
Program Organization
SOURCE FILE LOCATION 395
SOURCE FILE MEMBER CONTENTS 397
MODULE DEFINITION 397

Traditional, Single-Source File RPG Program 400
Single-Source File Using Embedded Subprocedures 400
Multiple Source Files with Embedded or

External Subprocedures 401
SCOPE 401
STATIC AND AUTOMATIC STORAGE 402
IMPORT AND EXPORT 403

Chapter 6

395

The procedure specification is used to name and delineate RPG subprocedures. See
chapter 2 for more information on all RPG IV specifications. Zero or more

subprocedures can be included in a source file. The term source file, as used in this text,
refers to a single container of RPG source. It relates directly to an AS/400 source file
member or to a plain ASCII text file on another computer operating system. When a
source file is compiled, an object of type *MODULE is created. A machine-readable RPG
program is created by linking (referred to as program binding) one or more modules.

Machine-readable RPG IV programs consist of one or more mainline procedures and
zero or more subprocedures. The mainline procedure is the entry point of an RPG pro-
gram. It is the area traditionally referred to as the mainline calculations, but also includes
the file, input, definition, and output specifications. The mainline procedure is the same
as the program name. Hence, when an RPG program is called, the mainline procedure is
being evoked.

Subprocedures are isolated by beginning and ending procedure specifications. These
subprocedures can be called through the CALLP or CALLB operations. In addition, when a
procedure is prototyped, it is also considered a function, and can be evoked similarly to
RPG built-in functions.

SOURCE FILE LOCATION
Contemporary RPG IV compilers accept source code from the highly structure database
native to IBM’s OS/400 operating systems (on which RPG IV originated) or from the
flat-file systems such as those available under Linux, UNIX and Microsoft Windows op-
erating systems. A version of the flat-file systems, referred to as the Integrated File Sys-
tem or “IFS”, is also built into OS/400.

The OS/400 RPG IV compiler accepts and compiles source code from either file system.

Under the native OS/400 database, source code is stored in source file members. Under
this database structure, database files contain members, members are the final element in
the structure and members contain the actual data. Whereas under a flat-file system, the
source file contains the actual source code.

396

CHAPTER 6: Program Organization

To resolve this difference when using the flat-file system to store and compile source,
most application development environments encourage the programmer to create a direc-
tory structure that simulates the native OS/400 database file structure. For example:

Under OS/400, the database file named QRPGLESRC has been created in the library named
ORDENTRY. Within QRPGLESRC there are five source members that contain RPG IV
source code. Those member names are as follows:

1. ORDERS
2. CUSTMAINT
3. CUSTSCH
4. PRTORD
5. SHIPORD

To identify one of these source members to the compiler, the following command param-
eter syntax would be specified:

CRTBNDRPG PGM(CUSTMAINT) SRCFILE(ORDENTRY/CUSTMAINT) SRCMBR(CUSTMAINT)

Using the IFS to store source code is relatively uncommon in the OS/400 world, although
flat-file systems are the standard practice for storing source code on all other operation
systems. The CRTBNDRPG and CRTRPGMOD commands accept source from the IFS
through the use of the SRCSTMF parameter.

The SRCSTMF parameter identifies the source file and the location of the source file in the
IFS. When the SRCSTMF parameter is used the SRCFILE and SRCMBR parameters are not
allowed. An error will occur if SRCFIEL and SRCMBR are specified with the SRCSTMF pa-
rameter. By default, the SRCSTMF parameter defaults to SRCSTMF(*NONE).

If an IFS directory structure named /mysrc/qrpglesrc has been created to store source
code, and the source files named ORDERS, CUSTMAINT, CUSTSCH, PRTORD, SHIPORD are
stored in the directory, the file names should be suffixed with the traditional SEU source
type. In the case of RPG IV, this would be RPGLE. So these files would be referred to as
follows:

/mysrc/qrpglesrc/orders.rpgle

/mysrc/qrpglesrc/custmaint.rpgle

/mysrc/qrpglesrc/custsch.rpgle

/mysrc/qrpglesrc/prtord.rpgle

/mysrc/qrpglesrc/shipord.rpgle

To compile any of these source members using the CRTRPGMOD command, the following
command could be used:

CRTRPGMOD MODULE(SHIPORD) SRCSTMF(‘/mysrc/qrpglesrc/shipord.rpgle’)

SOURCE FILE MEMBER CONTENTS

A source file can contain just the mainline procedure, the mainline procedure and one or
more subprocedures, or only subprocedures. When only subprocedures exist within a
source file, a header specification within that source file must include the NOMAIN key-
word. Figure 6.1 illustrates the structure of a source file that contains a mainline proce-
dure and two subprocedures.

