
33
Input/Output Using Free Format

Most input and output functions are the same in free-format RPG IV as in fixed
format except for the location of the code within the source line. One more sub-
stantial difference introduced in free format is the use of alternatives to a key list
in database I/0 for Chain, Set, and similar operations. Also, database update now
features the new %Fields built-in function option.

In this chapter, we look at the operations, options, and built-in functions now
available for database I/O, as well as for workstation I/O and printer output.
You’ll find that the free-format approach to input and output varies little from the
extended Factor 2 calculation format.

Database Input
Input from database files comes from various operations: Read (Read next),
ReadE (Read next equal), ReadP (Read prior), ReadPE (Read prior equal), Chain
(Chain), Setll (Set lower limit), and Setgt (Set greater than). The set file pointer
operations Setll and Setgt don’t provide data from a record, but they can furnish

29

information about a file’s key (found or equal) without accessing the record data.
Of course, these operations also set the file pointer.

If successful, all the read operations and Chain provide data from an entire re-
cord. If unsuccessful, these operations set a condition: “end-of-file” for the read
operations or “not found” for Chain. In most programs, we check these condi-
tions to determine what to do next. If end-of-file or not found is determined, the
record data remains unchanged from a prior successful operation. If no prior suc-
cessful operation occurred, fields of the record retain their initial value.

If you’re already familiar with the database input operations from your experi-
ence with fixed-format RPG, you’ll have no problem adjusting to free format.
The big difference is that we can’t call on resulting indicators in free format, so
we must use built-in functions to determine the outcome of attempted input or
output functions. These built-in functions — %Eof, %Equal, %Error, and
%Found — have been available for extended Factor 2 calculations for several
years.

%Eof
The %Eof built-in function tests a specified file for end-of-file. If you specify no
file, %Eof checks the last file read for end-of-file. The function returns a value
of the indicator data type: either the value ‘1’ to signify that the end-of-file condi-
tion was met or ‘0’ otherwise.

You can use the %Eof built-in with all read operations. In the case of read prior
operations, %Eof lets you test for beginning-of-file. Listing 3-1 shows examples
of read operations used with the %Eof built-in function.

Listing 3-1: Read operations using the %Eof built-in function

/free
Read File_A; // Read first record
Dow not %eof(File_A); // While not at end-of-file

// Process record
Read File_A; // Read next record

Enddo;

30

CHAPTER 3: Input/Output Using Free Format

Setgt *Hival File_B; // Set file pointer to eof
ReadP File_B; // Read prior – first
Dow not %eof(File_B); // While not at beg-of-file
// Process record
ReadP File_B; // Read next prior

Enddo;

/end-free

%Found
Another built-in function used with database input is %Found. You use this func-
tion after a Chain operation to determine whether the record access was success-
ful. Like the %Eof built-in function, %Found returns a value of the indicator data
type: value ‘1’ for record found or ‘0’ for no record found. You can optionally
specify the name of the file you want to test with %Found. If you specify no file
name, the operation checks the most recent operation that sets a %Found condi-
tion. In addition to Chain, the following operations can set %Found: Check
(Check characters), CheckR (Check reverse), Delete (Delete record), Lookup
(Look up a table or array element), Scan (Scan string), Setgt (Set greater than),
and Setll (Set lower limit).

In Chapter 2, we reviewed keyed access for Chain and Set operations. Two alter-
natives are now available that eliminate the need for the Klist (Define a compos-
ite key) and Kfld (Define parts of a key) operations. In the first method, a named
data structure defined in definition specifications uses a keyword LikeRec with a
data file record name as its first parameter and *Key as the second. (You can also
use the keyword ExtName with the data file record name and *Key as the second
parameter.) The record name you specify should match the record name of the
file that will be used in the Chain or similar operation in the calculations. The
data structure becomes a qualified data structure, with subfields referenced using
the form recordname.fieldname. The subfields of this data structure that are re-
lated to the keys of the file will be used as the argument key fields. On the Chain
or similar operation, you use the %Kds built-in function. This function has two
parameters: the named data structure mentioned above and an optional constant
specifying how many key fields to use from the data structure in the operation. If
omitted, the second parameter defaults to all key fields.

