SUBFILES AND DATA QUEUES
— A PERFECT COMBINATION

This next technique came to me when [was asked to create a subfile applica-
tion that works like the Program Development Manager (PDM). If you’ve
ever looked at PDM on the AS/400, you may have marveled at what a cool
subfile application it is. PDM is extremely flexible. It allows you to position to
any place in a subfile-like panel, page forward or backward from that position,
change a record on any page of the subfile, and process all changed records only
when the Enter key is pressed. On their own, each feature is simple to code in an
RPG subfile program. But the real fun begins when you combine the features.

I worked for a software development house that wanted the IBM look and feel on
all of its screens. The thinking was that users familiar with the AS/400 would be
comfortable using the interactive screens in our software and would require less
training. It seemed simple enough at first, but as you will soon see, incorporating
all the features included with PDM into a subfile application is no small task. In
fact, PDM isn’t even a subfile application; its displays are written using the User

193

CHAPTER 7: SUBFILES AND DATA QUEUES

Interface Manager (UIM), the language used for many native OS/400 commands
and all of the help panels on the AS/400.

See Figure 7.1 for a typical PDM screen.

Work with Objects Using PDM MYSTSTEM

Library TANDEVER PosiEion: Bo o sive o o0 osave 4
Position to type

Tyre opbions. press Enter.

Z=Change a=Caopy d4=Delete S=Display 7=Rename
G=Display description S9=Save l0=Restore 11=Move ..
Opt Object Type Artribute Text

QCLLESRC *FILE IPF-ZRC ILE CL Zource

QCLERC *FILE PF-SRC 0ld CL source

QDDESRC *FILE PF-SRC LDE Source

QEPGLESRC *FILE PF-SRC ILE RBFF Source

QTESTSRC *FILE PF-SRC Internet Test Programw Srco

Bottom
Parameters or commard
===x
F3=Exit F4=Prompt FLi=Refresh F&=Create
Fa=Petrieve Flo=Command entry Fi3=More options Fzd=More keys

Figure 7.1: Example of a PDM screen.

THE DILEMMA

Well, what do you do if you’re an RPG programmer who likes the look, feel, and
flexibility of PDM, but doesn’t know how to obtain them using UIM? Do you
learn UIM? You could, but if you already know RPG, is learning a new language
the most effective use of your time? This was the dilemma I faced.

I’'m not against learning UIM, but I thought that there must be a more efficient
way to get the same results using RPG and subfile processing. After some re-
search, | recommended to my programming group that we use data queues to add
the necessary flexibility to our subfile applications. Data queues are the way to
get the features and flexibility you’re looking for—without having to learn UIM.

194

DATA QUEUES 101

DATA QUEUES 101

Data queues are a type of system object (type *DTAQ) you can create and main-
tain using OS/400 commands and APIs. They’re AS/400 objects that can be used
to send and receive multiple record-like strings of data. Data may be sent to and
received from a data queue from multiple programs, users, or jobs, making them
an excellent mechanism for sharing data. They provide a fast means of asyn-
chronous communication between two jobs because they use less system re-
sources than database files, message queues, or data areas. Data queues have the
ability to attach a sender ID to each entry being placed on the queue. The sender
ID, an attribute of the data queue that’s established when the queue is created
contains the qualified job name and current user profile. Another advantage to
using data queues is the ability to set the length of time a job will wait for an en-
try before continuing its processing. A negative wait parameter will tell the job to
wait indefinitely for an entry before processing. A wait parameter of 0 to 99,999
will tell the job to wait that number of seconds before processing.

High-level language programs (HLLs) can send data to a data queue using the Send
to a Data Queue (QSNDDTAQ) API and receive data using the Receive from a Data
Queue (QRCVDTAQ) API. Data queues can be read in FIFO sequence, in LIFO se-
quence, or in keyed sequence. The technique I use for building PDM-like subfile
applications requires a keyed data queue. Keyed data queues allow the programmer
to specify a specific order in which entries on the data queue are received or to re-
trieve only data queue entries that meet a criterion. That is, the programmer can re-
ceive a data queue entry that’s equal to (EQ), greater than (GT), greater than or equal
to (GE), less than (LT), or less than or equal to (LE) a search key.

WHY SHouLD | USE A DATA
QUEUE IN A SUBFILE PROGRAM?

The reason behind using data queues in a subfile program stems from a combina-
tion of user requirements and an interest in selecting the most efficient solution
for that combination. I wanted to provide the PDM look and feel by allowing us-
ers to position to anywhere in the subfile using the position-to field and to page

195

CHAPTER 7: SUBFILES AND DATA QUEUES

up or down from that new position. This is easily accomplished using a
page-at-time subfile.

