
Introduction to Active Server Pages

Active Server Pages were introduced by Microsoft in 1996 as a download-
able feature of Internet Information Server 3.0. The concept is pretty

simple: an Active Server Page allows code written in the JavaScript or VBScript
languages to be embedded within the HTML tags of a Web page and executed
on the Web server. There are great advantages to this, not the least of which is
security. Since your code is executed on the Web server, only HTML tags are
sent to the browser. The result is that the ASP code is “invisible” to the end user.

Another upside to the “server-side script” concept is that it allows things like
database connections to be made from the Web server rather than from the client.
Therefore, any special configurations that might need to be set up, like ODBC
data sources, only have to exist on the server. Of course, before you can create an
Active Server Page (ASP), you’ll need to look at the software requirements.

The Setup
Before you can create an Active Server Page, you’ll need a Web server that sup-
ports Active Server Pages. The most obvious choice would be Microsoft’s

31

22

chapter_2.qxd 5/2/2003 12:41 PM Page 31

Internet Information Server (IIS) version 3.0 or higher. IIS is available for
Windows NT 4.0 or higher as part of the Windows NT option pack, which can
be downloaded from Microsoft’s Web site. For the highest level of compatibility
and functionality, you’ll want to use the most recent version of IIS.

Another option that you might not have considered is Microsoft’s Personal Web
Server for Windows 9x and Windows ME. If you’re running Windows 98,
Personal Web Server can be installed by running “setup.exe” from the Windows
98 setup CD under the “\add-ons\pws\” folder. Alternatively, it can be down-
loaded from Microsoft’s Web site as part of the Windows NT option pack. This
download is the only choice for Windows 95 or Windows ME. It’s important to
note that Microsoft does not support running Personal Web Server under
Windows ME. While Personal Web Server is not the optimal choice for a pro-
duction Web server, it is a great option for developing and testing your
ASP scripts.

If you’re running IIS or Personal Web Server, no additional software is required
to support Active Server Pages. To allow a user to access an ASP, the ability to
do so must be enabled on the IIS server. This is done by selecting “Scripts” or
“Execution (Including Scripts)” from the “Home Directory” tab of the Properties
window for your Web site, as shown in Figure 2.1.

For other operating systems or Web servers, it gets a little tricky, but is possible.
For Unix or Linux servers running the Apache Web server, you can use a bolt-on
product to add ASP support. Sun Microsystems’ Sun ONE Active Server Pages
(formerly called Chili!Soft ASP) is one of these products. This product supports
most, but not all, of the controls available in IIS. This is just one product that
can add Active Server Page support to non-Microsoft Web servers. Table 2.1 has
a more complete list of ASP compatibility products and the operating systems
and Web servers they run on.

There are products to allow ASPs to be used on just about any Web server out
there. This fact makes using ASPs that much more attractive because you aren’t
limited in the choice of hardware, operating system, or Web server to host your
Web pages. As you can see, there are even ASP-compatibility products for
the iSeries.

CHAPTER 2: Introduction to Active Server Pages

32

chapter_2.qxd 5/2/2003 12:41 PM Page 32

The Setup

33

Figure 2.1: Active Server Pages are enabled by adding script permission.

Product Name Manufacturer Web Servers Supported Operating Systems

Sun ONE Active Sun Microsystems iPlanet, Apache, and Zeus Solaris, Linux,
Server Page Windows, and HP-UX

Instant ASP STRYON Apache, Oracle Linux, Novell
Netware, Sun IBM

MS Internet Information Solaris, AIX SGI Irix,
Server (IIS), BEA IBMi Series 400, IBM

S/390 HP-UX IBM
Sun Web Server, OS/2 SCO UnixWare
WebSphere, Netscape Apple Mac OS X
Enterprise Server,
GemStone, IBM
WebSphere, Zeus,
Lotus Domino

WebStar

Apache::ASP Apache-ASP.org Apache Linux, Unix, Windows

Table 2.1: Compatibility Products for Using ASP on Non-IIS Web Servers

chapter_2.qxd 5/2/2003 12:41 PM Page 33

Some Examples
Now that you’ve seen the requirements for using Active Server Pages, let’s start
examining a few basic examples. The first example uses a server-side VBScript
to display a message in the browser window.

When you are creating an Active Server Page, the server-side script can be iden-
tified in one of the following two ways:

Use the server-side script block identifiers “<%” and “%>”.

Use the <SCRIPT> tag with the RUNAT=“SERVER” attribute.

Functionally, both of these give you the same result, but it’s important to note
that the latter is the only one allowed in ASP.NET (discussed in a later chapter).
Using either of these methods, you can mix your script blocks with static HTML
tags. Since chapter 1 covered HTML, I won’t spend a lot of time on HTML tags
here, except to review those tags that are pertinent to the examples shown.