31

Database Input

The second method available as an alternative to the Klist and Kfld operations is
the inline composite argument list, which you provide on the calculation opera-
tion line. In this approach, you specify fields in a parameter-style list, and to-
gether these fields comprise the lookup key argument.

When you use either of these methods, no fixed-format calculations (for Klist
and Kfld) are necessary. Listing 3-2 shows sample Chain operations that use the
%Found built-in function and the two key list alternatives.

Listing 3-2: Chain operation alternatives with %Found built-in function

D Rec_Key DS LikeRec(File_C:*key)
* Assume File_C has key fields CustNo and Invno

/free
// Method 1, using the Rec_Key data structure
Rec_key.Custno = Arg_Cust;
Rec_key.Invno = Arg_Inv;
Chain %kds(Rec_key) File_C;
If %found(FileC);
// Process found record here

Endif;

// Method 2, using a composite argument list
// No data structure or key list is needed
Chain (Arg_Cust:Arg_Inv) File_C;
If %found(File_C);
// Process found record here

Endif;

/end-free

You can also use the %Found built-in function after a Setll or Setgt operation. In
this situation, %Found returns the value ‘1’ if there is a key in the file whose
value is equal to or greater than the key list argument (for Setll) or whose value is
greater than the key list argument (for Setgt).

32

CHAPTER 3: Input/Output Using Free Format

%Error
Another built-in function available for Read and Chain database operations is the
%Error built-in function. To enable this function, you must specify the operation
extender (e) on the Read or Chain operation. The (e) extender tells the compiler
that you want to handle file errors associated with the Read or Chain. Specifying
the (e) disables the RPG default error handler for the operation. The %Error
built-in function returns a value of data type indicator: ‘1’ if an error occurred or
‘0’ otherwise.

If you use the (e) extender, it’s important to include some kind of error handling
in your program. To do so, code an “If %error” statement after the Read or
Chain, followed by the desired error handling. The (e) operation extender pro-
vides the same function as placing an indicator in the low position of resulting in-
dicators in the original fixed-format version of Read and Chain. If you place the
(e) extender on a Read or Chain operation but don’t test %Error, you are permit-
ting an error to occur without any action being taken. It’s difficult to predict the
harm that this omission might cause.

Listing 3-3 shows an example that uses the %Error function.

Listing 3-3: Chain and Read operations with the %Error built-in function

/free
Chain(e) (Arg_Cust:Arg_Inv) File_D;
If %error;
Exsr Error_subr;

Endif;

Read(e) File_A;
If %error;
Exsr Error_subr;

Endif;
/end-free

%Equal
You can use the %Equal built-in function after a Setll operation to determine
whether a record whose key matches the key list argument exists in the file. You

33

Database Input

can use a partial key in the key argument list as well. This combination can pro-
vide a valuable utility if the file being accessed has a multiple-field key. For ex-
ample, say you have an “on-order” file with a two-part key: customer number
and order number. To determine whether a certain customer has one or more data
records in the file, you need only code a Setll to the file using the customer num-
ber as the argument and then check the status of %Equal after the Setll. If the
function returns ‘1’, data exists for the customer, and the file pointer is positioned
at the first record. If %Equal returns ‘0’, no data records exist for the customer.

Listing 3-4 illustrates using Setll and Setgt with built-in functions %Found and
%Equal.

Listing 3-4: Using Setll and Setgt with %Found and %Equal built-in
functions

/free
// Assume EmpMast has a three-part key:
// Company, Dept, and EmpNo.
// To check for existence of a specific record by
// key but without chaining:
Setll (Arg_Co:Arg_Dept:Arg_Empl) EmpMast;
If %equal(EmpMast);
// A specific employee record was found.

Endif;

// To determine whether at least one employee
// exists in a particular company and department
Setll (Arg_Co:Arg_Dept) EmpMast; // Set file pointer
If %equal(EmpMast); // Check for existence
// An employee record was found.