However, I also wanted the data that was changed on subfile records to be saved,
regardless of where the user navigated in the subfile, until the user was ready to
process them by pressing the Enter key. This is accomplished easily in a load-all
or self-extending subfile, but not in a page-at-a-time subfile.

With page-at-a-time subfiles, you have to clear and build one new page of subfile
records every time the user pages and uses a position-to field. Any previously
changed records are not saved. I needed a way to combine the flexibility of the
page-at-a-time subfile with the capability to process the changed records only
when desired. I needed a place to store and reuse changed subfile records until
the user was ready to process them. Using data queues to accomplish this task in-
stead of data structures, files, or arrays frees you from some additional work.

During an interactive job, the data queue APIs can provide better response time
and decrease the size of the program, as well as its process activation group
(PAG). In turn, this can help overall system performance. In addition, data
queues allow the programmer to do less work. When you receive an entry from a
data queue using the QRCVDTAQ command, it’s physically removed from the data
queue. The programmer doesn’t have to add code to deal with unnecessary en-
tries. Here’s what you do.

I use the data queue to store a replica of the changed subfile record. Each time a
subfile record is changed and the Enter key or Page key is pressed, the changed
subfile record is stored in the data queue. I do this because I build the subfile one
page at a time and need to know which records were previously changed. Once
records are no longer displayed on the screen, they’re not part of the subfile.
When the user positions through the subfile by scrolling or by keying something
in the position-to field, the program will check to see if each record read from the
data file exists in the data queue before loading it to the subfile. If the record ex-
ists in the data queue, it’s written to the subfile, along with the earlier changes,
and marked as changed. When the user is ready to process all the changed re-
cords by pressing the Enter key with nothing in the position-to field, the records

196

THE DDS — THE SAME AS IT EVER WAS

will be processed appropriately from the data queue. I have modified my original
master file maintenance application using these principles. You can check out the
CL, DDS, and RPG that make this work at the end of this chapter.

THE DDS —THE SAME AsS IT EVER WAS

Before I get to the RPG, I need to say a few things about the DDS and CL. For
this application to have the necessary flexibility, the RPG program—and not
0S/400—must completely control the subfile. Of course, you know what that
means. For this to happen, the subfile page (SFLPAG) and subfile size (SFLSIZ)
values must be equal. The subfile will never contain more than one page, but, as
you’ll see, the program will make it appear that the subfile contains much more
than one page of data. You should otherwise recognize the DDS as our Master
File Maintenance DDS and understand what it’s doing. The complete DDS is in-
cluded at the end of this chapter (see SFLO11DF).

CONTROL LANGUAGE —
So LitTLE CobpE, SO MucH CONTROL

It’s important to note that even though entries are removed from a data queue af-
ter they’re received, the space containing the entry isn’t. Over the long run, per-
formance will suffer because the data queue’s size will increase. For this reason,
I delete and re-create the data queue each time the program is called. Even if you
build your data queues in QTEMP, as I do, it’s best to delete and re-create them in
case the user calls the program more than once before signing off. Program
SFLO11CL accomplishes this task. Again, you can find this program at the end of
the chapter.

ABRACADABRA! THE SUBFILE’S
NEVER MoORE THAN ONE PAGE

Now that the setup issues have been covered, let’s perform some magic. Let’s
start with the RPG program, which is our Master File Maintenance program from

197

CHAPTER 7: SUBFILES AND DATA QUEUES

chapter 4, with a few additions thrown in. Rather than spending time rehashing
the basic subfile techniques you’ve already mastered, I’ll concentrate on how the
program uses a data queue to make the subfile appear to be larger than it really is.

The program’s first task is to load the subfile with one page of records (in this
case, nine). This code is shown in Figure 7.2.

* Load data to subfile

C do sflpag

C read sf10011f 90
C if *in90

C leave

C endif

C eval option = *blanks
C exsr rcvque
C eval rrnl = rrnl + 1
C if rrnl = 1
C eval savlinam = dblnam
C eval savfnam = dbfnam
C endif
C write sfl1l
C eval *in74 = *off
C enddo

Figure 7.2: Loading the subfile with one page of records.

Notice that each time a record is read from the data file, the RCVQUE subroutine
is executed. For the initial subfile load, this subroutine won’t accomplish any-
thing— (I will explain this later). However, after the initial load, the RCVQUE
subroutine plays a vital part in the subfile load routine.

Once the subfile is initially loaded and displayed, the user can do several things.
He can scroll through the subfile; add, change, display, or delete records; position
to another place in the subfile; or exit the program.

