
Methodology and Design 3
INFORMATION IN THIS CHAPTER:

• Migration Options

• Methodology and Design

• Migration Services

Like any software development project, migration projects require careful planning
and good methodology to ensure successful execution. When migrating from one
database platform to another a good portion of the database design can be carried
forward, especially the schema design for relational database migrations. It may be
necessary to make some changes to the existing design and architecture if you want to
leverage new features in the Oracle database in favor of older mechanisms, such as
using database table partitioning and Oracle Real Application Clusters (RAC) to
support multiple workloads instead of maintaining different databases in sync with
database replication technologies. Therefore, a certain amount of rationalization is
possible when migrating to Oracle from other databases, resulting in consolidation of
many databases and schemas from the source database into a few schemas in Oracle.
To enable such rationalizations and other optimizations in database design, it is
essential to understand a typicalmigration project life cycle and the importance of each
phase in it.Many factors affect the success of amigration project, such as availability of
a skilled IT staff, tools, and technologies for migration, an understanding of the source
and target database architectures, and realistic project planning. Identifying these
factors before embarking on a new migration project can speed up execution and help
you to craft efficient solutions for challenges encountered along the way.

MIGRATION OPTIONS
Of all the options for client/server application migrations compared in Table 1.4 in
Chapter 1, database migration is the most common because it allows users to migrate
to new database platforms, yet leave applications intact, with no changes to existing
functionality and business rules, including the languages in which the applications
were originally developed. This approach provides the easiest migration path to
a new platform, and ensures business continuity in the new environment, along with
fewer upheavals. In cases where applications have become very difficult to maintain
and update with new features to support business requirements, they are rewritten in
new languages that leverage the latest technologies and standards. Such migrations
turn into completely new software design and development projects instead of just

CHAPTER

Migrating to the Cloud. DOI: 10.1016/B978-1-59749-647-6.00003-X
Copyright � 2012 Elsevier Inc. All rights reserved.

45



platform migration efforts. In cases where the business functionality provided by an
application is critical for the business and the goal is to make the application
accessible from various channels (browser, mobile devices, etc.), the application is
typically retooled to run in an environment which emulates a server to allow
multiclient, multichannel access.

Legacy applications deployed on IBM mainframes and other proprietary and
legacy platforms are usually retooled to run on open and distributed platforms using
software that can mimic IBM mainframe environments or that can effectively
provide the same capabilities on their own (e.g., Oracle Tuxedo).

Which migration option you choose will depend on your business requirements
and constraints (e.g., time, cost, and feasibility). The easiest migration option is to
Web service-enable an existing application so that it can interact with other appli-
cations on the Web or with applications deployed in a cloud environment. Of course,
this approach also requires that these applications be modified to incorporate Web
service capabilities by using either third-party solutions or native features, without
requiring significant modification. Even if an application written in a language such
as Visual Basic or PowerBuilder is not able to access other applications over the
network, it can be modified to do so. It is also not necessary for every program
comprising an application to be modified. Only programs that provide important
reusable business services need to be identified and modified to Web service-enable
them. Migration options such as database platform migrations and replatforming
applications developed on legacy platforms are very popular because they are easier
to execute and realize the benefits of such migrations quickly. On the other hand,
migration options involving a complete rewrite/rearchitecture of an application or
development of a completely new piece of software are less likely to be chosen due
to the cost and time involved in executing such projects.

Lately, new technologies have emerged that aim to provide database trans-
parency to applications. These technologies basically allow you to capture database
calls issued by an application and then translate them on the fly to execute them
against the target database. The goal of this approach is to significantly reduce
application changes as a result of database migrations. However, organizations need
to thoroughly test these technologies for performance and for accuracy of the
converted SQL statements before deploying them in mission-critical environments.
Some database vendors are making big claims that, using these technologies,
database migrations can be completed within weeks. However, from the authors’
experience, testing alone requires significant effort. These emerging technologies
definitely have a role in reducing the overall migration effort in large migration
projects by reducing changes to the application due to database migrations.

METHODOLOGY AND DESIGN
Regardless of the migration option chosen for implementation, a sound migration
methodology and design needs to be in place before embarking on such a project.

46 CHAPTER 3 Methodology and Design



Traditional software development methodologies such as Waterfall consist of the
distinct phases of requirements gathering, design, implementation, testing, and
maintenance, as illustrated in Figure 3.1.

The Waterfall methodology can be applied to migration projects, but sometimes
the requirements gathering phase is replaced with an assessment phase. For instance,
for migrations involving a full rewrite or significant transformation to existing
applications, the requirements gathering phase is applicable. In projects in which
only the database platforms are being considered for migration, there is no need to
gather business requirements again, since existing applications already have all the
business rules and requirements taken care of. So, instead of requirements gathering,
an assessment phase is used to understand the existing environment and determine
the best way to migrate it to a new environment. Unlike Waterfall methodology,
phases in a migration life cycle can be carried out in parallel (e.g., unit/functional
testing of application and database components as and when they are migrated).
Similarly, performance testing of some components can be performed before the
application/database migration is complete.

Migration of one database platform to another requires some changes to existing
applications due to the technical differences between various databases. Figure 3.2
illustrates a typical migration life cycle.

Let’s take an in-depth look at each phase in the life cycle of a migration project.

