroke capture logs.

	 •	 	There	are	many	forensic	techniques	for	examining	Linux	file	systems	that	
require a familiarity with the underlying data structures such as inode
tables and journal entries. Therefore, to reduce the risk of overlooking
important information, for each important file and time period in a mal-
ware incident, it is advisable to look in a methodical and comprehensive
manner for patterns in related/surrounding inodes, directory entries, file-
names, and journal entries using Linux forensic tools.

FIGURE 3.15–Rootkit	directory	displayed	using	the	Digital	Forensics	Framework,	which	retains	
directory order

last and contains adore rootkit files). In this situation, the fact that the
directory is last can be helpful in determining that it was created recently,
even if date-time stamps have been altered using anti-forensic methods.

186 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Although	it	is	becoming	more	common	for	the	modified	time	(mtime)	of	
a file to be falsified by malware, the inode change time (ctime) is not typi-
cally updated. Therefore, discrepancies between the mtime and ctime may
indicate that date-time stamps have been artificially manipulated (e.g., an
mtime before the ctime).

	 •	 	The	 journal	 on	 EXT3	 and	 EXT4	 contains	 references	 to	 file	 system	
records that can be examined using the jls and jcat utilities in
TSK.12

	 •	 	The	 increasing	 use	 of	 anti-forensic	 techniques	 in	 malware	 is	 making	 it	
more difficult to find traces on the file system. To mitigate this challenge,
use all of the information available from other sources to direct a forensic
analysis of the file system, including memory and logs.

EXAMINE APPLICATION TRACES

 R Scour files associated with applications for traces of usage related to
 malware.

 u Linux systems do not have a central repository of information like the Win-
dows	Registry,	but	individual	applications	maintain	files	that	can	contain	traces	
of activities related to malicious activities. Some common examples of applica-
tions traces are summarized below.

	 •	 	SSH:	Connections	 to	 systems	made	using	SSH	 to	 and	 from	a	 com-
promised system result in entries being made in files for each user
account (∼/.ssh/authorized_keys and ∼/.ssh/known_keys). These
entries	can	reveal	the	hostname	or	IP	address	of	the	remote	hosts	as	
shown in Figure 3.16.

	 •	 	Gnome Desktop:	 User	 accounts	 may	 have	 a	 ∼/.recently-used.xbel
file that contains information about files that were recently accessed using
applications	running	in	the	Gnome	desktop.

	 •	 	VIM:	 User	 accounts	 may	 have	 a	∼/.viminfo file that contains details
about	the	use	of	VIM,	including	search	string	history	and	paths	to	files	that	
were opened using vim.

	 •	 	Open Office:	Recent	files.
	 •	 	MySQL:	User	accounts	may	have	a	∼/.mysql_history file that contains

queries executed using MySQL.
	 •	 	Less:	 User	 accounts	 may	 have	 a	 ∼/.lesshst file that contains details

about the use of less, including search string history and shell commands
executed via less.

12	 Gregorio	Narváez “Taking advantage of Ext3 journaling file system in a forensic investigation,”
http://www.sans.org/reading_room/whitepapers/forensics/advantage-ext3-journaling-file-system-
forensic-investigation_2011.

187Chapter | 3 Postmortem Forensics

Investigative Considerations
	 •	 	Given	the	variety	of	applications	that	can	be	used	on	Linux	systems,	it	

is not feasible to create a comprehensive list of application traces. An
effective approach to finding other application traces is to search for
application files created or modified around the time of the malware
 incident.