The code listed in Figure 7.3 shows that no matter what the user decides to do,
the ADDQUE subroutine is executed each time the Enter key or a valid function
key (other than F3 or F12) is pressed. This subroutine uses the READC op code to

198

ABRACADABRA! THE SUBFILE’S NEVER MORE THAN ONE PAGE

find changed records in the subfile and add them to the data queue using the
QSNDDTAQ API.

*

*

aNeleaNale)

*

. NnnOnNnnNnn .

[aNaNe!

s

nNoOnNnNOnNnn

aNeNaNal

nn

* If ENTER key is pressed and position-to non blank,

reposition the subfile to close to what was entered.

when
exsr
ptname setll
exsr
clear

(cfkey = enter) and (ptname *blanks)
addque
sf10011F
sflbld
ptname

If ENTER key is pressed and position-to is blank,
process screen to interrogate options selected by user

when
exsr
exsr
savkey setll
exsr

when
exsr
exsr

“ User presses F6, throw the

when
movel (p)
exsr
exsr
dbTnam setl]
exsr

when
exsr
exsr
exsr

when
leave

(cfkey = enter) and (ptname = *blanks)
addque

prcsfl

sf10011F

sflbld

* Ro11 up - load the data Q’s before loading subfile

(cfkey = rollup) and (not *in90)
addque
sflbld

add screen, clear, and rebuild subfile

cfkey = add

‘Add ’ mode
addque

addrcd

sf10011F

sflbld

* Roll down - load the data Q’s before loading the subfile.

(cfkey = rolldn) and (not *in32)
addque
goback
sflbld

*ink1

Figure 7.3: Each time a valid function key, other than F3 or F12, is pressed, the changed records are
added to the data queue.

199

CHAPTER 7: SUBFILES AND DATA QUEUES

Table 7.1 gives an explanation
of the QSNDDTAQ parameters.
The data queue entry will con-
tain the option selected by the
user and the key of the data file.

Figure 7.4 shows the contents of
the data queue when the user se-
lects a 4 next to a record, then
pages down to see another page.
When he paged down, an entry
was added to the data queue that
consisted of the option (4) and

Table 7.1: Required QSNDDTAQ API

Parameters.
Parameter Explanation
QUEUE Name of the data queue
LIB Library containing the data queue
LEN Length of the data being written to the
data queue
DATA The actual data being written to the

data queue

the value in DBIDNM, which is the key to the data file, the key to the data queue,

and a hidden field in the subfile.

1 000000
33 [DEIDNM as the kevy)
=
lel
ZEE

Data Queus Display - Tid ZF0ZS00 1Z2:14
Queue: EFLOLLIDO Lib: QTEMP Hbr of Entries: 1 Seq: *EEYED
Max Entry Length: 2568 Eey Length: 7 Force: *NO Sender ID: *NO
Text:
Entry: 00001 Encpacue Date: 0EZ/702/00 Encueue Time: 1Z:07:3&
ok o e, L A BRI PSS Sy R A B SCEl SRt TRl e e e

40000004
(OPTION followed by DEIDNM)

Figure 7.4: The contents of the data queue after the user places a 4 in the option field and

presses the page-down key.

The ADDQUE subroutine, shown in Figure 7.5, keeps track of all records changed
through the subfile. For example, if the user decides to delete two records on the
next page after selecting a 4 to delete a record on the current page, the ADDQUE
subroutine sends the two changed records to the data queue before rebuilding the
subfile in the page forward (SFLBLD) routine. Now there are three entries in the
data queue, and nothing has been deleted. The same logic holds true if the user
decides to position to another part of the subfile using the position-to field.

200

ABRACADABRA! THE SUBFILE’S NEVER MORE THAN ONE PAGE

Tl Sl fdehfdfdde N d Nl h SR ddfd el h Nl Al fd el hfdehdd Rl dh el Al fddfdht
- c
* ADDQUE - Add subfile data to Data Queues
Fekdedhdedehddhddfhdfhdfhddhddddhhdfhdhhddhddddhddfhdefhddhddhddhddn
-

C addque begsr
=

o

Read the changed subfile records and write them to the data Q’s

* The first data queue is keyed by whatever the unique key of the file
* is. If no unique key in the file, use the relative record number.

* This queue is used to save options selected on a specific subfile

* 1ine. The second queue is keyed by option, and is used to process

* Tike options together when the enter key is selected
¥

C readc sfl1l
C dow not %eof
C eval len = glen
C call ‘QSNDDTAQ’
C parm queue
C parm 1ib
C parm len
C parm data
C parm keyTn
C parm key
¥
C readc sfll
C enddo
C endsr

Figure 7.5: This routine writes the changed records to the data queue.