Assessment
The assessment phase is akin to the requirements gathering phase of the Waterfall
method for software development. Instead of gathering business requirements

FIGURE 3.1

Waterfall Software Development Methodology

Methodology and Design 47



from a software development perspective, however, you collect information per-
taining to project management (who will manage the project, and how), the
potential cost of the migration, migration approaches, tools to use, and so on. In
this phase, a detailed inventory of the application portfolio is created to assess the
impact of database platform migration on the IT ecosystem, including other
applications, integration services, reporting, and backup and recovery processes.
For a thorough assessment, the following topics are typically of interest in this
phase:

• Drivers for migration (challenges, requirements) It is very important to
understand the drivers behind a migration effort. For example, if the customer’s
licenses for legacy technologies are expiring soon, their need to migrate to
a newer platform is urgent. The expiry of official support and the extension of
support for an existing database platform may be very expensive for such
customers, so they must migrate quickly, but they may not need to transform their
applications, so they would prefer very few changes to their applications as
a result of the migration.

• Inventory of current environment Creating a detailed inventory of the current
application portfolio really helps in terms of understanding the scope of
a migration effort. This includes capturing information regarding the number of
programs, scripts, and external interfaces involved. It also includes hardware and
software configuration information, including operating system versions, data-
base versions, features/functionalities in use, and similar information.

FIGURE 3.2

A Typical Migration Project Life Cycle

48 CHAPTER 3 Methodology and Design



• Migration tools/options It is not uncommon to test different migration tools
and technologies to assess their efficiency and accuracy. A high level of auto-
mation along with accuracy in migration can result in less time spent in migration
and testing. Many customers conduct small-scale proof-of-concept projects to try
different migration options, such as emulation or wrapper technologies, which
allow applications to communicate with a different database without requiring
code changes in the application. This can reduce the overall migration effort in
cases where the application is simple and does not have demanding performance
requirements.

WARNING
Always choose a migration tool or vendor that has been proven, and does not claim to support
migration of any programming language or database on the fly. In almost all cases, when
vendors spend a significant amount of time enhancing their tools instead of actually per-
forming migrations, some modification to the tools is essential to address fringe cases of
programming language or database feature usage that cannot be automatically converted.
Establish verifiable success criteria for these migration tools and/or vendors so that the
chances of failure are reduced during migration project execution.

• Migration service provider Businesses typically evaluate at least a couple of
migration service providers if they do not have migration skills and staff in-house.
In many cases, migration service providers utilize their own tools to perform
detailed assessment and migration.

• Migration effort estimate This is usually provided by the migration service
provider or database vendor and is the most common information businesses
request when considering a migration project. We discussed how to estimate
a migration effort in detail in Chapter 2. As we noted, the estimate depends on
factors such as database and application size, components, and database
complexity factors, among others.

• Training requirements Training requirements for existing IT staff on the new
database platform need to be assessed to ensure that they can support the new
environment effectively and can participate in the migration process if required.
Therefore, it is important to identify appropriate training programs for the IT staff
based on their roles in the organization. The most common training programs
recommended for database administrators and developers who are new to Oracle
database are:
• Introduction to the Oracle Database
• SQL, PL/SQL Application Development in Oracle
• Oracle Database Administration
• Oracle Database Performance Tuning

Knowledge transfer can also take place from the migration project team to the
administration and development teams that will be responsible for maintaining the
new system in the future.

Methodology and Design 49



• IT resource requirement for the target database Requirements for deploying
the new database environment also need to be assessed. This assessment should
include critical database features and functions as well as additional software that
may be required to support the migration process and maintain the migration after
it has been deployed. These resources typically include hardware, storage, and
Oracle software, including the Oracle database and Oracle SQL Developer, and
optionally, Oracle GoldenGate. For virtualization in a cloud environment, Oracle
VM software can also be used.

• IT resource requirement for the migration project Resources such as the
hardware and software required for performing migration tasks also need to be
identified. Organizations may need to acquire new hardware and software to
support the migration project, or they can provision these resources from a cloud
service provider (Infrastructure as a Service [IaaS] and Platform as a Service
[PaaS]).

Sufficient time needs to be allocated for this phase to have a complete and mean-
ingful assessment of the migration process. It is not uncommon to see large IT
organizations with tens of databases to migrate spending eight to 12 weeks per-
forming a full assessment. When performing in-depth assessments to assist in
migration projects, system integrators use an array of tools that capture exhaustive
amounts of information from the source systems; this information helps them
analyze the dependencies between an application’s various components and the
database, as well as the complexity of the migration effort. These tools analyze every
application program and every line of code in these programs to paint a detailed
picture. The following information helps a system integrator assess the impact of
a database migration on an organization’s applications:

• Programs interacting directly with the database This helps the system
integrator to identify the number of programs that may require changes to SQL
statements or changes to database-specific APIs.

• Programs or other applications that execute transactions directly This helps
the system integrator to identify programs that may be impacted if there are any
changes to transactional behavior in the target database (Oracle), such as:
• Programs that have explicit transaction control statements in them (e.g.,

COMMIT/ROLLBACK). Typically, these programs maintain control over a trans-
action they initiate.

• Programs that invoke a stored procedure to initiate a transaction, but have no
control over the transaction. In this case, the stored procedure maintains
control over a transaction.

• Programs that issue explicit Data Manipulation Language (DML) statements
(e.g., INSERT/UPDATE/DELETE), but do not control the full transaction. In many
cases, a master program initiates these programs to execute database trans-
actions and return results.