MODULE DEFINITION
RPG IV programs consist of one mainline procedure and zero or more subprocedures. A
source file can contain just the mainline procedure, the mainline procedure and one or more
subprocedures, or only subprocedures. When only subprocedures exist within a source file,
the header specification within that source file should include the NOMAIN keyword. This
keyword instructs the compiler to avoid automatically inserting the RPG runtime support
for the program logic cycle. The program logic cycle typically is not required and it adds
unnecessary overhead to the compiled object.

Source files that contain only subprocedures are permitted
to contain data definitions outside the scope of any of the
subprocedures.

Variables declared within the mainline procedure are called
global variables. Variables declared outside of any
subprocedure (where the mainline procedure would nor-
mally be placed) also are called global variables. Variables
declared within subprocedures are called local variables.
See the subheading Scope for more information on global
and local variables.

Figure 6.2 contains the annotated source for an RPG pro-
gram that contains a mainline procedure and one
subprocedure.

397

MODULE DEFINITION

Header specification

Global variables

Mainline calculations

Begin Procedure specification

Local variables

Procedure calculations

End Procedure specification

Begin Procedure specification

Local variables

Procedure calculations

End Procedure specification

Figure 6.1: Source file structure
with mainline procedure.

398

CHAPTER 6: Program Organization

.....H.Functions++

H DatFmt(*USA)

.....FFileName++IFEASFRlen+LKeylnKFDevice+.Functions++++++++++++++++++++++++++++

FCustmast UF E K DISK PREFIX(CM_)

D/COPY QRPGLESRC,STDINC

.....DName+++++++++++EUDS.......To/Len+TDc.Functions++++++++

D Cust_Total S 11P 2

D** Prototype of the TOUPPER(char-var) function

D ToUpper PR 1024A

D tu_input 1024A CONST

.....CSRn01..............OpCode(ex)Extended-factor2+++++++++

.....CSRn01Factor1+++++++OpCode(ex)Factor2+++++++Result++++++++Len++DcHiLoEq....

C Read CustRec 58

C Dow NOT *IN58

C If ToUpper(CM_Cstnam) = ‘IBM CORP.’

C DELETE CustRec

C Endif

C Else

C Add Sales Cust_Total

C Read CustRec 58

C EndDo

C MOVE *ON *INLR

C return

PProcedure++++++..BE..................Functions++

P ToUpper B

DName+++++++++++EUDS.......Length+TDc.Functions++

D ToUpper PI 1024A

D InputStg 1024A CONST

D RtnValue S LIKE(InputStg)

D lower C Const(‘abcdefghijklmnopqrstuvwxyz’)

D upper C Const(‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’)

CSRn01Factor1+++++++OpCode(ex)Factor2+++++++Result++++++++Len++DcHiLoEq

C lower:UPPER xLate InputStg RtnValue

C Return RtnValue

P ToUpper E

Figure 6.2: Source member with embedded procedures.

Modules are defined at the source file level. RPG programs can call other programs dy-
namically or statically. They also can call subprocedures; however, all subprocedures re-
quire the static call interface.

As shown in Figure 6.2, variables can be defined within the mainline RPG code or in a
subprocedure. In this example, the subprocedure TOUPPER is embedded within the same

The P specification is used (albeit
redundantly) to delineate the beginning
and end of a procedure.

The definition specifications define the
procedure interface. These are the
INPUT and OUTPUT parameters.

These definition
specifications are the
prototype for the TOUPPER
procedure. Note the
TU_INPUT field is simply a
place holder. It is not a
variable nam,e that can be

Body of program
“mainline”
procedure.

399

MODULE DEFINITION

source file as the mainline program. The TOUPPER procedure is called to convert a char-
acter string to capital letters.

When source files are compiled, the output from the compiler is a module. If a program is
made up of only one source file, then only one module is generated. If a program is made
up of multiple source files, multiple modules are generated. Those modules must be
bound together to create a single program object that can be called and run. This program
object is referred to as a machine readable object or as executable. Figure 6.3 illustrates
this source-to-module-to-program transition.

RPG allows separately compiled and independent programs to be bound together to form
a single program object. The source file for each program is compiled to generate a mod-
ule. Each module can be bound to create independent program objects. The individual
modules, however, also can be bound together to create one larger program object.

There are two distinctions between separately compiled, independent programs and sin-
gle programs that are composed of several bound modules:

■ The single bound program is larger and is, by definition, a single-program object. In
contrast, the separately compiled and separately bound programs are independent
objects.

■ The method of evoking one program from the other for a single-bound program is
through the CALLB operation. For independent programs, the CALL operation is used.