The sample ASP code shown in Figure 2.2 will display the current time in the
browser window. To try this example, enter the code and save the file to the
default directory of your Web server (for example, “C:\Inetpub\wwwroot on
IIS”). Assuming that this file were named “time.asp,” you would access it from
a Web browser by entering the following URL: http://Webserver/time.asp

CHAPTER 2: Introduction to Active Server Pages

34

<HTML>
<HEAD>
<TITLE>Sample ASP Clock</TITLE>
</HEAD>
<BODY BGCOLOR=”BLACK”>

<SCRIPT LANGUAGE=”VBScript” RUNAT=”SERVER”>
RESPONSE.WRITE NOW()
</SCRIPT>
</BODY>
</HTML>

Figure 2.2: This Active Server Page displays the current time and date.

chapter_2.qxd 5/2/2003 12:41 PM Page 34

When this page is loaded into your browser, right-click it and select “View
Source.” The HTML shown in Figure 2.3 should be displayed. Notice that the
script block is not visible to the user.

ASP Objects
While the script portion of the previous example is pretty basic, it gives a good
example of what Active Server Pages are all about. First, HTML defines the
page title, background color, and font color. Then, the script code uses the Write
method of the Response object to send output to the browser.

When writing ASP scripts, a special set of ASP objects are available within
the VBScript language to assist in the programming process. These objects give
you access to application programming interfaces (APIs) that allow you to
manipulate the document displayed in the browser. Each of these objects has the
following:

Properties set or read information about the object.

Methods execute an action on an object.

Collections contain items related to the object.

The Response object will be used heavily throughout all of the examples in this
book. This object allows you to control what is displayed in the browser.
Table 2.2 shows all of the available properties, methods, and collections for the
Response object.

ASP Objects

35

<HTML>
<HEAD>
<TITLE>Sample ASP Clock</TITLE>
</HEAD>
<BODY BGCOLOR=”BLACK”>

03/01/2003 11:31:04
</BODY>
</HTML>

Figure 2.3: The viewable source does not include the script block.

chapter_2.qxd 5/2/2003 12:41 PM Page 35

CHAPTER 2: Introduction to Active Server Pages

36

Name Type Values Description

AddHeader Method N/A Sets the value of a specified HTML
header.

AppendToLog Method N/A Adds a specified string to the end of
the Web server log entry.

Buffer Property True/false Defines whether or not to buffer con-
tent before sending it to the browser.

CacheControl Property Public/private Defines whether or not page contents
are cached on a proxy server.

Charset Property String value Inserts a character-set name into the
content-type header.

Clear Method N/A Clears out the contents of the buffer.

ContentType Property MIME type Defines the HTTP content type of
data being sent to the browser.

Cookies Collection N/A Used to set or read cookie values.

End Method N/A Stops further script processing and
sends buffer content to the browser.

Expires Property Numeric value Define the length of time before a
cached page expires. A value of zero
disables caching of this page.

Expires Property Date/time Defines the date and time when a
Absolute cached page expires.

Flush Method N/A Sends the contents of the buffer to
the browser and clears it.

IsClient Property True/false Identifies whether or not the client is
Connected connected to the server.

Pics Property String value Defines the PICS content rating.

Redirect Method N/A Redirects control to a specified page.
Only valid if no HTML headers have
been sent to the browser.

Status Property String value Contains the contents of the status
line returned by the server.

Write Method N/A Sends output to the browser.

Table 2.2: The Properties, Methods, and Collections of the Response Object

chapter_2.qxd 5/2/2003 12:41 PM Page 36

As you can see, the Response object controls output that is sent to the browser.
For example, the Cookies collection, when used with the Response object,
would define Cookie values that are stored on the client computer, to be
retrieved by the application at a later time.

Active Server Pages have their own subset of objects used to control input from
the client browser, output to the browser, and values used by the Web
application.Table 2.3 contains a list of these objects and the functions they
perform.

In the same way that the Response object writes information out, the Request
object reads information in. One of the primary uses of Request is to read infor-
mation sent into the Active Server Page. This is done using either the
Querystring or Form collections. Each of these collections allows you to read
“variables” from another Web page. The Querystring collection accesses vari-
ables supplied as part of the query string that is appended to the URL with a
question mark:

http://myserver/myfirst.asp?fname=JOHN&lname=DOE

Query strings are generated automatically by an HTML form that uses the GET
method, but they can also be manually inserted into a hyperlink. In the example
link, the variables “fname” and “lname” are sent to the ASP specified. Notice
that the ampersand character separates the query string variables. To read these
variables into the ASP, you would use the following two lines of VBScript:

ASP Objects

37

Object Description

Application Defines or reads variables that are specific to a Web application
(a Web site counter, for example).

Request Allows values to be retrieved from the client browser.

Response Sends data to the browser window.

Server Controls various attributes related to the Web server itself.

Session Creates or reads values that are specific to a user’s current session.

Table 2.3: Objects Used within an Active Server Page

chapter_2.qxd 5/2/2003 12:41 PM Page 37

The one downside to using the Querystring collection is that the variable names
and values can be seen within the URL on the browser. This can be a problem if
you need to supply information to your Active Server Page that you don’t want
the user to see. This problem can be avoided by using the Form collection.

Like Querystring, values for the Form collection can be passed automatically
from an HTML form. The difference is that the HTML <FORM> tag must use
the POST method rather than the GET method. When the HTML form is sub-
mitted, any objects within the form will be passed through the Form collection.
The Form variables are read using the same method as Querystring variables.
Form variables, however cannot be appended to the URL as Querystring
variables can.