• Programs or scripts that offload data from or load data into the source
database These programs will need to eventually be modified to include

50 CHAPTER 3 Methodology and Design



changes such as use of Oracle database-specific utilities, associated commands,
and parameters, as well as changes to any embedded SQL.

• The number of management or database administration scripts Identifying
such scripts helps the system integrator estimate the effort involved in migrating
these scripts by either rewriting them or discarding them completely to use
Oracle-specific tools such as Oracle Enterprise Manager (OEM) for routine
administration and monitoring tasks.

• The type and number of external interfaces All of these interfaces need to be
further analyzed to estimate the migration effort.

It is best to capture as much information as possible in the assessment phase and to
analyze it to thwart any technical challenges that may emerge during migration. This
also has the benefit of building comprehensive documentation in the long run.

NOTE
The assessment phase tends to consist of an intense exercise during which crucial decisions
affecting the migration project are made. Sometimes organizations spend months instead of
weeks finalizing their choice of migration strategy, tools, and service provider. Many service
providers offer in-depth assessment as a paid service for performing an inventory of the current
environment and reporting on the dependencies among various applications, impact analysis,
and feature/functionality usage. During the assessment phase, it is quite common for orga-
nizations to conduct pilot projects to prove that the choices that have been made will help the
organization achieve its goal.

Analysis and Design
The analysis and design phase usually consists of determining the implementation
details on the target (Oracle) database. Because of the differences in implementation
of data types, security roles and privileges, transaction management, and SQL code,
it is important to develop a plan that leverages appropriate features and function-
alities in the Oracle database. Care must also be taken to ensure that the chosen
features do not result in an increase in application code changes or a decrease in data
quality in terms of truncation of data elements such as digits or milliseconds from
timestamp data. The following are the most important issues that need to be
addressed during this phase:

• Database schema layout It is very important to consider how to map the source
database schema in Oracle as this can impact the applications and SQL statements
embedded within it. Databases differ in how their database schemas, users, and
objects are organized. Many databases support multiple databases under one
database engine (governing processes). Under each database, objects can be
organized in terms of schemas and users. Oracle, on the other hand, supports only
one database per instance (or engine) and allows creation of multiple schemas
within a database. This difference in database schema layout between Oracle and

Methodology and Design 51



other databases can result in a collision of objects in the target database schema as
other databases allow objects with the same name but with different structures to
exist under different databases. As a result, new schemas may need to be created
in Oracle and suitable modifications may need to be carried out in the applications
to reflect the new database schema layout in Oracle.

• Database object naming convention Three major issues usually come up
during database migrations to the Oracle database with respect to database object
naming convention:
• Use of reserved words Databases differ significantly in what they consider

reserved words (i.e., words that cannot be used as object names or column
names in database tables). This is because databases use these words internally
in their software for data processing. During migration, it is possible that some
database tables and their column names might run into this restriction on the
target database (Oracle). Many migration tools, including Oracle’s SQL
Developer, provide information on such a possibility. These tools can also
convert object names, using a predetermined convention, to an acceptable
name in Oracle.

• Object name length restrictions Oracle also imposes an additional
restriction of 30 characters in terms of length of database object names. Some
databases, such as Microsoft SQL Server, allow object names up to 128
characters in length. So, during migration to an Oracle database, object names
that violate this restriction need to be dealt with. The Oracle SQL Developer
tool can identify such cases and generate a report that can help developers keep
track of areas where this issue will impact the application.

• Use of special characters in object names Use of special characters such
as # as the first character for object names in an Oracle database is not allowed;
this is not an issue in other databases. As a result, such objects have to be
renamed in the Oracle database during conversion, which may result in
changes in the applications accessing those objects.

• Data type mapping All databases support a variety of data types to handle
numeric, character, large object, XML, and timestamp data. Data types avail-
able for handling numeric, character, and timestamp data are mostly standard,
but they differ significantly in terms of limits on data length and precision
allowed. The most common issues encountered during database migration to
Oracle are:
• Lack of a Boolean data type or BIT data type The Oracle database does

not have support for Boolean data types and BIT data types. So, while
migrating to Oracle, these data types have to be converted to either a single-
digit numeric or a single-character data type.

• Lack of proprietary data types such as TIMESTAMP in Sybase Some data-
bases allow creation of special columns in tables (e.g., TIMESTAMP) that
the database updates as and when a record in the table is accessed. The Oracle
database does not support any such data types similar to what the Sybase
database offers in the form of its TIMESTAMP data type.

52 CHAPTER 3 Methodology and Design



• Locking behavior Most relational databases require temporary locking of rows
in tables when a user accesses the rows as a result of database query execution
(e.g., SELECT statements). Because of this behavior, these databases may suffer
from periodic lock escalations when under heavy load. Oracle, however, does not
require row locking when simply reading rows. Instead, it supports true row-level
locking and provides a read-consistent view of data. Along the same lines, other
databases also allow reading of uncommitted data (a.k.a. dirty reads). This feature
is typically implemented with the help of an isolation level in the database, which
is traditionally used for reading data from tables without locking them. Oracle
does not support this feature. Therefore, applications that use this feature need to
be evaluated thoroughly to implement an efficient solution in Oracle.