Now we can get to the details of the RCVQUE routine, as shown in Figure 7.6.

* RCVQUE - Check DATAQUEUE before writing to subfile
C rcvque begsr

=

Read the data Q by the whatever the unique key from the
* physical file to see if there is a saved option. If so, display

* the saved option when the subfile is displayed.
*

Figure 7.6: This routine removes entries from the data queue.

201

CHAPTER 7: SUBFILES AND DATA QUEUES

C eval order = ‘EQ’

C call ‘QRCVDTAQ’

C parm queue
C parm 1ib

C parm len

C parm data
C parm wait
C parm order
C parm keyln
C parm key

C parm sndlen
C parm sndr
C if len > *zero

C eval *in74 = *on

C endif

C endsr

Figure 7.6: This routine removes entries from the data queue (continued).

This subroutine attempts to receive an entry from the keyed data queue using the
same key as the record read from the database file (DBIDNM). The QRCVDTAQ
API does this for you. The order is set to EQ (equal) so you will retrieve an entry
only if there’s one matching the record just read from the file. If the length is
greater than 0 (Ten > 0), an entry was retrieved from the data queue. You then
set on indicator 74, which conditions SFLNXTCHG in your DDS, to mark the re-
cord as changed when the subfile record is written. By doing this, subsequent
READC operations will pick up the record the next time the page is processed.

Table 7.2 shows an explanation of the parameters for QRCVDTAQ.

If a matching entry exists in the data queue, the entry in the data queue—not the
data from the database file—is written to the subfile. With this, the user can page
and position through the subfile and store any changed records in the data queue.
Whenever a record is read from the file, the data queue is checked to see if that
record exists. If it does, it’s displayed along with the previously selected option.
If our user wanted to page up to see the first page after having selected two re-
cords for delete on the second page, he could do so. He would see a “4” in the

202

ABRACADABRA! THE SUBFILE’S NEVER MORE THAN ONE PAGE

original record he selected for Table 7.2:
delete, anq the data queue would Required QRcVDTAQ API Parameters
now contain the two records When Working with Keyed Data Queues.

from the second page.
Parameter Explanation

If the user presses the Enter key QUEUE Data queLe name

and the position-to field is

empty, the ADDQUE routine exe- LIB Library containing the data queue
cutes one last time to load any LEN Length of entry received from the data
changes to the current page, and dueve
the PRCSFL routine is executed. DATA Data received from the data queue
The PRCSFL routine (shown in WAIT How long to wait for data (a negative
Figure 7.7) in this example is a number will cause the program to wait in-
little different than the one in definitely)
my original Master File Mainte- ORDER How to get the keyed data (EQ, GE, LT,
nance program. This subroutine etc.
uses the RCVDTAQ API instead KEYLN Length of the key to the data queue
of READC to process all the KEY The key field used to retrieve data
changed records. Remember hat

SNDLEN Length of the sender ID information

changed records will reside in

the data queue, not the subfile, SNDR The sender ID information

which never contains more than

one page of data. By setting the key value, DBIDNM, to one and the order to GE
(greater than or equal to), you’re sure to retrieve all entries in the data queue. Fig-
ure 7.7 shows the RCVDTAQ API in action in the PRCSFL routine. This API will be
run until the length (LEN) parameter is 0. That will happen when no more entries
exist in the data queue.

* Receive data queue records until the queue is empty LEN = 0

C eval dbidnm = 1
C eval order = ‘GE’

C dou len = *zero

Figure 7.7: How to process all the changed records from a subfile by going through the data queue.

203

CHAPTER 7: SUBFILES AND DATA QUEUES

C call ‘QRCVDTAQ’

C parm queue
C parm 1ib

C parm len

C parm data
C parm wait
C parm order
C parm keyTn
C parm key

C parm sndlen
C parm sndr

* If length is greater than zero, there was a record read.
* Process that record and receive from the second dataq to
keep them in cinc.

C if len > *zero

Figure 7.7: How to process all the changed records from a subfile through the data queue (continued).

Each time an entry is received, the data is run through a select routine to deter-
mine which function needs to be performed. In the case of this program, depend-
ing on the option taken, a display screen, an update screen, or a delete
confirmation subfile will appear, just as it did in my earlier example.

Controlling the subfile within the RPG program and using data queues to store
and retrieve changed subfile records allows you to create an extremely flexible
subfile application that will furnish your users with everything they ever wanted
in a subfile program. Besides, it’s a great way to make a page-at-time subfile
look like a lot like a load-all subfile.

CoDE ExXAMPLES

The following code examples are used in this chapter.