KEYWORD SEARCHING

 R Search for distinctive keywords each time such an item is uncovered dur-
ing forensic analysis.

 u Searching for keywords is effective when you know what you are looking
for but do not know where to find it on the compromised system. There are
certain features of a malware incident that are sufficiently distinctive to war-
rant a broad search of the system for related information. Such distinctive items
include:

	 •	 	Malware Characteristics: Names of tools that are commonly used by
intruders and strings that are associated with known malware can be used
as keywords (e.g., trojan, hack, sniff). Some of the rootkit scanning tools
have file names that are commonly associated with known malware but
only searches for these in active files, not in unallocated space. Some

FIGURE 3.16–SSH	usage	remnants	in	known_hosts for the root account viewed using The
Sleuth	Kit

188 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

rootkits have their own configuration files that specify what will be hid-
den,	 including	process	names	and	IP	addresses.	Such	configuration	files	
can provide keywords that are useful for finding other malicious files or
activities on the compromised system and in network traffic. Searching
a compromised system for strings associated with malware can help find
files that are related to the incident as shown in Figures 3.17 and 3.18 for
the Adore rootkit.

FIGURE 3.17–Keyword	searching	for	the	string	“adore”	using	PTK	indexed	search13

FIGURE 3.18–Keyword	searching	for	the	string	“adore”	using	SMART	forensic	tool14

13 www.dflabs.com.
14 www.asrdata.com.

189Chapter | 3 Postmortem Forensics

	 •	 	Command-Line Arguments: Looking for commands that malware use
to execute processes on or obtain information from other systems on the
network or to exfiltrate data can reveal additional information related to the
intrusion (e.g., openvpn, vncviewer).

	 •	 	IP Addresses:	IP	addresses	may	be	stored	in	the	human	readable	dot	deci-
mal	format	(e.g.,	172.16.157.136)	in	both	ASCII	and	Unicode	formats,	and	
can be represented in hex (e.g., ac 10 9d 88) both in little and big endian
formats. Therefore, it might be necessary to construct multiple keywords
for	a	single	IP	address.

	 •	 	URLs:	Use	of	standard	character	encoding	in	URLs	such	as	%20	for	space	
and	%2E	for	a	“.”	can	impact	keyword	searching.	Therefore	it	might	be	
necessary	to	construct	multiple	keywords	for	a	single	URL.

	 •	 	Hostnames:	Hostnames	of	computers	used	to	establish	remote	connections	
with a compromised system may be found in various locations, including
system logs.

	 •	 	Passphrases: Searching for passphrases and encryption keys associated
with malicious code can uncover additional information related to mal-
ware.

	 •	 	File Characteristics: File extensions and headers of file types com-
monly used to steal data (e.g., .asc, .rar, .7z) can find evidence of data
theft.

	 •	 	Date-Time Stamps: System logs that have been deleted during a malware
incident	may	 still	 exist	 in	unallocated	 space.	Using	 the	date-time	 stamp	
formats that are common in system logs, it is possible to search unallocated
space for deleted log entries with date-time stamps around the period of
the malware incidents. The command in Figure 3.19 searches unallocated
space of a forensic duplicate for any entry dated November 13, and prints
the byte offset for each matching line.

blkls -A /evidence/phalanx2.dd | strings –t d | grep “Nov 13”

FIGURE 3.19–Salvaging deleted log entries dated Nov 13 by searching for strings in unallocated
space that is extracted from a forensic duplicate using the blkls	utility	from	The	Sleuth	Kit

 Analysis Tip

Search Smart
The use of partitions in Linux to group different types of data can make key-
word	searching	more	effective.	For	instance,	rather	than	scouring	the	entire	hard	
drive, digital investigators may be able to recover all deleted log entries by simply
searching the partition that contains log files.

190 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

FORENSIC RECONSTRUCTION OF COMPROMISED LINUX
SYSTEMS

 R Performing a comprehensive forensic reconstruction can provide digital
investigators with a detailed understanding of the malware incident.

 u Although it may seem counterintuitive to start creating a time line before
beginning a forensic examination, there is a strong rationale for this prac-
tice.	Performing	temporal	analysis	of	available	information	related	to	a	mal-
ware incident should be treated as an analytical tool, not just a byproduct
of a forensic examination. Even the simple act of developing a time line of
events can reveal the method of infection and subsequent malicious actions
on the system. Therefore, as each trace of malware is uncovered, any tem-
poral information should be inserted into a time line until the analyst has
a comprehensive reconstruction of what occurred. When multiple digital
investigators are examining available data sources, it is important to com-
bine everyone’s findings into a shared time line in order to obtain visibility
of the overall incident.
 u Interacting with malware in its native environment can be useful for devel-
oping a better understanding of how the malware functions. Functional analysis
of a compromised Linux system involves creating a bootable clone of the sys-
tem and examining it in action.