In some cases, you won’t always know the names of the Querystring or Form
variables. To allow for this, you can use the For Each..Next loop. This loop is
similar to a standard For.Next loop, with a few exceptions. A regular For.Next
loop bases its looping on a starting value and an ending value. The resulting
Numeric field is incremented based on the Step value provided. The For
Each..Next loop feeds the name of each Item within the specified Collection into
the supplied variable.

Here is an example of how to read all Form variables using a For Each..Next
loop:

In this example, each Form variable and its value will be displayed in the Web
browser.

CHAPTER 2: Introduction to Active Server Pages

38

<%
For Each var In Request.Form

Response.Write var & " = " & Request.Form (var)
Next
%>

FirstName=REQUEST.QUERYSTRING("fname")
LastName=REQUEST.QUERSTRING("lname")

chapter_2.qxd 5/2/2003 12:41 PM Page 38

The Request object can do much more than just pass values between Web pages.
Table 2.4 contains a list of the properties, methods, and collections available for
the Request object.

Variable data within any of the five collections in the table can be retrieved sim-
ply by specifying Request(“variablename”). When this form of the Request
object is used, the application will search through each of these collections to
find the matching variable. Since searching through each of the collections can
be time-consuming, the preferred method is to retrieve data through the specific
collection name. There are circumstances, however, when you might want to use
this functionality. For example, your application might sometimes supply vari-
able data through the Querystring collection, and other times use the Form col-
lection. Using the search feature, your application could simply access the
variable using the Request(“variablename”) form, so it wouldn’t have to deal
with figuring out which collection was used.

The Server Variables collection contains information specific to your server and
the client connected to it. For example, the command below would retrieve the
authorized user name of the user requesting the Web page:

ASP Objects

39

Name Type Description

Binary Read Method Retrieves a specified number of bytes of data
supplied by the POST method into a safe array.

ClientCertificate Collection Retrieves the value of variables in the client
certificate that is sent in the request.

Cookie Collection Reads the value of cookies.

Form Collection Reads the value of Form variables.

Querystring Collection Contains all variables supplied to the page
through the query string.

ServerVariable Collection Reads attributes of the Web server or the client
browser.

TotalBytes Property Defines the total number of data bytes sent by
the client request; read-only.

Table 2.4: The Properties, Methods, and Collections of the Request Object

chapter_2.qxd 5/2/2003 12:41 PM Page 39

In this case, the AUTH_USER server variable is used to obtain the desired
information. This specific variable will only return a value if your Web site
requires a user name and password. If the Web site allows anonymous access,
this variable will return an empty string. A list of some of the available
ServerVariable items can be found in Table 2.5.

These values can be used to control the flow of your application in many ways.
For example, you could use information from the HTTP_USER_AGENT vari-
able to determine that a client request came from a PDA running Microsoft
Pocket PC, and then redirect to a page specifically formatted for that device.
The ASP code shown below would accomplish this, using the
Response.Redirect method:

This example first places the value of the HTTP_USER_AGENT server vari-
able into the program variable UserAgent. Next, the InStr function looks for the
string “Windows CE” within the UserAgent variable. If there is a match, the
value of IsPocketPC will be TRUE; otherwise, it will be false. Finally, this
value is used with an IF..THEN statement to redirect the browser to the
appropriate page for the device.

The Session and Application objects perform similar functions. These objects
allow you to define variables that will be available to multiple pages within
your application, without having to be passed through the Querystring or Form
collections. To set or read a Session variable, you reference the variable as you

CHAPTER 2: Introduction to Active Server Pages

40

User=Request.ServerVariable("AUTH_USER")

<%
UserAgent = Request.ServerVariables("HTTP_USER_AGENT")
IsPocketPC = (InStr(UserAgent, "Windows CE") > 0)

If IsPocketPC Then
Response.Redirect("pda.asp")

Else
Response.Redirect("default.asp")

End If
%>

chapter_2.qxd 5/2/2003 12:41 PM Page 40

would any item within a collection. The statement below would read the value
of the Session variable “customer” into the field Cust:

ASP Objects

41

Variable Name Description

ALL_HTTP Retrieves all of the HTTP headers from the client.

APPL_PHYSICAL_PATH Retrieves the physical path corresponding to the metabase
path returned in APPL_MD_PATH. The metabase is the
database used internally by IIS to store Web server settings.

AUTH_PASSWORD Returns the user password if basic authentication is used.

AUTH_TYPE Returns the authentication method used to validate users
when they attempt to access a protected script.

AUTH_USER Supplies the user name sent in the client’s authorization
header.

HTTP_HOST Contains the host name of the Web server.

HTTP_USER_AGENT Returns a string containing information about the client.
This string can be used to determine the operating system
and browser on the client.

HTTPS Indicates whether the request came on a secure port.

LOCAL_ADDR Identifies the IP address on which a request came in.

LOGON_USER Returns the Windows account used to access the page.

REMOTE_ADDR Returns the IP address of the client.

REMOTE_HOST Identifies the name of the client system.

REQUEST_METHOD Determines the method used to send data to the server
(GET or POST).