204

CODE EXAMPLES

SFLO11CL: CL Program to Create the Temporary Data Queue

/% */
/* To compile: */
/ % %
/* CRTCLPGM PGM(XXX/SFL0O11CL) SRCFILE(XXX/QCLLESRC) */
/* */
/ ¥ % /
PGM

DLTDTAQ DTAQ(QTEMP/SFL011DQ)

MONMSG MSGID(CPF2105)

CRTDTAQ DTAQ(QTEMP/SFL011DQ) MAXLEN(256) SEQ(*KEYED) +

KEYLEN(7)

CALL PGM(*LIBL/SFLO11RG)

ENDPGM

SFLO11DF: DDS Using the Data Queue Technique

A *

A

A

A

A

A

A *

A R SFL1

A *

A 74

A DBIDNM R H
A OPTION 1A B
A DBLNAM R 0
A DBFNAM R 0
A DBMINI R 0
A DBNNAM R 0
A R SF1CTL

A *

A

A

A

A

A

A

A N32

A N31

A 31

A 90

A RRN1 4S OH
A

A

A

DSPSIZ(24 80 *DS3)
PRINT

ERRSFL

CAO03

CA12

SFL

SFLNXTCHG

REFFLD(PFR/DBIDNM *LIBL/SFLOO1PF)
10 3VALUES(® * ‘27 ‘4’ *‘57)
10 7REFFLD(PFR/DBLNAM *LIBL/SFLOO1PF)
10 31REFFLD(PFR/DBFNAM *LIBL/SFLOO1PF)
10 55REFFLD(PFR/DBMINI *LIBL/SFLOO1PF)
10 60REFFLD(PFR/DBNNAM *LIBL/SFLOO1PF)

SFLCTL(SFL1)

CF06
SFLSIZ(0012)
SFLPAG(0012)
ROLLUP
ROLLDOWN
OVERLAY
SFLDSP
SFLDSPCTL
SFLCLR
SFLEND (*MORE)
SFLRCDNBR

9 7‘Last Name’
DSPATR(HI)

9 31°‘First Name’

CHAPTER 7: SUBFILES AND DATA QUEUES

SFLO11DF: DDS Using the Data Queue Technique (continued)

>

>>>>>>>>>>>P>P>>>>>>>>P>>>>>>>>>>>>>>>>>>>>>>>>>>> > > >

kS

PTNAME

R PANEL1

MODE

DBIDNM

DBFNAM

DBLNAM

DBMINI

DBNNAM

DBADD1

DBADD2

DBADD3

20A B

1
1

2
1

4

4
9

1
2

10

12

14

16

18

23

23

DSPATR(HI)
55¢MI’
DSPATR(HI)
60‘Nick Name’
DSPATR(HI)
2‘SFLO11RG’
71DATE
EDTCDE(Y)
71TIME
24‘Subfile Program with Update
DSPATR(HI)
2‘Position to Last Name .
30CHECK (LC)
2'0pt’
DSPATR(HI)
2‘Type options, press Enter.’
COLOR(BLU)
4‘2=Change’
COLOR(BLU)
19‘4=Delete’
COLOR(BLU)
34‘5=Display’
COLOR(BLU)

2 ‘SFLO04RG’

2DSPATR(HI)

24‘Subfile Program with Update
DSPATR(HI)

71DATE
EDTCDE(Y)

71TIME

23REFFLD(PFR/DBIDNM *LIBL/SFLOO1PF)
DSPATR(HI)

23REFFLD(PFR/DBFNAM *LIBL/SFLOO1PF)
CHECK(LC)

23REFFLD(PFR/DBLNAM *LIBL/SFLOO1PF)
CHECK(LC)

23REFFLD(PFR/DBMINI *LIBL/SFLOO1PF)
CHECK(LC)

23REFFLD(PFR/DBNNAM *LIBL/SFLOO1PF)
CHECK(LC)

23REFFLD(PFR/DBADD1 *LIBL/SFLOO1PF)
CHECK(LC)

23REFFLD(PFR/DBADD2 *LIBL/SFLOO1PF)
CHECK(LO)

23REFFLD(PFR/DBADD3 *LIBL/SFLOO1PF)
CHECK(LO)

2°F3=Exit’
COLOR(BLU)

12 ‘F12=Cancel’

206

CODE EXAMPLES

SFLO11DF: DDS Using the Data Queue Technique (continued)

COLOR(BLU)
3“Customer Number .
3‘First Name.
3‘Last Name’
10 3‘Middle Initial. . .’
3‘Nick Name’
14 3‘Address Line 1. . .’
16 3‘Address Line 2. . .’
18 3‘Address Line 3. . .’