Endif;

// To set the file pointer to the next dept
Setgt (Arg_Co:Arg_Dept) EmpMast;

// %found will return ‘1’ after Setll or Setgt
// unless end-of-file is reached

/end-free

34

CHAPTER 3: Input/Output Using Free Format

Data Area Input
Data areas, especially data area objects, could reasonably be called part of the da-
tabase. You use the same data structures (definition specifications) regardless of
the format of the calculations. Input from a data area is accomplished automati-
cally, via the In (Retrieve a data area) operation, or by both methods.

Database Output
The following operations perform output to database files: Write (Add a new re-
cord), Update (Modify an existing record), Delete (Delete a record), and, if
you’re using program-described files, the Except (Exception output) operation.

Write
The Write operation adds a new record to a file. No prior read is necessary, but
the file must be opened before you request the Write. The operation writes an en-
tire record, and you must take care to ensure all fields are loaded properly before
the Write. If new records are to be added to a file, the file must have either a file
type of O or an A in position 20 to denote that you plan to add records to the file
being read (file type I) or updated (file type U).

Update
The Update operation works the same in free format as before. However, a new
built-in function, %Fields, gives free-format programmers the option to update
only specified fields instead of an entire record. You can do this in fixed format
by using the Except operation and output specifications, but the %Fields function
isn’t available to fixed-format users of the Update operation. Without the
%Fields option, the entire record is modified using the current values of the fields
defined in the record.

For an update to succeed, you must specify U (for update) on the file description
specification, and a successful Read (or Chain) of a record must occur. During
the time between the successful Read (or Chain) and the Update operation, the
record is locked. No other user can access the record for update until the update

35

Database Output

is performed, another record is read, or an Unlock (Unlock a data area or release
a record) operation is performed. Be aware that record locking provides a needed
function to maintain data integrity, but unless you program carefully, it can create
operational grief.

Delete
The Delete operation removes a record from a file. If you specify no search argu-
ment, the operation deletes the record most recently read with a Read or Chain
operation. If you specify a search argument (a relative record number or key),
the compiler uses the argument to locate the record to delete. For files using a
key, free format lets you use the %Kds built-in function or an in-line composite
list instead of the fixed-format Klist to specify the search key.

To verify that the Delete operation found and deleted the record, you should use
the %Found built-in function after the Delete. Using the search argument, no
prior read is needed. After a delete using a key argument, the file pointer is posi-
tioned to the next record after the deleted one.

Except
You use the Except operation with a label to specify which output in output spec-
ifications to perform. The output specifications have a matching label on Excep-
tion output records. The function of Except output in free-format RPG IV is
identical to fixed-format calculations.

Listing 3-5 shows some sample database output operations and their built-in
functions.

Listing 3-5: Database output operations and built-in functions

/free

// Write a new record in a file
Write Record_A;

// Update an entire record
Update Record_A;

36

CHAPTER 3: Input/Output Using Free Format

// Update only certain fields in the record
Update Record_A %fields(Name:Zip:Amount_Due);

// Delete the last record read
Delete Record_A;

// Delete a record using a key
Delete (Arg_1:Arg_2) Record_A;
If not %found;
Message = ‘Record was not deleted’;

Endif;

// Perform exception output

Except Label_A;

/end-free

Workstation I/O

To perform workstation input and output in free format, you use the same meth-
ods as in fixed format. The only difference is where you place the operation code
and parameters in the free-format source statement.

Write/Read

The most common operation to a workstation device is the Exfmt (Write/then
read format) operation. The write portion of this operation moves the data from
the specified record to the buffer of the display device’s open data path. The de-
vice function manager checks the option indicators and performs the selected op-
tions, such as setting display attributes, displaying error messages, or performing
keyword functions.

The read part of the Exfmt operation sends the output buffer to the device and
then waits for input from the device. The input occurs when the user presses ei-
ther Enter or an enabled function key. The operating system handles non-enabled
function keys by returning a message informing the user that the key is not
available.

37

Workstation I/O

Write
The Write operation usually is associated with a display file for which an overlay
function is needed — for example, for a trailer record preceding a subfile control
record or a message subfile record preceding a regular display format.

Read
We seldom use the Read operation in a display file. You can code it immediately
after a Write operation, but programmers usually use the Exfmt operation to per-
form this combination. Read is more commonly used when the specified file is an
Intersystem Communications Facility (ICF) file.

