
1

INTRODUCTION

Since its inception in 1995 the Java language has continued to grow in popularity.
Originally intended as a language for embedded systems, the Java language has
moved far beyond that. Today Java is used by millions of developers in a myriad
of development efforts, from distributed components such as Enterprise
JavaBeans, to client-side GUI development with Swing and AWT. Java is used to
create Web pages with Java Server Pages and servlets, and to develop Web appli-
cations with Java plug-in applets and Java Webstart.

A common thread running through these applications is that they all need
data. As the marketing message of the Internet age constantly reminds us, infor-
mation drives the enterprise. That information is consumed by applications, and
the Java Database Connectivity (JDBC) API represents the tool of choice for Java
applications to access that data.

JDBC Today

C H A P T E R 1

Prentice Hall PTR
This is a sample chapter of JDBC: Database Programming with J2EEISBN: 0-13-045323-4For the full text, visit http://www.phptr.com©2002 Pearson Education. All Rights Reserved.

JDBC DESIGN

Just as Java was designed to provide platform independence from hardware/soft-
ware platforms, so too JDBC has been designed to provide some degree of data-
base independence for developers. JDBC is designed to provide a database-neutral
API for accessing relational databases from different vendors. Just as a Java appli-
cation does not need to be aware of the operating system platform on which it is
running, so too JDBC has been designed so that the database application can use
the same methods to access data regardless of the underlying database product.

JDBC was developed to work with the most common type of database: the
relational database. This is not to say that JDBC cannot be used with another type
of database. In fact, there are JDBC drivers that allow the API to be used to con-
nect to both high-end, mainframe databases, which are not relational, and to
access flat files and spreadsheets as databases (which are definitely not relational).
But the reality is that JDBC is most commonly used with relational databases.

THE RELATIONAL DATABASE

The technical definition of a relational database is a database that stores data as a
collection of related entities. These entities are composed of attributes that describe
the entity, and each entity has a collection of rows. Another way to think about a
relational database is that it stores information on real-world objects (the entities).
The information about the objects is contained in the attributes for the object.

Since real world objects have some type of relation to each other, we must
have a facility for expressing relations between the objects in the database. The
relationships between the database objects is described using a query language,
the most popular of which is the Structured Query Language (SQL). (Chapter 2
will describe relational databases and SQL in more detail.)

The relational database is the predominant form of database in use today.
Other database types include hierarchical, network, flat-file databases, and object
databases. Though the hierarchical database is still common on many mainframe
systems, it is not commonly used on other platforms.

JAVA AND RELATIONAL DATABASES

Since Java is an object-oriented language, it does not manage data as a relational
database does. Data is modeled as objects in Java application design. These objects
contain attributes (also referred to as members), which represent the details of the
object. From an object design perspective, an object is not stored—it persists. Its life

CHAPTER 1 ◗ JDBC TODAY2

extends over multiple invocations of the application. These objects are manipulated
using a procedural language with syntax similar to the C programming language.

All of this differs markedly from relational databases, which represent data
with tables and columns and manipulate the data using the non-procedural SQL.
What we are left with is an impedance mismatch between the object-oriented
model of Java and the relational model of relational databases. Ultimately, we
must reconcile this difference with our class design. This is a process known as
object-relational (OR) mapping and can be done manually by applying certain
design patterns, as we do later in this text, or can use various OR-mapping tools
(for example, TopLink - www.objectpeople.com, CocoBase - www.thought-
inc.com).

OBJECT DATABASES

From a pure object-oriented perspective, object databases provide a nice fit for
object-oriented development. Object databases are available that provide APIs and
query languages that can be used for Java. While these tools do provide a conven-
ient facility for persisting objects in Java, they generally do not provide a standard-
ized query language, and they begin to experience performance issues as the size
of the data set grows larger and queries against the data become more complex.

Object database management systems (ODBMS) have always enjoyed some
degree of popularity in some information technology (IT) sectors—for example,
finance and research—but for various reasons, these databases do not currently
enjoy the popularity of relational databases.