Figure 6.3: Source file transition to *PGM object.

400

CHAPTER 6: Program Organization

There are four types of RPG IV source program organizations that can generate an object
module. These types of source programs, and the commands used to compile them, are
listed in Table 6.1 and explained in the text that follows.

Table 6.1: Source Program Structures

Description Compiler Command
Service
Program1 Activation Group

Traditional, single-source file (all in one) RPG
program.

CRTBNDRPG No *DFTACTGRP

Single-source file that utilizes one or more
embedded subprocedures.

CRTBNDRPG Yes QILE (i.e., named
activation group)

Source file that uses zero or more embedded
subprocedures, and one or more external
subprocedures.

CRTRPGMOD Yes *NEW

Source files containing only subprocedures. CRTRPGMOD N/A N/A

1Indicates whether the generated *MODULE can be bound into a service program. Also requires the NOMAIN
keyword on the Header specification.

Traditional, Single-Source File RPG Program
The traditional, single-source file RPG type of program organization is typically used in
legacy applications or in new applications that have a limited scope. These kinds of pro-
grams can be statically bound together by using the CRTRPGMOD and the CRTPGM com-
mands instead of the single-source-to-program CRTBNDRPG command. If one large bound
program is created, the CALL operations must be changed to the CALLB operation.

Single-Source File Using Embedded Subprocedures
The single-source file with embedded subprocedures is another kind of all-in-one pro-
gram. The program is contained within a single source file and contains one or more
subprocedures to perform various tasks. This type of program can be compiled using the
single-source-to-program CRTBNDRPG command. However, the defaults for the command
need to be changed. Specifically, on the AS/400, programs that contain subprocedures
cannot be run in the default activation group. They must be run in another activation
group. When compiling this type of source file, typically, the QILE activation group is
specified.

401

SCOPE

Multiple Source Files with Embedded or External Subprocedures

For new applications, the most common type of program has multiple source files with
embedded or external subprocedures. Typically, there is a main application source file. It
contains call interfaces (i.e., CALL, CALLB, CALLP, or prototypes) to the other programs
and subprocedures. The CRTRPGMOD compiler command is used to generate modules for
each separate source file. Procedures used by the application should probably be exported
with the EXPORT keyword. This allows them to be evoked from other modules within the
application.

A typical scenario for this type of application is one where the application source file
contains the mainline procedure and controls the program’s flow (logic). The other
source files contain supporting subprocedures. Normally, the header specification is em-
bedded in the secondary source files with the NOMAIN keyword specified. This allows the
compiler to avoid generating redundant RPG program cycle code directly into each mod-
ule. Only the mainline procedure requires the RPG program cycle code.

SCOPE

As illustrated in Figure 6.1, a source file containing the mainline RPG program code
(mainline procedure) includes all global data. This includes fields, arrays, data structures,
constants, files, input fields, and output fields.

The term scope is used to define the limit of visibility of a program item such as a field.
For example, all fields have a scope based on the program structure. A field has a scope,
which is global or local, that limits visibility of the field as follows:

Scope Visibility

Local Subprocedure

Global Source file/module

If a subprocedure is specified, it has access to all global variables within the same source
file. In addition, it has its own local variables. Local variables are available only to the
subprocedure in which they are declared. Figure 6.4 illustrates the scope of variable defi-
nitions within RPG IV modules and subprocedures. Remember, for purposes of this text,
the term source file means AS/400 source file member.

Local variables of the same name as a global variable are supported in RPG. In this situa-
tion, within the subprocedure, the local variable has precedence over the global variable.
The properties of the local and global variables of the same name need not be similar. For
example, a global field named ITEM could be defined as a 10-position character field
within the mainline procedure. Within a subprocedure, the ITEM field (such as a five-digit
packed decimal field) can be defined differently. Typically, this kind of situation is
avoided through program design.

All global variables within a source file are visible only to the mainline procedure and the
subprocedures that are embedded in that source file. For example, an application is made
up of two source files named MYAPP and TOOLS. The source file named MYAPP contains
a global variable named CUSTNAME. Subprocedures included in the MYAPP source file
have access to CUSTNAME.

The mainline procedure (if one exists) and all subprocedures specified in the TOOLS

source file do not have access to the CUSTNAME field.

STATIC AND AUTOMATIC STORAGE

Static storage is part of the program’s memory that is retained for the duration of the pro-
gram’s or procedure’s runtime. Automatic storage is part of the program’s memory that is
automatically allocated and released each time the procedure in which it is declared is

402

CHAPTER 6: Program Organization

Figure 6.4: Scope of global and local variables.