	 •	 	One	 approach	 to	 creating	 a	 bootable	 clone	 is	 using	 Live	View.	The	
snapshot	 feature	 in	 VMWare	 gives	 digital	 investigators	 a	 great	
degree of latitude for dynamic analysis on the actual victim clone
image. Another approach to performing functional reconstruction is
to restore a forensic duplicate onto a hard drive and insert the restored
drive into the original hardware. This is necessary when malware
detects that it is running in a virtualized environment and take eva-
sive action to thwart forensic examination. Some malware may look
for characteristics that are specific to the compromised system such
as the network interface address (MAC). Therefore, using a forensic
duplicate/clone may be necessary depending on the sophistication of
the malware.

	 •	 	As	 an	 example	 of	 the	 usefulness	 of	 functional	 analysis,	 consider	 a	
system compromised with the Adore rootkit. In this instance, the mal-
ware was found in the /dev/tyyec directory, which was hidden (not
visible on the live system) but was observed during forensic analysis,
and the digital investigator used a bootable clone of the compromised
system to observe the functionality of two associated utilities as
shown in Figure 3.20. Changing the directory into the hidden direc-
tory and typing ls reveals components of the Adore rootkit files.
Running	 the	 main	Adore	 program	 displays	 the	 usage,	 including	 an	
uninstall option.

191Chapter | 3 Postmortem Forensics

	 •	 	After	uninstalling	the	Adore	rootkit	from	the	resuscitated	subject	system,	
the port 31337 that was previously hidden is now visible and clearly associ-
ated with the “klogd” process as shown in Figure 3.21.

cd /dev/tyyec
ls
adore-ng.o ava cleaner.o log relink startadore swapd
symsed zero.o

./ava

Usage: ./ava {h,u,r,R,i,v,U} [file or PID]

I print info (secret UID etc)
h hide file
u unhide file
r execute as root
R remove PID forever
U uninstall adore
i make PID invisible
v make PID visible

./ava U
Checking for adore 0.12 or higher ...

Adore 1.41 installed. Good luck.
Adore 0.41 de-installed.

FIGURE 3.20–Performing	functional	analysis	of	Adore	rootkit	on	forensic	duplicate	loaded	into	
VMWare	using	Live	View

netstat –anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State PID/Program name
tcp 0 0 0.0.0.0:32768 0.0.0.0:*
LISTEN 561/rpc.statd
tcp 0 0 127.0.0.1:32769 0.0.0.0:*
LISTEN 694/xinetd
tcp 0 0 0.0.0.0:31337 0.0.0.0:*
LISTEN 5961/klogd -x
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN 542/portmap
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN 680/sshd
tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN 717/sendmail: accep
udp 0 0 0.0.0.0:32768 0.0.0.0:*
561/rpc.statd
udp 0 0 0.0.0.0:68 0.0.0.0:*
468/dhclient
udp 0 0 0.0.0.0:111 0.0.0.0:*
542/portmap

FIGURE 3.21–Previously	hidden	port	31337	revealed	during	functional	analysis	of	the	Adore	
rootkit on a resuscitated subject system

192 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	Furthermore,	a	process	named	“grepp”	that	was	not	previously	visible,	is	
now displayed in the ps output as shown in Figure 3.22.

Investigative Considerations

	 •	 	In	some	situations,	malware	defense	mechanisms	may	utilize	characteristics	
of the hardware on a compromised computer such as MAC address, in which
case it may be necessary to use a clone hard drive in the exact hardware of
the compromised system from which the forensic duplicate was obtained.