OBJECT-RELATIONAL MAPPING TOOLS AND JDO

An interesting alternative to both JDBC and object databases is the Java Data Object
(JDO) API. JDO provides a vendor-neutral facility for persisting Java objects. Like
the object database, this represents a natural, object-oriented approach to working
with data in a Java application. Issues such as transaction support and query lan-
guage capabilities are provided for in the JDO specification. Since the JDO specifi-
cation is not specific to any vendor, a developer could create a Java application
using JDO with SQL-Server and port it to use Oracle or DB2 without needing to
change any code.

JDO is not necessarily a replacement for JDBC but is instead a complemen-
tary approach. JDO will provide for the OR-mapping between the object defini-
tions of Java and the entities and attributes of the relational database, and JDBC
will provide the low-level access to the database. JDO and JDBC could be used

OBJECT-RELATIONAL MAPPING TOOLS AND JDO 3

together in an application with JDO being used to manage a large number of per-
sistent objects and JDBC being used to provide access to complex, legacy relation-
al databases that prove too difficult and expensive to map into objects.

Limitations of OR-Mapping and JDO
On the surface, JDO and OR-mapping provide a very attractive approach, but
there are potential issues. Data queries can become very complex even for a rela-
tively simple application. The nonprocedural nature of SQL allows complex
queries to be expressed relatively simply. It remains to be seen whether or not the
query language of JDO will provide this expressive elegance.

There is significant technology and experience that relational databases have
accumulated over the past 20 or more years that provide performance and usabil-
ity benefits for the application developer. Additionally, a significant amount of
existing data that Java applications must access is in relational databases.

RELATIONAL DATABASES AND SQL

One of the major benefits of relational databases is that they virtually all use stan-
dard SQL for a query language. Initially it was hoped that with SQL, applications
that were developed to work with a database from one vendor could easily be
ported to work with a database from another vendor. But that has not been the
case. Database vendors, in an effort to distinguish themselves from one another,
have extended the SQL language in many ways.

The extensions to SQL have been both problematic and beneficial. They have
been problematic in that a standard was being extended by vendors and thus
reducing the benefit of having a standard. But they have been a benefit in that the
extensions were often very useful (Oracle’s decode statement, for example).

Part of the extensions to existing SQL implementations are the Stored
Procedure Languages (SPL). Since SQL is a nonprocedural language, it has difficul-
ties managing certain complex operations where many layers of logic must be
applied, such as applying complex business rules to large amounts of report data.
SPLs are procedural languages like C or Java and can manage these complex logical
operations by providing procedural language facilities, such as conditional state-
ments and flow of control operators, and the ability to declare methods or functions.

These SPL implementations are complete programming languages that are
implemented within the database engine. It may seem that the inclusion of a pro-
gramming language in the database engine is redundant and unnecessary when
we are working with a full-fledged programming language like Java. But the
advantage of using an SPL to perform data processing is that the processing is
done in the database engine. The data used in the SPL procedure resides in the

CHAPTER 1 ◗ JDBC TODAY4

memory space of the database engine, so there is no need to move the data across
the network to a program in order to perform the processing. While this perform-
ance advantage may not be significant for the processing of 2,000 small rows of
data, it does become significant where large pools of data are being processed—
for example, the processing of a million rows of data. With large blocks of data, the
use of an SPL can mean the difference between only 1 hour of processing for a mil-
lion rows using an SPL procedure and 8 hours of processing required to extract the
data from the database and process it within a program.

Many relational databases also provide database triggers. These triggers are
associated with a database table and initiate various actions when database activ-
ity takes place against the table. Database update triggers, probably the most com-
mon type of trigger, are executed when a database insert, update, or delete is run
against a database table. These triggers are an excellent means of enhancing data-
base integrity and can be used to enforce business rules, replicate data, and pro-
vide auditing type facilities by logging table updates.

Other important extensions to relational databases include data fragmenta-
tion where data for a table is distributed across separate logical devices, thus
improving performance for scans of a large number of rows from the table. Also,
database replication where two different database servers running on two differ-
ent machines remain completely synchronized provides significant benefits.

THE JDBC API

The JDBC API was released in 1997 following a series of specifications that were
finalized in the previous year. The API was designed to make the Call Level
Interface (CLI) access of relational databases vendor-neutral. Each relational data-
base vendor had created its own version of a CLI for accessing its database. These
CLIs were primarily created for the C programming language and later C++. To
reduce confusion over these varying CLI implementations, the X/Open
Consortium created a standard CLI specification.