• Use of COMMIT/ROLLBACK in triggers Oracle does not allow use of any trans-
action control statements such as COMMIT/ROLLBACK in triggers. Some databases,
such as Sybase, allow partial control (commit/rollback) of SQL statements that
are also executed within a trigger. As such, migrating from a database that
supports this behavior to the Oracle database requires changes in the trigger code.
SQL Developer automatically converts these statements to autonomous trans-
actions where applicable, but this may also have an impact on the overall trans-
action flow in the application, and therefore appropriate measures must be taken
for remediation.

• Use of zero-length strings (empty strings) Unlike Oracle, most databases
support the notion of empty strings that have zero length but are not considered
NULL (i.e., unknown). Oracle, on the other hand, does not support zero-length
strings. In Oracle, if a column does not have any value, it is considered to have
a NULL value. So, when migrating applications to Oracle from another database, it
is necessary to convert any predicates that evaluate a table’s column to a zero-
length string to a comparison with a NULL. In Oracle, there is a difference between
comparing a column to a NULL value and to an empty string and how the database
engine resolves such a comparison. For example, the following query will not
evaluate to TRUE in Oracle and will not return any rows, even if there is a row in the
EMP table where the MGR column has no value (i.e., a zero-length string). Notice the
use of the predicate involving a zero-length string.

SELECT * FROM EMP WHERE mgr = ‘’;

However, the following SQL statement will evaluate to a TRUE condition in
Oracle and return rows. Notice the predicate involving an evaluation for the NULL
value.

SELECT * FROM EMP WHERE MGR IS NULL;

• Case insensitivity This feature in a database allows data to be retrieved
regardless of whether the search criteria match the data in the database (e.g., the
data in the database may be in uppercase letters and the search criteria may be
in lowercase or mixed-case letters). Obviously, this feature is implemented to
enhance the user experience. Databases differ in terms of how they facilitate

Methodology and Design 53



this feature in a database. Microsoft SQL Server allows enabling of case
sensitivity by setting the COLLATE parameter at the database level or at the
column level in a table. When you set this parameter at the database level, all
tables support case-insensitive searches on them. In Oracle, this can be
achieved in three ways.
1. Set up parameters pertaining to sorting and computational evaluations at the

instance level (in the configuration file spfile.ora). The two parameters that
control this behavior in Oracle are:
• NLS_SORT=BINARY_CI (Default: BINARY)
• NLS_COMP=LINGUISTIC (Default: ANSI)

2. To enable this feature in Oracle at the session level, the two parameters
mentioned in the instance level configuration (i.e., the NLS_SORT and NLS_COMP
parameters) can be set at the session level by issuing the following commands
in the Oracle database using a tool such as SQL*Plus or some other database
development tool:
alter session set NLS_SORT = ‘BINARY_CI’;
alter session set NLS_COMP = ‘LINGUISTIC’;

NOTE
To execute these commands the database user needs the ALTER SESSION privilege.

3. At the SQL Query level, this feature can be enabled by adding appropriate
clauses in the SQL statement. For example:
Select * from scott.emp where NLSSORT (''ENAME'','nls_sort='
'BINARY_CI') =(NLSSORT('Miller','nls_sort=''BINARY_CI'''))

TIP
To ensure optimal performance for case-insensitive queries involving tables with large volumes
of data, it is recommended that indexes also be created on the columns used for these queries,
using the NLS_SORT clause as illustrated in option 3 (i.e., enablement at the query level). An
index can be created as follows:
CREATE INDEX ENAME_IDX ON SCOTT.EMP (NLSSORT

(''ENAME'', 'nls_sort=''BINARY_CI'''));

It is also possible to use the UPPER() function or the NLS_UPPER() function in SQL
statements to convert the data fetched from tables as well as input identifiers into
UPPER CASE. As discussed in option 3, this will require creating a functional index on
the columns used for case-insensitive searches and modifying SQL statements to
incorporate these functions. There may be other design issues specific to the source
database in terms of how a particular feature or functionality has been exploited to
facilitate a specific business requirement. Careful consideration and resolution to

54 CHAPTER 3 Methodology and Design



these design issues is essential to ward off any potential roadblocks during migration
and post-migration efforts.

Migration
The amount of time it takes to complete the actual migration of objects and data
from one database is relatively less than the amount of time it takes to complete an
overall migration from assessment to production rollout. Migrations of one
relational database to another are comparatively easier than migrations of a non-
relational database to a relational database, because the organization of objects in
a relational database is quite similar compared to non-relational databases such as
hierarchical and network databases. All major relational database vendors also offer
tools that provide robust migration capabilities in an automated fashion. Regardless
of the level of automation and success factor of any migration tool, however,
sometimes manual intervention will be required when migrating from one database
to another. Database migration tasks can be divided into the following categories:

• Database schema migration
• Data migration
• Database stored program migration
• Application migration
• Database administration script migration

Of all the migration tasks listed, the application migration task requires the most
manual effort, although new tools and technologies are being developed to facilitate
this task. We will cover database schema migration and data migration tasks in more
detail in Chapter 5, and we will discuss application migration in detail in Chapter 8.
In this chapter, we will focus on best practices for executing these tasks.