403

called and ended respectively. Within a subprocedure, local variables are, by default, de-
clared in automatic storage.

The STATIC keyword can be used on the definition specification within a subprocedure to
force a local variable to have the STATIC storage attribute. When a local variable is set to
STATIC, its content remains unchanged each time the subprocedure is evoked. There is
only one copy of the variable for the duration of the entire runtime of the program. This
includes recursively called subprocedures.

For example, if subprocedure P1 calls subprocedure P2, and P2 calls P1 (which is per-
fectly valid in RPG IV), variables declared as automatic storage (which is the default
property) have new instances created (i.e., a second copy of the variable is automatically
generated). Variables declared as static storage are assigned a storage location only the
first time the subprocedure is evoked. Subsequent invocations use the original storage lo-
cations. This process doesn’t affect the data within that location. Hence, the data stored
within a static storage variable is available to each invocation.

IMPORT AND EXPORT

Any global variable (declared with the definition specification) can be exported for use
by other modules with the same application program. The EXPORT keyword is used to ex-
port a global variable. This property makes the variable available to separately compiled
source modules. Figure 6.5 illustrates how to code EXPORT and IMPORT keywords in sep-
arate source files.

Figure 6.5 illustrates two independent RPG source files. The first source file, STATUSONE

(on the left of Figure 6.5), contains a variable named STATUSCODE. This variable has the
EXPORT keyword specified. This field property means that the field is defined in
STATUSCODE and resides within it, but is available for importing by any other module.

The other source file, STATUSCHK (shown on the right in Figure 6.5), is called by
STATUSONE. The CALLP operation on line 5 performs the CALL operation to the
STATUSCHECK file. Within the STATUSCHK module, the field STATUSCODE is also de-
fined (line 2). In STATUSCHK, however, the STATUSCODE field contains the keyword
IMPORT. This field property indicates that storage for the field is not allocated within the
STATUSCHK module, but rather is located (i.e., resolved) when the related modules are
bound together.

IMPORT AND EXPORT

404

CHAPTER 6: Program Organization

Only one copy of STATUSCODE exists, and its storage is allocated within STATUSONE.
Any changes to this field in any module are immediately, and instantly, reflected in the
other modules. They all reference the same storage location.

Figure 6.6 shows how modules within a single program share exported variables. The
module in which the variable is defined is the module where the variable resides. Other
modules that want to access the exported variable declare a variable with the same prop-
erties and specify the IMPORT keyword. When the modules are combined by the program
binder, references to the exported variable (that is, all imported variables) are resolved.
The imported variables are, essentially, pointers to the exported variable. Keep in mind
the following points when using IMPORT and EXPORT:

Entry Module: StatusOne

Called to start program; calls STATUSCHK

Bound-In Module: StatusChk

Called by STATUSONE

.....H+++

0001 H

* Source Module: STATUSONE

.....DName+++++++++++EUDS.......Length+TDc.Functions+

0002 D StatusCode S 5I 0 EXPORT

0003 D StatusCheck PR

.....CSRn01Factor1+++++++OpCode(ex)Factor2++++++++++

0004 C Eval StatusCode = 1

0005 C CallP StatusCheck

0006 C Eval *INLR = *ON

0007 C return

.....H+++

0001 H

* Source Module: STATUSCHK

.....DName+++++++++++EUDS.......Length+TDc.Functions+

0002 D StatusCode S 5I 0 IMPORT

0003 D NoStatus PR

0004 D Billing PR

0005 D LateCharge PR

.....CSRn01Factor1+++++++OpCode(ex)Factor2++++++++++

0006 D StatusCheck PR

0007 P StatusCheck P EXPORT

0008 C Select

0009 C When StatusCode = 0

0010 C CallP NoStatus

0011 C When StatusCode = 1

0012 C CallP Billing

0013 C When StatusCode = 2

0014 C CallP LateCharge

0015 C Other

0016 C Exsr Errors

0017 C EndSL

0018 C Return

0019 CSR Errors BegSr

0020 C Eval StatusCode = -1

0021 CSR EndSr

0022 P StatusCheck E

Figure 6.5: Independent source files.

■ Only global variables can be imported or exported. Local variables (fields declared
within a subprocedure) cannot be exported.

■ The module that contains the variable definition and storage is the one that contains
the EXPORT keyword.

■ To access an exported variable from within a subprocedure in a separate module, de-
clare a global variable in the second module, specify the IMPORT keyword, and refer
to that global variable within the subprocedure.

■ Subprocedure names must be exported (using the EXPORT keyword) in order to ac-
cess them from other modules.

405

IMPORT AND EXPORT

Figure 6.6: Modules sharing IMPORT/EXPORT data.