JDBC is currently divided into two Java packages: java.sql and
javax.sql. The java.sql package contains the core of the original JDBC API
and the various improvements on that package that have been made over the
years. The javax.sql package contains the extensions to the JDBC API that pro-
vide some very useful features that were originally added as part of the JDBC 2.0
standard extensions (yes, a contradiction in terms). Both the java.sql package
and javax.sql package are part of the J2SE 1.4 release.

The JDBC specification provides a set of interfaces that database vendors
must implement. Vendors have some flexibility in how they implement the JDBC
specification. Four different types of implementations have been identified, as
detailed in Table 1–1.

THE JDBC API 5

There are four different types of JDBC drivers. The distinctions between
these drivers are based primarily on the components of the driver, where the
components must reside, and the language used to develop the components.
Each database vendor uses a different set of calls and a different network proto-
col to access its database. These database vendors offer their own proprietary
APIs and drivers to provide access to their databases, and with all JDBC driver
types, JDBC calls must be mapped or converted to the vendor protocol. In the case
of the Type 1 driver, this mapping has an additional layer of indirection through
the binary library to the native CLI. The Type 3 driver provides this mapping
through a middleware server component that communicates with the client-side
driver and provides mapping and database communication. The Type 4 driver
provides this mapping through pure Java code written to manage the vendor-
specific protocol.

Type 1 and Type 2 drivers require binaries on the client machine. Type 3 and
Type 4 drivers, however, are pure Java solutions that significantly reduce porting
issues for JDBC driver providers.

Type 2 drivers require some binary code to reside on the client machine.
JDBC calls are converted into vendor-specific protocol for the database vendor,
potentially mapping the calls to a database driver (usually provided by the data-
base vendor) written in some other language.

The type of driver generally recommended is the Type 4 driver. The fact that
it is pure Java code enhances portability, which means driver developers are not
stretched thin supporting multiple ports. The Type 4 driver also enjoys potential

CHAPTER 1 ◗ JDBC TODAY6

Driver Description

Type 1 Implements JDBC by mapping JDBC calls to other CLI calls. Uses a binary library
written in another language. Requires software on the client machine, for example,
the JDBC-ODBC bridge driver.

Type 2 Driver is partially composed of Java code and partially in native code using another
CLI . Requires some client-side binary code.

Type 3 Pure Java driver; uses middleware to convert JDBC calls to vendor-specific calls and
protocol required to access the database.

Type 4 Pure Java driver that implements the native protocol. Does not require middleware or
any client-side binary. Can be downloaded to a client if necessary.

Table 1–1 JDBC Driver Types

performance benefits from more efficient code, since JDBC calls do not need to be
mapped to proprietary CLI calls (as in Type 2 drivers) and there is no middleware
to add additional network overhead, as with Type 3 drivers.

PROGRAMMING FOR TODAY

Today’s programming goes far beyond the simple needs of client-server or mono-
lithic applications. In the age of the Internet, it is not unusual and is often neces-
sary for an application to be composed of many different parts or components
spread across multiple machines. This distributed programming requires a multi-
tiered or n-tiered development approach.

Multitiered programming is also known as distributed programming: an appli-
cation that is composed of multiple components working together. These multiple
components may run on one server or on many servers—they are still collectively
considered a complete application.

With this approach, a single application is composed of multiple components
running on distinct architectural tiers. From a design perspective, the composition
of these logical tiers, the work that will be performed on these tiers, should reflect
the “responsibility” of the components. This benefits the development effort by
providing a consistent structure to multitiered applications. A common approach
to n-tiered development uses the following tiers.

• client tier
• presentation tier
• business tier
• resource tier

The client tier is responsible for interacting with the user. This interaction will
include the display (or rendering) of the user interface and the initial processing of
user input. In a Web application, the client tier is the Web browser.

The presentation tier is responsible for preparing the output to the client tier
and interfacing with the business tier. The presentation tier should not execute any
business logic. That is, it should not enforce the business rules of the enterprise;
that work should be left to the business tier. In a Web application, the presentation
tier is usually a Web server with the ability to process JSP or servlet pages.