Database Schema Migration
Database schema migration essentially involves migration tables, indexes, and views
in a database. Relational databases are similar in terms of how their data is organized
in tables and indexes, but they are different in terms of additional extensions to these
tables and indexes that are designed to improve performance and facilitate devel-
opment. Most migration tools can convert the database schema relatively quickly
and accurately. Target-specific database schemas can also be generated from
modelling tools such as Erwin. These are the most important things to consider
during database schema migration:

• Ensuring completeness of the schema It is necessary to ensure that all objects
from the source database have been migrated over to the target database. It is very
common to have multiple schemas and databases to support an application.
Having circular dependencies among multiple schemas and databases may result
in errors during schema creation on the target database, as some of these
dependencies may not exist when a particular schema is being migrated. After

Methodology and Design 55



creating all the schemas in Oracle, all the objects that are marked as invalid need
to be recompiled and verified to ensure that they are migrated successfully.

• Tables with system functions as DEFAULT value clauses on columns Many
databases support having system functions as the DEFAULT value clauses on table
columns. In almost all cases, these system functions do not exist in the Oracle
database. As a result, some tables may not be created in Oracle, making other
dependent objects invalid. It is recommended that you analyze the log resulting
from the schema creation task, and isolate and rectify such errors.

• Using clustered indexes Clustered indexes in databases such as Sybase allow
data storage in a physically sorted fashion to match the logical order (index). As
data is added, it is sorted and stored in the order defined by the clustered index.
This helps to reduce the time it takes to return the sorted data and to retrieve data
by co-locating the index as well as the actual data in the same object. The Oracle
database provides similar functionality with index-organized tables (IOTs). In
IOTs, the primary key columns and the non-key data are stored in the same object.
This helps users avoid having to look up data in tables separately, after index
lookups, while executing a query in Oracle.

• Creating database users and role assignment Proper database roles and
privileges on objects must be assigned to users. Schema and object-level privi-
leges can be grouped into roles and assigned to users as needed. Creating roles and
granting them to users can help in managing many object-level privileges.

• Changing object names Any changes to the database object names due to
restrictions in the database, as discussed in the “Analysis and Design” section of
this chapter, need to be identified and shared with all team members so that they
can make suitable changes in their applications or other database components.

• Partitioning database tables Oracle allows large tables to be partitioned into
smaller segments for management ease and for better performance due to the
database query optimizer’s ability to prune partitions during query execution,
resulting in a reduction in the overall amount of data scanned. Based on data
volume, performance, and manageability requirements, some tables may be
chosen for partitioning. Although many relational databases support table parti-
tioning, they implement this feature differently in terms of the methods allowed
for partitioning, such as range, hash, and composite partitioning. Migration tools
generally do not migrate partitioning-related information when migrating data-
base schemas. Therefore, it is important to consider an appropriate partitioning
strategy in Oracle after schema migration and before data migration.

Data Migration
After database schema migration, some representative data from the source database
is migrated to the target database to enable testing and to ensure that the data
migration scripts or tools chosen for the task are configured properly. The most
common approach for data migration is undoubtedly the use of scripts that execute
database utilities to export data from the source database and import it into the target
database (Oracle), because they are easy to use and are free.

56 CHAPTER 3 Methodology and Design



Regardless of the tools and scripts used to perform data migration, migrations of
very large databases require planning. When migrating very large databases (those
with at least a few terabytes of data) it is important to have the right data migration
strategy, have the appropriate tools, and, most importantly, use appropriate database
features such as partitioning and compression. Migration of large databases is
fraught with challenges, among them a narrow window of time and lack of system
resources (e.g., staging areas for data files). The following data extraction and
loading strategies can optimize the data extraction, transfer, and loading processes:

• Parallel extraction of data from the source database
• Loading of data into the target database in parallel
• Using multithreaded processes for data loading
• Avoidance of index maintenance during the data loading process
• Reduction of I/O operations and use of staging areas via named pipes for data

transfer between source and target databases

The data migration task is less time-consuming than migration and testing of
database stored programs and application migration. Data migration tasks can be
categorized into the following three modes:

• Offline data migration As the name implies, data in this mode is migrated in
a disconnected or offline mode (i.e., data from the source database is extracted
into flat files and then loaded into the target database using native tools and
scripts). Because the extraction and the loading processes are disconnected from
one another, users can load data whenever they have some downtime in the
database, or during off-peak hours. This is typically accomplished using native
tools and scripts provided by the database vendors (e.g., Oracle SQL*Loader from
Oracle, and LOAD/UNLOAD utilities provided by the IBM DB2 database).

• Online data migration Data migration in this mode involves connecting to the
source and target databases using Java Database Connectivity (JDBC) or Open
Database Connectivity (ODBC) drivers, or database gateways, and then migrating
between them. As the name suggests, during the data migration, both databases
have to be available for connections, and network connectivity between the two is
required. Usually, this mode is used for smaller databases with workloads that
aren’t very heavy. Since data migration in this mode can generate additional load
on the source system (CPU, memory, I/O operations), thereby impacting appli-
cation performance, it is usually not recommended for large databases or heavily
used databases.

• Changed data capture (CDC) CDC involves tracking changes occurring on
the source database and then periodically replicating those changes to the target
database. This is a very useful method for migrating very large databases with
little or no downtime availability. CDC can be implemented in two ways:
• Using log mining This is the most commonly used technique for imple-

menting CDC. Log mining involves reading the online or archived transaction
logs from databases and extracting transactions from them as they are

Methodology and Design 57



executed. After the changes are captured from the source, they are either stored
in an intermediate file to be transmitted later to the target database, or
immediately transferred and applied to the target database. This method is very
popular because it introduces less overhead on the source system in terms of
performance impact on existing databases and applications, and it is easy to set
up and perform.