>
© o N

>>>>>>> > >
=
N

R PANEL2

>
*

1 2°SFLOO4RG’
MODE 6 0 2 2DSPATR(HI)
1 24‘Subfile Program with Update !
DSPATR(HI)
1 71DATE
EDTCDE(Y)
2 71TIME
DBIDNM R O 4 20REFFLD(PFR/DBIDNM *LIBL/SFLOO1PF)
DSPATR(HI)
DBFNAM R O 6 20REFFLD(PFR/DBFNAM *LIBL/SFLOO1PF)
DSPATR(HI)
DBLNAM R O 8 20REFFLD(PFR/DBLNAM *LIBL/SFLOO1PF)
DSPATR(HI)
DBMINI R 0 10 20REFFLD(PFR/DBMINI *LIBL/SFLOO1PF)
DSPATR(HI)
DBNNAM R 0 12 20REFFLD(PFR/DBNNAM *LIBL/SFLOO1PF)
DSPATR(HI)
DBADD1 R 0 14 20REFFLD(PFR/DBADD1 *LIBL/SFLOO1PF)
DSPATR(HI)
DBADD2 R 0 16 20REFFLD(PFR/DBADD2 *LIBL/SFLOO1PF)
DSPATR(HI)
DBADD3 R 0 18 20REFFLD(PFR/DBADD3 *LIBL/SFLOO1PF)
DSPATR(HI)
23 2°F3=Exit’
COLOR(BLU)
23 12°‘F12=Cancel’
COLOR(BLU)
3“Customer Number:
3‘First Name .
3‘Last Name. :
10 3‘Middle Initial :’
12 3‘Nick Name. . . :’
14 3‘Address Line 1 :’
16 3‘Address Line 2 :’
18 3‘Address Line 3 :’

o O

3

3

>>>>>>>>>>>P>>>>>P>>>>>>>>>>>>>>>>>>>> > >

R WINDOW1 SFL

> >

DBIDNM R H REFFLD(PFR/DBIDNM *LIBL/SFLOO1PF) N

207

CHAPTER 7: SUBFILES AND DATA QUEUES

SFLO11DF: DDS Using the Data Queue Technique (continued)

> >>>>>>>>>>>>>>> >

> > >
* *

>>>>>>>

> >
*

> > > >

N41
41
N41

DBLNAM R O 6 2REFFLD(PFR/DBLNAM *LIBL/SFLOO1PF)
DBFNAM R O 6 26REFFLD(PFR/DBFNAM *LIBL/SFLOO1PF)

R SF2CTL SFLCTL (WINDOW1)

SFLDSP
SFLDSPCTL
SFLCLR
SFLEND (*MORE)
SFLSIZ(0009)
SFLPAG(0008)
WINDOW(4 10 16 52)
RRN2 4S OH

5 2‘Last Name’
DSPATR (HI)

5 26‘First Name’
DSPATR (HI)

2 2‘Press ENTER to confirm your choice-
s for delete.’
COLOR(BLU)

3 2‘Press Fl2=Cancel to return to chan-
ge your choices.’
COLOR(BLU)

R FKEY1

23 2‘F3=Exit’
COLOR(BLU)
+3‘F6=Add’
COLOR(BLU)
+3‘F12=Cancel’
COLOR(BLU)

R FKEY2

23 2°F3=Exit’

COLOR(BLU)
+3‘F12=Cancel’

COLOR(BLU)

SFLO11RG: RPG Program Using the Data Queue Technique

%

To compile:

CRTRPGPGM PGM(XXX/SFLO11RG) SRCFILE(XXX/QRPGLESRC)

208

v

CODE EXAMPLES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

Fsf1011df cf e
F
F
F
Fsf10011f +if e
Fsf1001pf uf a e

workstn

k disk
k disk

* Information data structure to hold

Dinfo
D cfkey

ds

369

* Constants and stand alone fields

¥

Dexit
Dcancel
Dadd
Denter
Drollup
Drolldn
Dsflpag
Dsflpag_plus_1
Dglen
Ddisplay
Dchange
Ddelete

Dlstrrn
Dlstrrn2
Dcount
Dnew_1id
Dsavlnam
Dsavfnam

* Data Queue variables

D1ib
Dqueue
Dlen
Dkeyln
Dwait
Dsndlen
Dorder
Dsndr
* Data structure
data
option
dbidnm
key

wlwlwiw)

NONNONOhONNNNOnN

nunvnuvnunuununn

nunuvmuvmumunmumom

~
o

10

O N WU wu
o O OO

1

sfile(sf1l:rrnl)
sfile(windowl:rrn2)
infds(info)
rename(pfr:1fr)

attention indicator byte.

const(X‘337)
const(X‘3C’)
const(X‘367)
const(X‘F1”)
const(X‘F57)
const(X‘F47)
const(12)
const(13)
const(256)
const(‘5’)
const(‘2’)
const(‘4’)

inz(0)
inz(0)
inz(0)
Tike (dbidnm)
Tike(dblnam)
Tike(dbfnam)

inz(‘QTEMP”)
inz(‘QUEUE1’)
inz(256)
inz(7)

inz(0)

inz(0)
inz(‘EQ’)

inz(* "

to be Toaded to data queue.