The business tier is responsible for the execution of the business logic of the
enterprise. This tier is expected to process requests from the presentation tier:
requests that have been forwarded from the client tier. The business tier will inter-
face with the resource tier to obtain the data that it needs to complete its processing.

The resource tier is responsible for managing the resources of the application.
For most applications, this tier represents the database. This is where the applica-
tion data that will persist will be stored and managed.

PROGRAMMING FOR TODAY 7

JDBC Code in N-Tiered Architectures
Java code using JDBC usually resides on the business tier. The code performing the
data access on this tier should be isolated and encapsulated in a set of black box
objects, objects which conceal their details and expose a concise interface.

Multitiered/distributed application architecture and Java design patterns
will be explained in more detail in Chapter 13. What is worth noting at this point
is that JDBC code will be used differently depending on the component we are
writing and the architectural tier where that component will be placed. We can use
Java design patterns to help guide this coding process.

Java Technologies for Distributed Programming
Sun Microsystems has packaged a number of Java technologies together under the
marketing and distribution umbrella of the Java 2 Enterprise Edition (J2EE). This
package is comprised of numerous APIs and technologies that represent the Java
tools for developing distributed applications. To develop a Web application using
Java technology, these are the tools to use. The core of J2EE includes the APIs list-
ed in Table 1–2 (which include JDBC).

J2EE not only includes Java APIs, but requires servers to run the various
components created using the Java APIs. For instance, servlets and JSP pages
must run with a servlet server that provides what is known as a servlet contain-
er. The Java applet must in turn run within what is known as an applet contain-
er. Enterprise Java Beans (EJB) must run within an EJB container. J2EE and the
technology behind it is covered in more detail in Chapter 22 and Chapter 23.

Sun has expanded on its J2EE architecture, in a large part in response to
the overwhelming interest (whether justified or not) in Web services. A Web serv-
ice is a service that makes itself available over the Internet using HTTP and
involves the exchange of messages in XML format. Web services have been pop-
ularized to a large extent by Microsoft, which has made Web services a key part
of its .Net architecture. Sun has expanded and refined its J2EE architecture to
include additional services in what has been dubbed the Open Net
Environment (ONE).

J2EE is a distributed component architecture and, as such, does not limit
components to the exchange of messages in XML format. Instead, components can
communicate with a variety of protocols, including the binary protocols of RMI-
IIOP, and also including the asynchronous message passing of JMS or Message
Beans and participation in SOAP transactions if the application server provides
that. So, while not part of the current J2EE specification, Web services are part of
what Sun considers a valid enterprise architecture.

CHAPTER 1 ◗ JDBC TODAY8

JAVA DESIGN PATTERNS

The concept of design patterns is often heard discussed in connection with Java
application design. Design patterns are used to help guide the development
process. Design patterns do not represent complete, template-like solutions, but
instead represent recommendations on how to solve certain recurring problems
with Java development.

JAVA DESIGN PATTERNS 9

API/Java Technology Description

servlets, JSP Distributes HTML output over HTTP connection. JSP Java Server Pages
extends the servlet API and includes a preprocessor that converts a JSP page
into a servlet, which is then run in a servlet engine.

EJB Enterprise Java Beans. A distributed component technology that provides a
number of standard services, such as persistence, transactions, security, and
others.

JMS Java Messaging Service. Common access to message servers for asynchro-
nous message communication.

JDBC Provides communication with relational databases.
JavaMail Access to POP3, IMAP, and other standardized mail servers.
JNDI Java Naming and Directory Interface. Used to provide general lookup of

objects and application properties.
JAF Java Activation Framework. Used with JavaMail for viewing/editing of MIME

content.
Java–IDL Provides access to CORBA components using Java.
RMI, RMI-IIOP Remote Method Invocation. Provides the ability to create remote objects and

execute methods (passing parameters and receiving return values) with those
remote objects.

JTS/JTA Java Transaction API. An API that provides access to transaction controls.
Uses Java Transaction Service as the low-level implementation (the service
provider interface) for the transaction service.

Java-XML XML-encoded documents provide much of the configuration information for
J2EE. XML is becoming more important as a means of data encoding for
data interaction. Provides parsers (JAXP), messaging (JAXMP), registries
(JAXR) and RPC (JAX-RPC) APIs.