• Using triggers With this method, triggers are implemented in the source
database to capture changes and write them to a staging table; the changes are
then replicated to the target database. Creating new triggers on source database
tables is a cumbersome process that is fraught with challenges. In addition, this
method significantly impacts the performance of the source system, and as
such, it is not the most popular method for capturing changed data.

Oracle offers a variety of tools that support all the data migration tasks we’ve dis-
cussed. It also offers rich features and products that can optimize the loading,
organization, and retrieval of data from the database. Table 3.1 illustrates various
Oracle products and technologies that can be used for data migration tasks as
appropriate.

Chapter 4 digs deeper into each product mentioned in the table. In large
migration projects, a combination of the products mentioned in Table 3.1 can be
leveraged.

Database Stored Program Migration
The task of migrating database stored programs includes migration of stored
procedures, triggers, and views which, in many relational databases, are used for
implementing critical business logic. In databases such as Microsoft SQL Server and
Sybase, stored procedures and triggers are used extensively by developers to support
simple functions (e.g., the CRUD operations CREATE, READ, UPDATE, and DELETE).
However, using stored procedures exclusively for CRUD operations can result in

Table 3.1 Oracle Offerings for Various Data Migration Tasks

Data Migration Method Oracle Offerings

Offline data migration Oracle SQL*Loader utility, Oracle External Table data-
base feature
Oracle SQL Developer and Oracle Data Integrator can
generate the scripts for performing offline data extraction
and loading.

Online data migration Oracle SQL Developer, Oracle Data Integrator, Oracle
Database gateways

Changed data capture
(using log mining)

Oracle GoldenGate and Oracle Data Integrator (for DB2/
400, Oracle)

Changed data capture
(using triggers)

Oracle Data Integrator (for most databases)

58 CHAPTER 3 Methodology and Design



inflexibility because the type of operation executed against a table is limited by the
functionality implemented in the stored procedure.

Major tasks associated with stored program migration are:

• Cleaning and optimizing code Oracle SQL Developer and other migration
tools support migration of stored programs very well. However, it is recom-
mended that you test these converted stored procedures and triggers for
accuracy and efficiency of the converted code. Developers can implement
a simple business requirement in many ways, making it harder for tools to
optimize all such coding techniques in the converted code. Stored procedures
and functions with hundreds of lines of code or more should be verified and
tested for efficiency in terms of database feature usage as well as optimized
coding practices.

• Handling errors in stored procedures and triggers For applications that
depend heavily on stored procedures and triggers, it is very common to see nested
stored procedure calls. Automated migrations may not be able to handle error
handling for nested stored procedure invocation. Therefore, it is necessary to pay
close attention to error handling, especially for nested stored procedure
invocations.

• Using temporary tables extensively Some database developers use temporary
tables extensively to simplify queries and avoid writing a complex query
involving several tables. Early versions of some databases also had restrictions on
the number of tables that could be joined in a query efficiently. Therefore,
migrating stored procedures with lots of temporary tables warrants a closer look
so that they can be avoided and can result in simplified code that leverages the
native features of an Oracle database. Typically, migration tools maintain a one-
to-one mapping of temporary tables during migration from one database to
another. But important stored procedures which are executed very often and have
demanding performance requirements should be examined thoroughly to elimi-
nate unnecessary temporary tables in the new environment.

• Converting stored procedures into functions The Oracle database does not
support returning results to callers using the RETURN verb in stored procedures.
This verb is only allowed in Oracle stored functions and not in stored procedures.
However, it is very common to find Sybase and Microsoft SQL Server stored
procedures using the OUT parameter as well as the RETURN verb to pass values and
data to the caller. Converting these stored procedures into functions in Oracle also
results in a different call signature (i.e., the syntax for executing a stored proce-
dure versus executing a stored function is different because stored functions in
Oracle must return a value).

• Determining the impact of stored procedures returning result sets on Java
applications (JDBC) The Oracle database returns result sets to caller programs
via explicitly defined OUT variables in stored procedures. However, other data-
bases return multiple result sets implicitly, without having to declare variables to
do so. This results in additional changes to Java programs when migrating to

Methodology and Design 59



Oracle, such as declaring additional variables, binding, and explicit access of
these variables for result set data. We will discuss this issue in more detail
in Chapter 7.

Application Migration
Application migration or porting can result from either migrating an application
from one environment to another due to a complete rewrite, or simply from an
underlying database platform that is being migrated to a new platform such as
Oracle. Typically, application development falls into two categories:

• Customized application development In this category, applications are
generally developed in-house, by IT organizations, to support business functions.
These applications almost always try to leverage all the native features of the
database platform, as well as other IT systems in the organization, to drive
maximum performance and tighter integration. As a result, applications tend to be
heavily dependent on the database platform in which they were initially devel-
oped. As a result, any change to the database platform may result in changes to the
applications. Features and functionalities leveraged by these applications also
depend on the developer’s skill set. Developers try to use the features they are
most comfortable with. Once an application becomes obsolete due to a lack of the
skills required to maintain its features, or due to the application becoming too
brittle to add new features, the application is migrated to a new environment.