ADVANCED MALWARE DISCOVERY AND EXTRACTION FROM
A LINUX SYSTEM

 R Perform targeted remote scan of all hosts on the network for specific
 indicators of the malware.

	 •	 	Since the Malware Forensics textbook was published in 2008, more
tools have been developed to address the increasing problem of malware
designed to circumvent information security best practices and propagate
within a network, enabling criminals to steal data from corporations and
individuals despite intrusion detection systems and firewalls.

	 •	 	Some	tools,	such	as	the	OSSEC	Rootcheck,15 can be used to check every
computer that is managed by an organization for specific features of mal-
ware and report the scan results to a central location. When dealing with
malware that is not covered by the OSSEC default configuration, this tool
can be configured to look for specific files or strings known to be associ-
ated with malware. Even when searching for specific malware, it can be
informative	to	include	all	default	OSSEC	Rootcheck	configuration	options,	
finding malware that was not the focus of the investigation.

	 •	 	Other	COTS	remote	forensic	tools	such	as	EnCase	Enterprise,	F-Response,	
FTK	Enterprise,	and	SecondLook	can	be	configured	to	examine	files	and/
or memory on remote systems for characteristics related to specific mal-
ware. For example, the SecondLook Enterprise Edition can be used to
scan a remote system that is configured to run the agent and pmad.ko
modules using the command line (secondlook-cli -t secondlook@
compromisedserver.orgx.net info)	 or	 via	 the	 GUI	 as	 shown	 in	

15 http://www.ossec.net/en/rootcheck.html.

/media/cdrom/Linux-IR/ps auxeww | grep grepp
root 5772 0.0 0.2 1684 552 ? S 17:31 0:01 grepp -t
172.16.@ PATH=/usr/bin:/bin:/usr/sbin:/sbin PWD=/dev/tyyec/log SHLVL=1
_=/usr/bin/grepp OLDPWD=/dev/tyyec

FIGURE 3.22–Previously	hidden	process	grepp	revealed	during	functional	analysis	of	the	Adore	
rootkit on a resuscitated subject system

mailto:secondlook@compromisedserver.orgx.net
mailto:secondlook@compromisedserver.orgx.net

193Chapter | 3 Postmortem Forensics

Figure 3.23. Additional coverage of memory analysis techniques and
tools, including SecondLook, are covered in Chapter 2.

	 •	 	In addition, some groups that specialize in intrusion investigation have
 developed customized tools to examine remote systems for traces of
malicious code. For instance, it is sometimes possible to use information
obtained from the malware analysis process discussed in Chapter 5 to
develop a network-based scanner that “knocks on the door” of remote
systems on a network in order to determine whether the specific rootkit is
present.

CONCLUSIONS

	 •	 	If	 malware	 is	 present	 on	 a	 system,	 it	 can	 be	 found	 by	 applying	 the	
forensic examination approach outlined in this chapter. Following such
a methodical, documented approach will uncover the majority of trace
evidence relating to malware incident and has the added benefit of being
repeatable each time a forensic examination is performed. By conducting
each forensic examination in a consistent manner, documenting each step
along the way, digital investigators will be in a better position when their
work is evaluated by other practitioners or in a court of law.

FIGURE 3.23–Detecting	the	jynx2	rootkit	on	a	Linux	system	using	SecondLook

194 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

	 •	 	As	 more	 trace	 evidence	 is	 found	 on	 a	 compromised	 system,	 it	 can	 be	
combined to create a temporal, functional, and relational reconstruction
of the malware incident. In addition, information recovered from com-
promised hosts can be correlated with network-level logs and memory, as
well as the malicious code itself, to obtain a more comprehensive picture
of the malware incident.

	 •	 	Use	characteristics	extracted	from	one	compromised	host	to	search	other	
systems on the network for similar traces of compromise.