ICF I/O
RPG IV supports ICF files by letting you specify device WORKSTN in the file
description. The RPG operation codes that you specify dictate what the commu-
nications device will do. The file description includes a device name (Dev) key-
word that ICF requires. This keyword’s value corresponds to the device entry
names in the ICF file.

An Exfmt operation to an ICF record becomes a three-function combination:
send a record, send a “turnaround” instruction to the other station, and then re-
ceive a record from the other station. The Write operation is simply a send record
operation. The Read operation with a record format is a receive operation. If the
Invite keyword (DDS in the ICF file) was used previously on a Write operation, a
Read operation using the ICF file name becomes a read-from-invited-devices op-
eration. In communications lingo, this means that any device in the device file
(that has been invited) may now send to the program. With this kind of Read, you
can specify a record wait time limit that, if reached, can cause control to return to
the program along with a timeout exception.

Dsply
The Dsply (Display message) operation is available in free format to provide the
same functionality as its fixed-format counterpart. Because this operation comes

38

CHAPTER 3: Input/Output Using Free Format

from an original RPG format, you must remember to code the operation Dsply
first, followed by Factor 1 information, and then Factor 2 information.

Listing 3-6 shows examples of workstation I/O using free-format RPG IV.

Listing 3-6 Workstation I/O operations available in free format

/free

// The following Exfmt sends the “Prompt” record
// to the workstation and waits for the response.

Exfmt Prompt Display_F;

// The Write operation sends a record to a buffer.
// The requested functions are performed, but data
// is not displayed now. In subfile programming, a
// “Trailer” record is written before issuing a
// write/read for the “Control” record.

Write Trailer;
Exfmt Control;

// Using Intersystem Communications Facility (ICF),
// a Read is used (by file name) to access data
// from any invited communications device.
// The file is an ICF file and uses the Workstn
// device in the RPG IV file description.

Read(e) Comm_File;

// After the Read, either a data record has been
// received or a time-out has occurred. You can use
// the %error built-in to determine which is the
// case.

// The Dsply operation lets you communicate with
// the user. The operation can display a message
// and accept a response to an interactive user
// or to the system operator if running in batch.
// The following question will be sent to the
// external message queue, and the response
// will be returned in field Food.

39

Workstation I/O

Dsply (‘What’’s for Lunch?’) ‘ ‘ Food);

/end-free

Printer Output
In free-format RPG IV, you code printer output, whether program-described or
externally described, the same way you do in fixed format.

Overflow Indicator

The overflow indicator has been with RPG for a long time. Indicators OA–OG
and OV have served us well. In RPG IV, an externally described printer file can
use any numeric indicator. As of V5R1, you can also use a named indicator. This
new feature can make RPG IV programs that use printer files easier to read and
maintain. The named or numbered indicator is automatically set to *On when
printing occurs on or after the overflow line specified in the printer file defini-
tion. You can change the overflow line permanently by using the CHGPRTF
(Change Printer File) CL command or temporarily by using the OVRPRTF
(Override with Printer File) command.

Write

The Write operation uses a record name defined in the printer file and causes all
output for the record to be printed.

Except

You can use the Except operation with program-described printer files to print
using output specifications. Program-described printing provides nearly all the
functionality of externally described printing.

Listing 3-7 shows examples of printer output using free-format RPG IV.

40

CHAPTER 3: Input/Output Using Free Format

Listing 3-7: Output operations in free format

* An externally described printer file PrintFile
FPrintFile O E Printer Oflind(Ofl_1)
D Ofl_1 s n

/free
// To print all lines described by record Headings
Write Headings;

// To check for overflow and redo headings
If Ofl_1;
Write Headings;
Clear Ofl_1;

Endif;

// To print a line described by record Detail
Write Detail;

/end-free

* A program-described printer file Qprint
FQprint O F 120 Printer Oflind(Ofl_2)
D Ofl_2 s n

/free
// To print using tag Hdgs on output specs
Except Hdgs;

// To check for overflow and redo headings
If Ofl_2;
Except Hdgs;
Clear Ofl_2;

Endif;

// To print a detail line using tag Detail
Except Detail;

/end-free

41

Printer Output