• Generic application development (or packaged applications) Typically, this
category applies to independent software vendors (ISVs). ISVs develop generic
application software that caters to a particular industry or a vertical market. They
also tend to develop applications that do not depend heavily on the database. In
fact, major ISVs offer versions of applications based on a particular database
platform. Migration of a packaged application from one database to another
involves installing and configuring the new version of the packaged application
and importing the data and all the customizations from the original application.
This is by no means a trivial task, because thorough testing needs to be done after
the migration. From time to time, ISVs are forced to add support for new data-
bases to their application software due to customer demand. They are also under
pressure to maintain a single or as few codebases as possible to reduce the effort
involved in managing multiple codebases, each catering to a different database,
because this means that if they have to implement a new feature, they will have to
modify all the application codebases in a similar fashion and ensure consistency
across them.

From a migration perspective, customized applications are always migrated to new
database platforms fully, because there is no need for them to support both the old
and new database platforms in the long run. These applications can be changed to
take full advantage of the new database platform. But ISVs need to support all
existing database platforms, even as they add support for new databases. So, for

60 CHAPTER 3 Methodology and Design



them, it becomes a porting effort because they are simply adding more code to an
existing application so that it will also work with the new database. ISVs try to
reduce the application software codebase by using conditional coding practices such
as conditional branches to a different piece of code, depending on the database
platform on which it is deployed. Very large enterprise resource planning (ERP)
software packages usually have separate codebases for each database.

As we mentioned when we were discussing the migration assessment phase,
understanding the impact of database platform migration on applications is very
important. Applications depend on the database platform in many ways:

• Database-specific connection information Every database requires certain
information to establish a connection with it. In the event of a database change,
this information has to be updated in the applications that connect to a specific
database. If every single program in an application connects to the database
directly, instead of relying on a central database access layer, this otherwise trivial
task becomes a challenge. This task can be automated through the use of scripts
from the operating system to search and replace appropriate connection strings in
application programs.

• Use of database-specific parameters ODBC/JDBC drivers for database
vendors have different parameters to support different requirements, such as
transaction control, date/timestamp formats, and so forth. The Oracle JDBC
driver, by default, enables AUTO COMMIT on a connection. This might create
problems, especially when calling a database stored procedure in Oracle which
leverages global temporary tables. Having set the AUTO COMMIT by default, the data
in temporary tables will be deleted after any data manipulation statement (INSERT,
DELETE, or UPDATE). To avoid this scenario, AUTO COMMIT for a JDBC connection
should be explicitly disabled. For example:

Conn.setAutoCommit(false);

• Use of database-specific SQL statements Using database-specific SQL
statements with proprietary extensions requires changes when the database
platform changes. It is a big challenge to identify how many application
programs need to be changed because of their usage of SQL statements that do
not conform to American National Standards Institute (ANSI) SQL standards or
that are not supported by the Oracle database. In the assessment phase, there is
a great deal of emphasis on identifying such programs and their database inter-
actions in general (i.e., calling stored procedures, result set processing, embedded
SQL usage, etc.).

• Invoking database stored procedures and functions that return result
sets Applications using ODBC/OLEDB drivers generally do not need to be
modified when the database is migrated to Oracle. However, as of the latest
release of Oracle Database 11g R2 (11.2.0.1), Java applications using the Oracle
JDBC driver invoking stored procedures returning result sets from the database
need to be modified to accommodate Oracle-specific requirements in terms of

Methodology and Design 61



including bind variables for result sets, processing of multiple result sets, and
similar functionality. Hopefully, these changes will not be necessary in future
releases of the Oracle database.

• APIs for manipulation of large objects There are differences in JDBC APIs
used for manipulating large objects in Oracle as compared to databases such as
Informix.

Database Administration Script Migration
It is common to use scripts to automate general database administration tasks.
Database administrators love to develop their own scripts to administer databases.
However, using scripts to administer databases can complicate things because
when script writers leave an organization, new administrators do not have full
knowledge of how to use those scripts effectively. Scripts that are used for
performance monitoring, and database administration tasks such as user mainte-
nance, object maintenance, and database maintenance, need not be migrated to
Oracle due to the availability of OEM, which can manage and monitor databases,
application servers, and storage from a central console. Scripts that are used to
extract or load data as part of batch processes executed from job schedulers may
need to be migrated to make use of Oracle utilities (e.g., SQL*Loader, Data Pump,
etc.) to perform similar functions. Oracle provides a rich set of tools to manage
these processesdamong them Oracle Data Integrator (ODI) and Oracle Warehouse
Builder (OWB)dwhich don’t require much coding. However, scripts leveraging
native database utilities for data loading/unloading need to be ported to use Oracle
database utilities instead.

Testing
Effort involved in testing the application and the database after migration usually is
the largest contributor to the migration effort. Testing in a migration project usually
comprises tasks such as data verification, testing of migrated business logic in stored
procedures, functions, and triggers, testing of application interaction with the new
database platforms, and testing of database maintenance scripts. Some of these tasks
can be performed easily with the help of automated tools or relatively simple
scripting. But some tasks, such as testing of database objects with business logic, can
be cumbersome because of lack of automated testing tools. Also, any existing scripts
that are currently in use in the source environment need to be ported to the new
environment first, and they also need to be tested.