SERVER_NAME Provides the Web server’s host name.

SERVER_PORT Returns the TCP/IP port on which a request came in.

SERVER_SOFTWARE Returns name and version information for the Web server
software.

URL Returns the base portion of the URL page.

Table 2.5: Commonly Used ServerVariable Items

CUST = SESSION("customer")

chapter_2.qxd 5/2/2003 12:41 PM Page 41

Session variables exist until the user ends the current session with the Web
server, or until Session.Abandon is executed. This method removes any session
variables for the current session. In addition to the Abandon method, the Session
object supports two properties, SessionID and Timeout. The SessionID property
contains a unique numeric identifier for the current session. The Timeout
property specifies a timeout value for the current session.

You would use the Session object in the same way as the LDA or QTEMP from
within an application on the iSeries. Just like the LDA, Session variables are only
available to the session running the application. Like objects stored in QTEMP,
objects created using the Session object no longer exist when the session
is closed.

The Application object exists from the time the Web application is created. A
Web application is defined as a set of Web pages under a common root folder.
Application variables are cleared when the Web server is restarted. Application
variables are defined by the same method as Session variables. The line below
shows how an Application variable would be defined:

The value of the Application variable is available to all Sessions running on the
Web server. For this reason, Application variables are an ideal way to create a
page counter. You use Application objects in the same way that you use data
areas on the iSeries. These variables can be used to store values and share them
between applications.

The Server object is used to access methods and properties of the Web server.
This object performs several functions, not the least of which is to provide
access to an ActiveX control on the server. Table 2.4 lists the properties and
methods of the Server object.

The ASPError object is used in conjunction with the Server.GetLastError
method. This object retrieves information about the most recent ASP error that
has occurred. This object supports the properties listed in Table 2.5.

CHAPTER 2: Introduction to Active Server Pages

42

Counter=Application("Counter")

chapter_2.qxd 5/2/2003 12:41 PM Page 42

ASP Objects

43

Name Type Description

ScriptTimeout Property Defines the amount of time the ASP script runs
before a timeout occurs.

CreateObject Method Creates a server-side ActiveX control.

Execute Method Calls another ASP page as though it were part of
this page.

GetLastError Method Builds an ASPError object containing details of
the most recent error.

HTMLEncode Method Replaces any special characters in a specified
string with their HTML-encoded equivalents.

MapPath Method Returns the physical disk path for the provided
virtual path.

Transfer Method Transfers control to a specified ASP page while
leaving any ASP objects intact.

URLEncode Method Encodes a specified URL in the same way that
HTMLEncode encodes a text string.

Table 2.4: The Properties and Methods of the Server ASP Object

Property Description

ASPCode Returns the ASP error code related to the error.

Number Results in the numeric error code returned by a COM component.

Source Supplies the actual source code for the line in error.

Category Provides a string value identifying what generated the error (IIS,
a COM component, or a scripting language).

File Contains the name of the ASP file where the error originated.

Line Returns the line number in error.

Column Identifies the column position of the error within the error line.

Description Contains a short text description of the error.

ASPDescription For ASP errors, provides a longer description of the error.

Table 2.5: The Properties of the ASPError Object

chapter_2.qxd 5/2/2003 12:41 PM Page 43

To access the ASPError object, you first need to define the relationship to the
Server object, as shown here:

In this example, all of the ASPError object properties are now available to the
object objASPError. This object can be used to create custom error-trapping for
your application. All errors that are generated access a default Web page on IIS
named “500-100.asp.” This file can be overridden to a specified custom ASP file
that uses the ASPError object. To override, follow these steps:

1. From the IIS Administrator, right-click on your Web site.

2. Select Properties, then select Customer Errors, and look for 500;100.

3. Click Properties, then click Select URL.

4. Enter the URL for the modified version of the “500-100.asp” page.

Within this modified page, you might choose to write error entries to a database
file that contains an error log. You might also send an e-mail message to an
administrator to notify him or her that an error has occurred with the application.
You’ll see how to accomplish each of these a little later on.

The final ASP object that we’ll examine here is the ObjectContext object.
ObjectContext allows you to create transactional ASP scripts. Creating ASP scripts
that use transaction processing allows you to commit or abort a group of transac-
tions performed on an object in a single step. You would use ObjectContext in
the same way that SQL uses transaction processing. This is also similar to using
commitment control in an iSeries application.

ObjectContext has only two methods. The ObjectContext.SetComplete method
finalizes all transactions performed within the script, while ObjectContext.Abort
cancels any transactions performed within the script. For transaction processing
to be active, the script must contain the @TRANSACTION directive as its first
line, as shown here:

CHAPTER 2: Introduction to Active Server Pages

44

Set objASPError = Server.GetLastError

chapter_2.qxd 5/2/2003 12:41 PM Page 44

The value specified is used to define whether or not transaction processing will
be used. A value of either REQUIRED or REQUIRED_NEW will cause a
transaction to be initiated. If values of SUPPORTED or NOT_SUPPORTED are
used, a transaction will not be initiated. One transaction can span multiple ASP
pages if control is transferred through the use of the Server.Transfer or
Server.Execute method. In either of these cases, if REQUIRED is specified
on the @TRANSACTION directive, the new page will continue within the
transaction of the original ASP script. If the original script did not use
transaction processing, the new script will create a new transaction.
The code snippet in Figure 2.4 shows an example of how ObjectContext
is used.