Table 1–2 J2EE APIs

The concept of design patterns can be traced back to work that Christopher
Alexander did with building construction architecture in the 1980s. Alexander
noted that certain problems would consistently recur in building design and that
certain proven solutions could be used to solve these problems. He referred to
these proven solutions as design patterns.

A group of academics picked up on this work and wrote a seminal book on
the subject titled, appropriately enough, Design Patterns: Elements of Reusable
Object-Oriented Software. The authors of this text, Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, are often referred to as the Gang of Four, and
thus the text is often referred to as the GoF book. The authors of this text very suc-
cinctly applied the concept of design patterns to the process of developing good,
object-oriented code. They used the Smalltalk language, but the solutions can eas-
ily be applied to any full-featured object-oriented language that supports poly-
morphism and a facility similar to Java interfaces.

Chapter 13 covers design patterns that apply to JDBC programming in more
detail. What is important to note at this point is that design patterns have a sig-
nificant impact on how JDBC will be used in an application. It should also be
noted that design patterns can be applied at several different levels of the devel-
opment process. Gamma, Helm, Johnson, and Vlissides refer to design patterns as
taking the form of creational, structural, or behavioral patterns in relation to how
the patterns will be used.

A design pattern that is often noted is the Model, View, Controller (MVC)
design pattern. The MVC design pattern was originally applied to the Graphical
User Interface (GUI) programming and describes the responsibilities of different
portions of the application, as shown in Table 1–3.

As applied to a GUI application, the model portion of the application man-
ages the data, the view displays the controls of the application (input fields, tables,
list boxes), and the controller represents the event handlers for user-generated
events: button clicks, list box choices, and others. In a GUI application being devel-
oped with an object-oriented language, these components would represent objects
(and the class definitions for the object) that would be designed to provide for the
behaviors, the responsibilities described in Table 1–3.

CHAPTER 1 ◗ JDBC TODAY10

Component Responsibility

Model Manages the application state, the data the application is using.
View Renders the portion of the application visible to the user.
Controller Responds to user gestures and interfaces with the model to control the

application.

Table 1–3 MVC Design Pattern

But in order to apply this design pattern to a Web application, it is impera-
tive that we identify which Web application components will implement the
design. If we approach this design pattern using our multitiered architecture
described earlier, we should expect that the view portion will be managed by the
client tier, the controller will be managed the presentation tier, and the model will
be managed by the business tier components. If we are using J2EE, our most like-
ly candidate for each of these components is as follows (Table 1–4).

When viewed in this respect, the MVC pattern describes the responsibilities
of the components being used and so would probably more accurately be
described as an architectural design pattern. The MVC pattern alone does not
describe how the specific components (the view component being used on the
presentation tier, for example) would be designed. Other Java design patterns as
shown later in this book do provide these details.

Using MVC as an architectural pattern, we do receive some high-level guid-
ance about where JDBC code would be located. We would expect the JDBC calls
to be placed in the components in the business tier. Located in that tier, the JDBC
calls would retrieve data from the resource tier, and the Java code in the business
tier would apply business logic and then return the data to the presentation tier,
where it would be formatted for presentation to the user.

SUMMARY

This chapter introduced the topic of Java database programming in today’s pro-
gramming world. We have seen how Java has grown and progressed from a small
side project at Sun Microsystems to the language of choice for enterprise applica-
tion development. We have also seen how JDBC fits into this picture as being the
API developed by Sun to provide access to relational databases using a vendor-
neutral API.

SUMMARY 11

Tier MVC Component

Client View Applet, HTML, Java Webstart
Presentation Controller servlet, JSP page
Business Model Enterprise JavaBean, JavaBean
Resource n/a SQL

Table 1–4 J2EE Components by Tier

There are some alternatives to JDBC, such as OR-mapping and the incipient
JDO. But when existing relational databases with all their complexity must be
accessed, JDBC is the tool of choice.

COMING UP NEXT

Chapter 2 examines the target of most JDBC applications: the relational database.
The roots of the relational database are covered, and an introduction to the lingua
franca of the query languages—SQL—will be provided. Following that chapter,
we will begin our detailed discussion of the JDBC API.

CHAPTER 1 ◗ JDBC TODAY12