DS

209

CHAPTER 7: SUBFILES AND DATA QUEUES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

D

filler 9

256 inz(*blanks)

*

C

aNelaNake]

NnNOnNOnNnN

[aNaNe!

NnOnNnNnnNN

Main Routine

Fededdedefhdedhdedehdedhddehddedde el el hdedhddhddhddedde el el hddhddhddhdd

*Toval setll
exsr

dou

write
exfmt

select

when
exsr
ptname setll
exsr
clear

when
exsr
exsr
savkey setll
exsr

when
exsr
exsr

« User presses F6, throw the

when
movel (p)
exsr
exsr
dbTnam setl]
exsr

sf10011f
sflbld

cfkey = exit

fkeyl
sflctl

« If ENTER key is pressed and position-to non blank,
* reposition the subile to closet to what was entered.

(cfkey = enter) and (ptname *blanks)
addque
sf10011F
sflbld
ptname

* If ENTER key is pressed and position-to is blank,
“ process screen to interrogate options selected by user

(cfkey = enter) and (ptname = *blanks)
addque

prcsfl

sf10011f

sflbld

* Ro1T up - load the data Q’s before Toading subfile

(cfkey = rollup) and (not *in90)
addque
sflbld

add screen, clear, and rebuild subfile

cfkey = add

‘Add ’ mode
addque

addrcd

sf10011F

sflbld

210

CODE EXAMPLES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

%

* Ro11 down - Toad the data Q’s before Tloading the subfile.

%

C when (cfkey = rolldn) and (not *in32)
C exsr addque
C exsr goback
C exsr sflbld
C when *ink1
C Teave
C ends’
*
C enddo
C eval *inlr = *on

Fedededdedefdede il de Sl de S dedde Sl dde Sl de e fde e de Sl dedefde el ddedhn

* ADDQUE - Add subfile data to Data Queues

C addque begsr

* Read the changed subfile records and write them to the data Q’s

* The first data queue 1is keyed by whatever the unique key of the file

“ is. If no unique key in the file, use the relative record number. This
* queue is used to save options selected on a specific subfile 1ine. The
“ second queue is keyed by option, and is used to process like options

“ together when the enter key is selected

C readc sf11

C dow not %eof

C eval len = qlen

C call ‘QSNDDTAQ’

C parm queue
C parm 1ib

C parm len

C parm data
C parm keyTn
C parm key

C readc sf11

C enddo

C endsr

* RCVQUE - Check DATAQUEUE before writing to subfile

CHAPTER 7: SUBFILES AND DATA QUEUES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

C rcvque begsr
* Read the data Q by the whatever the unique key from the
* physical file to see if there is a saved option. If so, display
* the saved option when the subfile is displayed.

gl .

eval order = ‘EQ’

call ‘QRCVDTAQ’

parm queue
parm Tib
parm len
parm data
parm wait
parm order
parm keyTn
parm key
parm sndlen
parm sndr

aNeaNeNalelaNeoEaNaEaNa!

C if len > *zero
C eval *in74 = *on
C endif

C endsr

Fdedekdedehddehde Nkl Rl dhddddedde il il hddhdddd ikl hddhddhddehddhk

PRCSFL - process the options taken in the subfile.

Fdedekdedehddehde ikl hddhddddeddehd Rl hddhddedde il el ikl hddeddhk

prcstl begsr

.0

eval *in4l = *on
write sf2ctl

eval *in4l = *off
eval rrn2 = *zero

[aNaNeNal

* Receive data queue records until the queue is empty LEN = 0
eval dbidnm = 1
eval order = ‘GE’

[aNa)

(@]

dou len = *zero

call ‘QRCVDTAQ’

parm queue
parm Tib
parm len
parm data

NnONnNn

212

CODE EXAMPLES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

C parm wait

C parm order
C parm keyTn

C parm key

C parm sndlen
C parm sndr

If Tength is greater than zero, there was a record read.
* Process that record and receive from the second dataq to
* keep them in cinc.
C if len > *zero