In this example, the SetComplete method is used. This is not necessary, how-
ever, since the transaction will automatically be set complete upon completion of
the script.

ASP Objects

45

<@TRANSACTION value>

< @TRANSACTION REQUIRED >

<HTML>
<BODY>
<SCRIPT LANGUAGE="VBScript" RUNAT="SERVER">
Set objMine=Server.CreateObject("MyObj.Name")
If objMine.Value=0 Then

ObjectContext.SetAbort
Else

ObjectContext.SetComplete
End If
</SCRIPT>
</BODY>
</HTML>

Figure 2.4: This script uses ObjectContext for transaction processing.

chapter_2.qxd 5/2/2003 12:41 PM Page 45

Using HTML Forms with ASP
Now that you’ve seen each of the ASP objects, let’s examine how to use these
objects to create Web pages. ASP scripts work together with HTML in an Active
Server Page in the same way that RPG works with a display file to create an
interactive application on the iSeries. As you saw earlier, the Response.Write
method can be used to send output to the browser. This output can include
HTML tags, which means that your application can dynamically create the page.

To create input fields within Web pages, use HTML forms. The values entered into
the HTML form are passed to the ASP script through the Request.Querystring and
Request.Form collections. Figure 2.5 contains code for a simple HTML form.

This sample first uses the <FORM> tag to define form information. The NAME
attribute identifies the form, while the METHOD attribute defines how the val-
ues from the form will be passed. A method of POST sends the variables
through the Request.Form collection. The GET method will send the values
through the Request.Querystring collection.

Next, in addition to some simple headings, each of the input fields is defined.
Again, the NAME property is used to identify the variable within the
Request.Querystring or Request.Form collection. The TYPE property defines the
type of input field being created. All of the fields here are simple text boxes. The
SIZE property defines the size of the text box as a number of characters. The

CHAPTER 2: Introduction to Active Server Pages

46

<html>
<body>
<form name="sampleform" method="POST" action="process.asp" ID="Form1">
Name: <input type="TEXT" name="Name" size =35 ID=""text"1">

Address:<input type="TEXT" name="Addr1" size=35 ID=""text"2">

City, St ,Zip: <input type="TEXT" name="City" size=15 ID=""text"3">
<input type="TEXT" name="State" size=2 maxlength="2" ID=""text"4">
<input type="TEXT" name="Zip" size=5 maxlength="5" ID=""text"5">

<input type="SUBMIT" value="Process" ID=""submit1" NAME="submit1">
</form>
</body>
</html>

Figure 2.5: This HTML code creates an input form.

chapter_2.qxd 5/2/2003 12:41 PM Page 46

MAXLENGTH property used on some of the fields defines a maximum
accepted length for the variable.

The final field used within the form is also an input field, but this time it is
defined as SUBMIT, which creates an input button that can be used to send the
form to the server. The NAME parameter is used once again to identify this item
when the form is submitted. The VALUE property, in this case, serves two
purposes. First, it provides the text that will be displayed on the button. Second,
it is the value used for the SUBMIT button when the form is submitted.

Using a text editor, enter the code in Figure 2.5 and save it with the name “sam-
ple.html.” Now, open the file in your Web browser by typing the full path to the
file, including the file name, in the address bar. You should see something
similar to Figure 2.6.

At this point, you might be wondering where the ASP code comes in. Notice that
the ACTION parameter on the <FORM> tag defines a page called “process.asp.”
This is the Active Server Page that will process this form. Figure 2.7 contains
the code for this page.

Using HTML Forms with ASP

47

Figure 2.6: This is how the sample form in Figure 2.5 will look in the browser.

chapter_2.qxd 5/2/2003 12:41 PM Page 47

This example will take the values entered on the sample HTML form and display
the variable names and their values in the browser window. The For Each..Next
statement reads all of the values within the Request.Form collection. The values are
sent out to the browser window using the Response.Write method. Notice that the
HTML tag
 inserts a line break at the end of each line. This is a perfect exam-
ple of how to combine variable values with HTML tags to create dynamic output.
Figure 2.8 shows how the formatted output will appear in the browser window.

CHAPTER 2: Introduction to Active Server Pages

48

<html>
<body>
<script language="VBScript" runat="Server">
Dim var, val
For Each X in Request.Form

var=X
val=Request.Form(X)
Response.Write var & " = " & val & "
"

Next
</script>
</body>
</html>

Figure 2.7: This ASP script displays the data from the form in Figure 2.6.

Figure 2.8: This is the ASP output from the script in Figure 2.7.

chapter_2.qxd 5/2/2003 12:41 PM Page 48

To take this example a little further, you can use an Active Server Page to create
the HTML form. This gives you the ability to include or exclude form items
dynamically. The example in Figure 2.9 creates values in a list box using a
For..Next loop.