195Chapter | 3 Postmortem Forensics

 Pitfalls to Avoid

Stepping in Evidence
 x	 	Do	not	perform	the	steps	outlined	in	this	chapter	on	the	original	system.
 R Create a forensic duplicate of the hard drive from the original system

and perform all analysis on a working copy of this data. In this way, no
alterations are made to the original evidence during the forensic exami-
nation.

 R Make working copies of the forensic duplicate to ensure that any cor-
ruption or problems that arise during a forensic examination does not
ruin the only copy of the forensic duplicate.

Missed or Forgotten Evidence
 x	 	Do	not	skip	a	step	in	the	forensic	examination	process	for	the	sake	of	expe-

diency.
 R Make an investigative plan, and then follow it. This will ensure that you

include all necessary procedures.
 R Be methodical, reviewing each area of the system that may contain

trace evidence of malware.
 R	 	Document	what	you	find	as	you	perform	your	work	so	that	it	is	not	lost	

or forgotten later. Waiting to complete documentation later generally
leads to failure because details are missed or forgotten in the fast pace
of an investigation.

 R Combine information from all available data sources into a shared time
line of events related to the incident.

Failure to Incorporate Relevant Information from Other Sources
 x	 	Do	not	assume	that	you	have	full	information	about	the	incident	or	that	a	

single person performed the initial incident review and response.
 R	 	Determine	all	of	 the	people	who	performed	 field	 interviews,	volatile	

data preservation, and log analysis, and obtain any information they
gathered. Incorporate such information into the overall time line that
represents the entire incident.

 R	 	Review	documentation	such	as	the	Field	Interview	notes	for	informa-
tion that can help focus and direct the forensic examination. If a par-
ticular individual did not maintain documentation of their work and
findings, speak with them to obtain details.

This page intentionally left blank

197Chapter | 3 Postmortem Forensics

FIELD NOTES: LINUX SYSTEM EXAMINATIONS

Note: This document is not intended as a checklist, but rather as a guide to
increase consistency of forensic examination of compromised Linux systems.
When dealing with multiple compromised computer systems, it may be neces-
sary to tabulate the results of each individual examination into a single docu-
ment or spreadsheet.

Case Number: Date/Time:

Examiner Name: Client Name:

Organization/Company: Address:

Incident Type: Trojan Horse Worm Virus
Bot Scareware/Rogue AV Rootkit
Logic Bomb Keylogger Ransomware
Sniffer Other: Unknown

System Information: Make/Model:

Operating System: Forensic Duplication Method:
Postmortem acquisition
Live console acquisition
Live remote acquisition

Network State:
Connected to Internet
Connected to Intranet
Disconnected

Role of System:
Workstation: Credit Card Processing System:
Web Server: Other:

FORENSIC DUPLICATE
Physical Hard Drive Acquisition:

Acquired Not Acquired [Reason]:
Date/Time :
File Name:
Size:
MD5 Value:
SHA1 Value:
Tool used:

198 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

E-mail: E-mail:
Sender address: Sender address:
Originating IP: Originating IP:
Attachment name: Attachment name:
Attachment description: Attachment description:

___ __
___ __

File/Directory Identified:
Method of identification (e.g., stripped, unique string):

File Name:
Inode Change/Birth date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Method of identification (e.g., stripped, unique string):

File Name:
Inode Change/Birth date-time stamp:
File location on system (path):
File location on system (clusters):

File/ Directory Identified:
Method of identification (e.g., stripped, unique string):

File Name:
Inode Change/Birth date-time stamp:
File location on system (path):
File location on system (clusters):

Suspicious Installed Programs:

Application name and description:

Software installation path:

Application name and description:

Software installation path:

Known Malware:

Note: AntiVirus software may quarantine known malware in a compressed/encoded format.
File/Folder Identified:
Method of identification (e.g., Hashset, AntiVirus):

File Name:
Inode Change/Birth date-time stamp:
File location on system (path):
File location on system (clusters):

File/Folder Identified:
Method of identification (e.g., Hashset, AntiVirus):