C select

process the edit program or subroutine

C when option = change

C movel(p) ‘Update’ mode

C exsr chgdtl

C if (cfkey = exit) or (cfkey = cancel)
C Teave

C endif
* when a 4 is entered write the record the the confirmation screen,
* set on the SFLNXTCHG indicator to mark this record as changed,
* and update the subfile. I mark this record incase F12 1is pressed
* from the confirmation screen and the user wants to keep his
* originally selected records

C when option = delete

C eval rrn2 = rrn2 +1

C write windowl
* process the display program or subroutine

C when option = display

C movel(p) *bTanks mode

C dbidnm chain sf1001pf

C exfmt panel2

C if (cfkey = exit) or (cfkey = cancel)

C Teave

C endif

C ends’

C endif

C enddo

213

CHAPTER 7: SUBFILES AND DATA QUEUES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

« If records were selected fo
“ screen. If enter is presse
“ physically delete the recor
* from the last deleted recor
« database file where ever yo

if
eval
eval
exfmt
if
exsr
dbTnam setl]
endif
endif

NnONNOONOnNnnN

(@]

endsr

*

Fedededdedefdehfde N de Sl Al NSl ddn

* SFLBLD - Build the List

r delete (4), throw the subfile to
d execute the DLTRCD subroutine to
ds, clear, and rebuild the subfile
d (you can certainly position the
u want)

rrn2 > *zero

Istrrn2 = rrn2

rrn2 = 1

sf2ctl

(cfkey exit) and (cfkey cancel)
dltrcd

sf10011f

Feddededde e ddefde S de Nl Al NSl Nl ANt

Tl Sl fde e dhdde Sl d Nl Nl A Sl Nl dd Al h el dde Sl h el ddefdddhn

C sflbld begsr
* (Clear subfile
eval
eval
write
eval

aNeNaNa!

%

* Load data to subfile

do
read
if
Teave
endif

s¥aNaNa¥al

eval
exsr
eval
if
eval
eval
endif
write
eval
enddo

[aNeEeNalaNaNaNeEaKe!

(@]

if

*in31l = *off

sflpag
sf10011F 90
*in90

option = *bTlanks

rcvque
rrnl = rrnl + 1
rrnl = 1

savinam = dblnam
savfnam = dbfnam

sfll
*in74 = *off

rrnl = *zero

214

CODE EXAMPLES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

C eval *in32 = *on

C endif

C endsr

%
* e dededededededede dede de e de e de e dede e de ke de e e e e de e e e de o

GOBACK - page backward one page
Feddd eSS NN b A hhhhhhdhhhdd NN b N b b h e hhddddddddddddeddddddhdhk
*

C goback begsr

*

C savkey setll sf10011f

¥

* Re-position files for rolling backward.
do sflpag_plus_1
readp sf10011f
if %eof

*Toval setl] sf10011f
Teave
endif

NnoOnNnNnnNnN

(@]

enddo

C endsr

%

Fededddefhdefhdedhddddhdd il il hdfhddhddddhdde Al hddddhddhddhdd

* CHGDTL - allow user to change data

C chgdtl begsr

%

-

* chain to data file using selected subfile record

C dbidnm chain

*

sf1001pf

* If the record is found (it better be), throw the change screen.
* If F3 or F12 1is pressed, do not update the data file

¥

o
Fededededefdedefdeddeddede S dde Sl de el dde Sl dede N dht

if
exfmt

if

update

endif

endif

endsr

%found
panell

(cfkey exit) and (cfkey cancel)
pfr

215

CHAPTER 7: SUBFILES AND DATA QUEUES

SFLO11RG: RPG Program Using the Data Queue Technique (continued)

* ADDRCD - allow user to add data

Tehhhhhhhfhfhhddddddededdededededddh e hhhddddddedddedededededdddhk
«

C addrcd begsr

«

-

* set to last record in the the file to get the last ID number

C *hival setgt sf1001pf
C readp sf1001pf
* set a new unique ID and throw the screen

*

C if not %eof

C eval new_id = dbidnm + 1
C clear pfr

C eval dbidnm = new_id

C exfmt panell

*

* add a new record if the pressed key was not F3 or F12

*

C if (cfkey exit) and (cfkey cancel)
C write pfr

C endif

C endif

C endsr

Fededk dede %

DLTRCD - delete records

Fdedekdedehddefhde ikl Rl dhddddddehd Rl dhddhddeddehhde el hddhddehddhk

C dltrcd begsr

* read all the records in the confirmation subfile
* and delete them from the data base file
do Tstrrn2 count
count chain windowl
if %found
dbidnm delete pfr 99
endif
enddo

NnoONNOnNnN

(@]

endsr

savkey kTist
kf1d savlnam
kf1d savfnam

[aNaNe!

216