In this example, the <SELECT> tag creates a list box. The <OPTION> tags that
provide the content for the list box are created by ASP code. The text between
<OPTION> and </OPTION> defines what will be displayed for each option’s
value. This would allow you, for example, to display state names within a list,
but return the state abbreviation to your ACTION page. Figure 2.10 shows what
the output for this page would look like in a browser window. Using the same
“process.asp” page created earlier, the value selected will be displayed in the
browser window.

In both of these examples, the <INPUT> tag with TYPE of “SUBMIT” is used
to create a command button to send the screen back to the server for processing.
It’s pretty easy to draw a correlation between this button and a function key
within a display file on the iSeries. When you also consider that it’s possible to
have multiple submit buttons within the same form, it’s even easier to see how
similar these buttons are to function keys.

Using HTML Forms with ASP

49

Figure 2.9: This HTML code creates an input form.

<html>
<body>
Select a range of values:
<form name="sampleform" method="POST" action="process.asp">
<select name="listvalue">
<script language="VBScript" runat="Server">
For I = 0 to 150000 step 15000

J=I+14999
Response.Write "<option value='" & I & "'>" & I & " – " & _
J & "</option>"

Next
</script>
</select>
<input type=SUBMIT value=”Submit Page”>
</form>
</body>
</html>

chapter_2.qxd 5/2/2003 12:41 PM Page 49

The example in Figure 2.11 takes this idea even further, by creating an HTML
form that displays three “functions” along the bottom of the form. The value
returned into the input field named “Function” determines how the page defined
on the form’s ACTION parameter should proceed. This is done similarly to the
way an RPG program might deal with function keys.

CHAPTER 2: Introduction to Active Server Pages

50

<html>
<body>
<form name="sampleform" method="POST" action="process2.asp">
Name:<input type="TEXT" name="Name" size =35>

Address:<input type="TEXT" name="Addr1" size=35>

City, St, Zip:<input type="TEXT" name="City" size=15>
<input type="TEXT" name="State" size=2 maxlength="2">
<input type="TEXT" name="Zip" size=5 maxlength="5">

<input type="SUBMIT" name="function" value="Update">
<input type="SUBMIT" name="function" value="Cancel">
<input type="SUBMIT" name="function" value="Display">
</form>
</body>
</html>

Figure 2.11: This sample uses command buttons in place of function keys.

Figure 2.10: The options in this list box are created by an ASP page.

chapter_2.qxd 5/2/2003 12:41 PM Page 50

The ASP code for “process2.asp” is shown in Figure 2.12. This sample first
reads the value of the Function variable, which contains the defined value for the
SUBMIT button. Next, the Select Case statement controls the program flow
based on each of the possible “function key” values. The basic program logic
used in Figure 2.11 is very similar to how you would accomplish the same task
in an RPG program.

In addition to simple text fields and command buttons, you can also create radio
buttons and check boxes, and send their values through the Form or Querystring
collections. Radio buttons are created by using the <INPUT> tag with

Using HTML Forms with ASP

51

<!-- include functions.asp -->
<html>
<body>
<script language="VBScript" runat="Server">
Dim Fnc

' Read "function" variable from the FORM collection
Fnc=Request.Form("function")

' Use SELECT CASE to control the application flow
Select Case Fnc

' Call Update Routine
Case "Update"

Call Update()
' Redisplay main screen

Case "Cancel"
Response.Redirect "default.html"

' Display Form collection
Case "Display"

For Each x In Request.Form
VarName=x
VarVal=Request.Form(x)

If VarName<>"function" Then
Response.Write VarName * " = " & VarVal

End If
Next

End Select
</script>
</body>
</html>

Figure 2.12: This sample uses command buttons in place of function keys.

chapter_2.qxd 5/2/2003 12:41 PM Page 51

TYPE=“RADIO.” Radio buttons are normally used for multiple-choice selec-
tions. You define multiple radio buttons as one group by giving them the same
name, as shown in Figure 2.13.

When this example is loaded into your browser, you’ll see that by selecting one
option, any other that is selected is unselected automatically. When the page is
submitted, the value of the variable “Send” will reflect the option that was high-
lighted. Use a check box, on the other hand, when you want to allow an option
to be defined as “on” or “off.” If you were to change the TYPE on the example
in Figure 2.13 from RADIO to CHECKBOX, it would be possible to check all
three options at the same time. When the page was submitted, all three values
would be returned into the Form collection. Table 2.6 contains a complete list of
the Form objects available.

While ASP isn’t a requirement to use HTML forms, HTML forms are a key part
of Active Server Pages. This is because you use HTML forms to pass values to
the ASP scripts. There are times, however, when you’ll want to do some type of
validation prior to sending the form back to the server. For this, you can use
client-side scripts.