File Name:
Inode Change/Birth date-time stamp:
File location on system (path):
File location on system (clusters):

File/Folder Identified:
Method of identification (e.g., Hashset, AntiVirus):

File Name:
Inode Change/Birth date-time stamp:
File location on system (path):
File location on system (clusters):

KNOWN MALWARE:

SUSPICIOUS INSTALLED PROGRAMS:

SUSPICIOUS E-MAILS AND ATTACHMENTS:

SUSPECT EXECUTABLE FILES:

199Chapter | 3 Postmortem Forensics

Suspicious Services:

Services Examined
Suspicious Services(s) Identified:
Yes
No

Suspicious Service Identified:
Service Name:

Associated executable path:
Associated startup script date-time stamps:

Suspicious Service Identified:
Service Name:

Associated executable path:
Associated startup script date-time stamps:

Malicious Auto-starts:
Auto-start description:

Auto-start location:
Auto-start description:

Auto-start location:

Questionable User Accounts:

User account _________________ on the system:
Date of account creation:
Login date
Shares, files, or other resources accessed by the user account:
Processes associated with the user account:
Network activity attributable to the user account:
Passphrases associated with the user account:

User account _________________ on the system:
Date of account creation:
Login date
Shares, files, or other resources accessed by the user account:
Processes associated with the user account:
Network activity attributable to the user account:
Passphrases associated with the user account:

Scheduled Tasks Examined
Tasks Scheduled on the System
Yes
No

Suspicious Task(s) Identified:
Yes
No

Suspicious Task(s)
Task Name:

Scheduled Run Time:
Status:
Description:

Task Name:
Scheduled Run Time:
Status:
Description:

MALICIOUS AUTO-STARTS:

QUESTIONABLE USER ACCOUNTS:

SCHEDULED TASKS:

SUSPICIOUS SERVICES:

200 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

File name:
Malware name:
AntiVirus action:

FILE SYSTEM CLUES

File System Entries:

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
Handle Value:
File location on system:

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

File/Directory Identified:
Opened Remotely/ Opened Locally

File Name:
Creation Date-time stamp:
File location on system (path):
File location on system (clusters):

HOST-BASED LOGS

AntiVirus Logs:

AntiVirus Type:
AntiVirus log location:
AntiVirus log entry description:

Detection date:
File name:
Malware name:
AntiVirus action:

AntiVirus log entry description:

Detection date:
File name:
Malware name:
AntiVirus action:

AntiVirus log entry description:

Detection date:

Artifacts to Look for on Storage Media:
FILE SYSTEM CLUES

FILE SYSTEM ENTRIES:

HOST-BASED LOGS

Notes:

201Chapter | 3 Postmortem Forensics

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ \Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Log Entry Identified:
Security/ System/ Other _____________

Event type:
Source:
Creation Date-time stamp:
Associated account/computer:
Description:

Web browser history:
Suspicious Web Site Identified:
Name:

URL:
Last Visited Date-time stamp:
Description:

Suspicious Web Site Identified:
Name:

URL:
Last Visited Date-time stamp:
Description

Suspicious Web Site Identified:
Name:

URL:
Last Visited Date-time stamp:
Description:

Suspicious Web Site Identified:
Name:

URL:
Last Visited Date-time stamp:
Description:

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

LINUX SYSTEM LOGS:

WEB BROWSER HISTORY:

HOST-BASED FIREWALL LOGS:

202 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Crash dump:
File name:
Creation date-time stamp:
File location on system (path):
File location on system (cluster):

Description:

Crash dump:
File name:
Creation date-time stamp:
File location on system (path):
File location on system (cluster):

Description:

NETWORK CLUES

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

IP Address Found:
Local IP Address: ___.___.___.___ Port Number: ____
Remote IP Address: ___.___.___.___Port Number: ___
Remote Host Name:_____________________________
Protocol:

TCP
UDP

Suspicious Web Site/URL/E-mail Identified:
Name:

Description

Suspicious Web Site/URL/E-mail Identified:
Name:

Description

Suspicious Web Site/URL/E-mail Identified:
Name:

Description:

Suspicious Web Site/URL/E-mail Identified:
Name:

Description:

Association with other compromised system:
IP address:
Name:

Description

Association with other compromised system:
IP address:
Name:

Description

Association with other compromised system:
IP address:
Name:

Description:

Association with other compromised system:
IP address:
Name:

Description:

CRASH DUMP LOGS:

NETWORK CLUES

WEB SITE/URLS/E-MAIL ADDRESSES:

LINKAGE TO OTHER COMPROMISED SYSTEMS:

203Chapter | 3 Postmortem Forensics

Keyword Search Results:
Keyword:
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____

Keyword:
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____
Search hit description: _____________ Location: ____

SEARCH FOR KEYWORDS/ARTIFACTS

This page intentionally left blank

205Chapter | 3 Postmortem Forensics

In this chapter we discussed approaches to interpreting data structures in
memory on Linux systems. There are a number of forensic analysis tools that
you should be aware of and familiar with. In this section, we explore these tool
alternatives, often demonstrating their functionality. This section can also sim-
ply be used as a “tool quick reference” or “cheat sheet” as there will inevitably
be an instance during an investigation where having an additional tool that is
useful for a particular function would be beneficial, but while responding in the
field you will have little time to conduct research for or regarding the tool(s). It
is important to perform your own testing and validation of these tools to ensure
that they work as expected in your environment and for your specific needs.

FORENSIC TOOL SUITES

Name:
Author/Distributor: Brian Carrier and Open Source Collaborators
Page Reference: 43
Available From: http://www.sleuthkit.org
Description: The Sleuth kit is a free open source suite of forensic utilities that has a GUI called Autopsy.
This tool suite has strong support for Linux file systems and can be used to examine the full details of
inodes and other data structures. The Sleuth kit has a plugin framework that supports automated processing.
The Autopsy GUI for The Sleuth kit is shown herewith a Linux file system:

The Sleuth kit & Autopsy

206 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Additional Options:
PTK has options to index forensic duplicate for keyword searching, to create a file system time line,
calculate file hashes, and perform signature/header analysis as shown here in the indexing operations
screen for a forensic duplicate.

The resulting time line can be filtered by date and displayed in a tabular or graphical form.

Name:
Page Reference: 26
Author/Distributor: DFLabs
Available From: http://www.dflabs.com
Description: The PTK suite builds on The Sleuth kit framework to provide added functionality, including
keyword indexing and signature matching. This tool uses a database to provide stability and flexibility,
saving processing results between uses.

PTK

207Chapter | 3 Postmortem Forensics

Name: Digital Forensics Framework
Page Reference: 23
Author/Distributor: DFF
Available From: http://www.digital-forensic.org/
Description: The Digital Forensics Framework is a free open source tool that has strong support for Linux
file systems. The DFF has a plugin framework that supports the development and integration of customized
features.
The DFF GUI is shown here with a Linux file system:.

Name:
Page Reference: 26
Author/Distributor: ASR Data
Available From: http://www.asrdata.com
Description: The SMART tool can be used to perform an examination of a Linux file system, including
browsing directories and keyword searching of active and unallocated space. This tool does not display
names of recoverable deleted files that are still referenced in a Linux file system, but does provide access to
unallocated space, which contains the content of deleted files.
The SMART GUI is shown below with a Linux file system and several examination options.

SMART

208 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

Features and Plugins:
DFF has a variety of features, including keyword searching shown below, and uses a plugin approach to
adding capabilities.