Client VBScripting and JavaScripting
In addition to creating scripts that run on the server, you can also create scripts
in VBScript or JavaScript that run within the client browser. This ability is

CHAPTER 2: Introduction to Active Server Pages

52

<html>
<body>
<form name="sendto" method="POST" action="report.asp" ID="Form1">
Send Report To:
<input type="RADIO" name="send"
value='P'>Printer</input>

<input type="RADIO" name="send" value='F'>File</input>

<input type="RADIO" name="send" value='S'>Screen</input>

<input type="SUBMIT" value="Process" ID=""submit1" NAME="submit1">
</form>
</body>
</html>

Figure 2.13: Radio buttons are created using the <INPUT> tag, as shown here.

chapter_2.qxd 5/2/2003 12:41 PM Page 52

a double-edged sword, however. It does allow you to read the contents of a form
prior to sending it to the server. At the same time, client scripts must be written

in a way that allow for maximum compatibility. Different browsers might sup-
port different levels of client scripting. It’s also entirely possible that a client
might not have client scripts enabled at all. In any case, the following examples
provide an introduction to client-script techniques.

Handling Mouse Events
Many of the objects within a Web page have events that can have client-
scripting functions assigned to them. For example, a cell within an HTML table
has ONMOUSEOVER and ONMOUSEOUT events. These two events are fired

Client VBScripting and JavaScripting

53

HTML Tag Description

<INPUT TYPE="BUTTON"> Displays a command button on the form. This type
of button does not automatically cause any action
on the form.

<INPUT TYPE="CHECKBOX"> Appears on the form as a check box.

<INPUT TYPE="IMAGE"> Displays a specified image file on the form that will
submit the form when clicked.

<INPUT TYPE="PASSWORD"> Displays a text box in which all entered characters
appear as asterisks. This type is used for password
entry.

<INPUT TYPE="RADIO"> Displays a radio button within the form.

<INPUT TYPE="RESET"> Appears as a command button, but will reset all of
the values on the form to their defaults.

<INPUT TYPE="SUBMIT"> Displays a command button on the form that will
automatically submit the form to the server.

<INPUT TYPE="TEXT"> Provides a single-line text box within the form.

<SELECT> Act together to create a list box on the form. The
<OPTION> SELECT tag defines the list box itself. The OPTION

tag defines each of the items within the list box.

<TEXTAREA> Similar to the TEXT type, but allows multiple lines of
text to be entered into one field.

Table 2.6: Objects That Can Be Used within an HTML Form

chapter_2.qxd 5/2/2003 12:41 PM Page 53

when the pointer is moved over or off of the cell, respectively. You can use
these events to change the appearance of the cell when the user moves the
pointer over it.

The Web page in Figure 2.14 uses a client script to highlight the text when
the mouse pointer is placed over each of the cells. This example creates three
cells within a table, and highlights each cell as the mouse pointer moves
over it.

CHAPTER 2: Introduction to Active Server Pages

54

<html>
<title>Mouse Over Client Script Example</title>
<body>
<table border=1>

<tr>
<td onmouseover='mouseover()' onmouseout='mouseout()'>

Cell 1
</td>
<td onmouseover='mouseover()' onmouseout='mouseout()'>

Cell 2
</td>
<td onmouseover='mouseover()' onmouseout='mouseout()'>

Cell 3
</td>

</tr>
</table>
</body>
<script language='JavaScript'>
function mouseover(){
var srcElement;
srcElement=window.event.srcElement;
srcElement.style.color= "White";
srcElement.bgColor = "Black";

}

function mouseout(){
var srcElement;
srcElement=window.event.srcElement;
srcElement.style.color= "Black";
srcElement.bgColor = "White";

}
</script>
</html>

Figure 2.14: This sample assigns a client-side JavaScript to an event.

chapter_2.qxd 5/2/2003 12:41 PM Page 54

In this example, you determine the cell that is highlighted by using the
Window.Event.srcElement object. The Window object is used to read and set
attributes of the browser window or items within the browser window (in this
case, the cells). After assigning the Window.Event.srcElement object to a vari-
able named srcElement, you can redefine properties of the cell. In this case, the
code changes the background color using the bgColor property, and changes
the font color using the Style.Color property.

Figure 2.15 shows what this code would look like in a browser. In the browser, the
cell coloring would change when the mouse pointer hovered over it. The coloring
would return to normal when the ONMOUSEOUT event fired for the cell.

Client-side Form Validation
You can use this same technique to validate an entry in a form prior to submit-
ting the form to the server. This is done by creating a function for use with the
form’s ONSUBMIT event. This event is fired when the form is submitted

Client VBScripting and JavaScripting

55

Figure 2.15: The “Mouseover” example as it appears in the browser.

chapter_2.qxd 5/2/2003 12:41 PM Page 55

through the use of a SUBMIT button or image. This technique can be used for
basic data validation, like checking for the length of data entered into a field or
verifying that a given field has an entry. The example shown in Figure 2.16 uses
a client-side Java Script to validate three different form fields.

Each of the fields in Figure 2.16 has its own validation check. The Name field is
simply checked to ensure that a value was entered. This is done through the use
of a JavaScript “If” statement.

CHAPTER 2: Introduction to Active Server Pages

56

Figure 2.16: This example uses a client-side script for data validation.

<html>
<body>
<form name="form1" method="POST" action="p2.asp"
onsubmit="return validate();">
* = Required Field

Name *: <input type="TEXT" name="FullName" size =35 ID="FullName">

E-Mail:<input type="TEXT" name="EMail" size=35 ID="EMail">

Phone #:<input type="TEXT" name="Phone" size=15 ID="Phone">

<input type="SUBMIT" value="Submit" ID="submit1" NAME="submit1">
</form>
</body>
<script language="JavaScript">
function validate() {

if (form1.FullName.value == '') {
window.alert('A Name is Required');
form1.FullName.focus();
return(false);

}
if (form1.EMail.value.search('@')==-1) {

window.alert('E-mail address is invalid');
form1.EMail.focus();
return(false);

}
if (form1.Phone.value.length<10) {

window.alert("Phone number is invalid");
form1.Phone.focus();
return(false);

}
return true;

}
</script>
</html>

chapter_2.qxd 5/2/2003 12:41 PM Page 56

In JavaScript, all grouped statements (If, For, etc.), along with functions them-
selves, are grouped using the { and } bracket characters. For functions, this is
done using the following format:

Rather than require an End Function statement as would be used in a VBScript,
you simply use the close bracket. An If statement is defined in a similar
manner:

This example shows that the If statement is followed immediately by the condi-
tion enclosed in parentheses, and then the conditional code enclosed in brackets.
Each of the fields within a form is referenced as shown here:

In this example formname corresponds to the name of an HTML form.
Fieldname references the input field within that form. The value property
retrieves the value of the field.

To get back to the example in Figure 2.16, the first If statement simply checks
to see whether FullName is blank. If this field is blank, a message box signify-
ing the error will be displayed using the Window.Alert command. Next, the
Focus() method is used on the FullName field in the same way that a Position
Cursor Display Attribute [DSPATR(PC)] would be used in a display file on the
iSeries. It will cause the cursor to be placed in the FullName field. Then,

Client VBScripting and JavaScripting

57

function functioname() {
' function code
}

if (condition) {
' conditional code

}

formname.fieldname.value

chapter_2.qxd 5/2/2003 12:41 PM Page 57

the return(False); command is used. This will cause the HTML form to be redis-
played, after displaying the message box.

The Email field’s address validation is slightly more complex. For this field, the
script not only ensures that the field not contain a value, but specifically that it
contains the @ character. This is done by using the Search JavaScript function.
This function scans the string on which it is used for the specified string value.
If the value is not found, a message box is displayed, notifying the user of the
error. As with the FullName, the Focus() function positions the cursor to this
field when the form is redisplayed by returning the False value.

The third validation is on the Phone field. This validation checks to ensure that
the value in this field is no less than 10 positions. If the value is less than 10
positions, the same logic used for the other fields is used to display a message
box and redisplay the form, with the cursor positioned at this field. Figure 2.17
shows an example of what the output from this sample page will look like.

CHAPTER 2: Introduction to Active Server Pages

58

Figure 2.17: Each of these fields is validated using a client-side JavaScript.

chapter_2.qxd 5/2/2003 12:41 PM Page 58

VBScript Versus JavaScript
The two examples you just looked at both use JavaScript code running on the
client. For these examples to work properly, the browser must support
JavaScript. Another option for client-side scripting is to use the Visual Basic
scripting language. This is basically the sample scripting language you use with
server-side scripting, minus any of the ASP objects. The code in Figure 2.18
contains a sample client VBScript.

This example is basically a duplicate of Figure 2.14, with one exception: the
JavaScript code has been replaced with its VBScript equivalent. The similarities

Client VBScripting and JavaScripting

59

<html>
<title>Mouse Over Client VBScript Example</title>
<body>
<table border=1>

<tr>
<td onmouseover='mouseover' onmouseout='mouseout'
language=VBScript> Cell 1 </td>
<td onmouseover='mouseover' onmouseout='mouseout'
language=VBScript> Cell 2 </td>
<td onmouseover='mouseover' onmouseout='mouseout'
language=VBScript> Cell 3 </td>

</tr>
</table>
</body>
<script language='VBScript'>
sub mouseover()
Dim obj
Set obj=window.event.srcElement
obj.style.color="Red"
obj.bgColor="Black"

end sub

sub mouseout()
Dim obj
Set obj=window.event.srcElement
obj.style.color="Black"
obj.bgColor="White"

end sub
</script>
</html>

Figure 2.18: This example uses a VBScript version of the Mouseover and Mouseout events.

chapter_2.qxd 5/2/2003 12:41 PM Page 59

include the use of the window.event.srcElement object. The differences includ-
ing the use of the Dim statement in place of the Var statement to define
variables. Functionally, this example is identical to Figure 2.14.

The decision to use either JavaScript or VBScript involves several factors,
including your comfort level with each of these languages. In the end, however,
the deciding factor might be browser compatibility. As a general rule, JavaScript
is supported by more browsers that VBScript, so in my opinion JavaScript
would be the client-side language of choice.

Summary
As you’ve seen in this chapter, ASP scripts allow you to dynamically adjust the
HTML within a Web page. The ability to execute scripts on the Web server lets
you control the output sent to the browser, while keeping these scripts “hidden”
from the end user. In chapter 3, we’ll take this to the next level by examining
how to access data stored in the iSeries (or any other database) from within
an ASP.

CHAPTER 2: Introduction to Active Server Pages

60

chapter_2.qxd 5/2/2003 12:41 PM Page 60