Name:
Page Reference: 6
Author/Distributor: Guidance Software
Available From: http://www.guidancesoftware.com
Description: EnCase is a commercial integrated digital forensic examination program that has a wide
range of features for examining forensic duplicates of storage media. This tool has limited support for
Linux file systems but does not provide access to the full range of file system metadata:

EnCase

209Chapter | 3 Postmortem Forensics

Name:
Page Reference: 6
Author/Distributor: AccessData
Available From: http://www.accessdata.com
Description: FTK is a commercial integrated digital forensic examination program that has a wide range
of features for examining forensic duplicates of storage media. This tool has strong Linux files system
support as shown in the following figure, displaying inode metadata in full detail. In addition to parsing
and displaying common file systems, FTK recovers deleted files and performs indexing to facilitate
keyword searching.

Name:
Author/Distributor: Nuix
Page Reference: 6
Available From: http://www.nuix.com
Description: Nuix is a suite of commercial digital forensic programs for extracting information from
forensic duplicates of storage media, categorizing content, and performing correlation. This tool has strong
Linux file system support, including EXT, and Android devices as shown in the following figure,
displaying detailed inode metadata. Correlation can be performed between activities on a single system, or
across multiple systems to create an overall viewpoint of activities in an investigation. In addition to
parsing and displaying various file formats, including e-mail and chat communications, Nuix recovers
deleted file and performs indexing to facilitate keyword searching. Data extracted using Nuix can be
displayed and analyzed visually using temporal information, file type, and other characteristics.

Nuix

FTK

210 MALWARE FORENSICS FIELD GUIDE FOR LINUX SYSTEMS

TIMELINE GENERATION

Name: plaso

Page Reference: 21
Author/Distributor: Kristo Gudjonsson
Available From: https://code.google.com/p/plaso/ and http://plaso.kiddaland.net
Description: The log2timeline and psort tools are part of a free open source suite called plaso that
extracts information from a variety of logs and other date-time stamps data sources and consolidates the
information in a comprehensive time line for review. This tool suite can be used to process individual files
or an entire mounted file system to extract information from supported file formats. For example, the
following command processes a forensic duplicate of a Linux system, creating a database named
“l2timeline.db” that can be examined using psort (e.g., to extract items between August 16–18, 2013
in this example), and other tools in the plaso suite:

% log2timeline -i -f linux -z EST5EDT l2timeline.db host1.dd
<cut for length>
% psort -o L2tcsv l2timeline.db host1.dd \
-t 2013-08-16 -T 2013-08-18 -w output.csv

211Chapter | 3 Postmortem Forensics

SELECTED READINGS

Books
Altheide,	 C.	 &	 Carvey,	 H.	 (2011).	 Digital	 Forensics	 with	 Open	 Source	Tools.	 Burlington,	 MA:	

Syngress.
Carrier,	B.	(2005).	File	System	Forensic	Analysis.	Reading,	MA:	Addison-Wesley	Professional.
Casey,	E.	 (2011).	Digital	Evidence	and	Computer	Crime:	Forensic	Science,	Computers,	and	 the	

Internet (3rd	edition).	San	Diego,	CA:	Academic	Press.
Casey,	 E.	 (2009).	 Handbook	 of	 Digital	 Forensics	 and	 Investigation.	 San	 Diego,	 CA:	Academic	

Press.

Papers
An	analysis	of	Ext4	for	digital	 forensics	DFRWS2012	Conference	Proceedings.	Retrieved	from,	

http://www.dfrws.org/2012/proceedings/DFRWS2012-13.pdf.
Eckstein,	K.	(2004).	Forensics	for	advanced	Unix	file	systems.	In:	IEEE/USMA	information	assur-

ance workshop. p. 377–85.
Eckstein,	K.	&	Jahnke	M.	(2005).	Data	hiding	in	journaling	file	systems.	Digital	Forensic	Research	

Workshop	(DFRWS).	p.	1–8.
Swenson	C,	Phillips	R,	&	Shenoi	S.	(2007).	File	system	journal	forensics.	In:	Advances	in	digi-

tal	 forensics	 III.	 IFIP	 international	 federation	 for	 information	 processing,	 vol.	 242.	 Boston:	
Springer. p. 231–44.

http://www.dfrws.org/2012/proceedings/DFRWS2012-13.pdf

This page intentionally left blank