Let’s take a look at the various tools and strategies that are used for each of these
tasks:

• Data verification The easiest way to ensure that the data migrated from
a database to Oracle is accurate is to monitor the data migration process closely
and ensure that no errors are reported during the process. Even if the migration
tools do not report errors, issues such as truncation of decimal values and

62 CHAPTER 3 Methodology and Design



character data fields may result due to improper sizing of the columns in the target
database. Migration of Unicode data also needs attention. Oracle’s GoldenGate
Veridata can be used for side-by-side comparisons of data between two databases;
however, it supports only a few databases (SQL Server, Oracle, Teradata, HP
Enscribe, and HP SQL/MP). More information about Oracle GoldenGate Veridata
is available at www.oracle.com/us/products/middleware/data-integration/059246
.html. System integrators generally have their own toolsets that can assist with
the data verification process.

• Testing of database stored procedures and functions Usually these objects
are unit-tested as they are migrated for syntactic and semantic accuracy.
However, after migration of an entire database, it is necessary to test the inter-
dependencies among different database objects. Oracle SQL Developer provides
features for unit-testing a stored procedure and/or function. However, sometimes
it is very difficult to come up with all the possible combinations of parameter
values that stored procedures or functions can accept. Therefore, having all the
test cases properly documented and scripted can assist significantly in testing
efforts.

• Application testing In most organizations, testing of custom applications
developed in-house is performed by users who work their way through the user
interfaces manually based on documented test cases. ISVs, on the other hand,
usually have automated test suites available to test full applications. Testing tools
such as the Oracle Application Testing Suite (OATS) can be used for functional
and load testing of applications for scalability and performance, as it can assist in
building test cases from scratch, especially for Web applications. OATS can
record all interactions taking place via Web applications and replay them to test
how the application interacts with the new database.

• Database maintenance script testing It is very important to test any scripts
associated with database backup and recovery tasks. Most backup and recovery
tasks can be automated using OEM, and scripts and commands used by OEM for
performing these tasks can also be reused. Testing of these scripts is a manual
process that needs to be carried out in an isolated environment. The Oracle
database also provides alternative ways to perform database backups, such as
using disk-based backups to automatically perform incremental backups and
recovery operations.

If a system integrator is chosen to perform the migration, testing usually becomes
a part of the service offering because it requires significant effort.

Optimization
Migrating applications from one database to another database sometimes results in
poor performance. This occurs because these applications are highly optimized for
a particular database system over long periods of time. OEM can be used to help
resolve any performance issues post-migration. It is very common for organizations

Methodology and Design 63



to set aside at least two to three months for performance testing after migration of
mission-critical applications. Some performance issues can also be caught during
the functional/integration testing phase. But some issues may crop up only under
certain amounts of load on the system. Therefore, it is essential to test the perfor-
mance of the new platform thoroughly to identify potential bottlenecks in the system
and address them before the new platform is rolled out into production. Performance
issues can arise due to any of the following reasons:

• Insufficient system resources Databases differ in their requirements for system
resources such as memory, CPU, and I/O because they have been architected
differently. Some databases use multithreaded processes, whereas Oracle is
process-based on most platforms except Microsoft Windows. Oracle uses addi-
tional database structures such as UNDO segments that require additional I/O
operations which other databases don’t have. Hence, if the system on which
the Oracle database is deployed is not sized properly, poor performance may
result.

• Bad SQL Query execution plans To optimize queries, Oracle’s SQL Query
Optimizer depends on statistics collected for database tables and indexes during
the normal course of database operation. However, if these statistics are stale
because of bulk data changes made in a short period of time, or are absent for
some reason, the SQL statements will perform poorly. OEM proactively
monitors the performance of SQL statements and will alert database adminis-
trators of issues. It also runs jobs to collect database object statistics periodi-
cally to avoid such issues. However, it is possible that during the migration,
some complex SQL statements that were converted to Oracle require additional
indexes.

• Underestimated workload or concurrent user population Underestimating
the peak workload or concurrent user population may result in under-sizing the
system used for the Oracle database. This may also result in inadequate allocation
of memory for the Oracle database engine in the form of a smaller shared global
area (SGA).

• Undersized Oracle database structures For optimal performance, it is
necessary to size Oracle database structures such as the temporary tablespace and
the UNDO segment tablespace (a.k.a. rollback segments) appropriately, since the
Oracle database automatically allocates space in them as needed. If they are
undersized, performance will be poor because of frequent allocations in these
tablespaces resulting in increased waits by the database.

Many of these issues are identified proactively by OEM, including recommendations
for addressing them. After the database migration and preliminary performance
testing are done, Oracle Real Application Testing (RAT) can be used to test the
impact of various optimization scenarios (e.g., the use of new indexes, the effect of
partitioning, compression, and encryption, etc.) in the new Oracle environment. RAT
allows capture and replay of the workload on an Oracle database, and it is much
easier to set up and configure than other tools on the market.

64 CHAPTER 3 Methodology and Design



Deployment
Many tasks to be executed in the deployment phase get their input from the
assessment phase and from the analysis and design phase. During these phases,
the target system architecture and all necessary software components to be used in
the new system are evaluated. Based on the outcome of these phases, new software
and hardware systems are acquired. Work on this phase may begin early in the
migration project, as many organizations have to follow certain business practices
regarding acquiring new hardware and software.

Because this phase may involve acquisition of new hardware in addition to
installing Oracle database software in many cases, additional measures may have to
be taken to configure system resources as per Oracle database deployment
requirements, such as configuration of shared storage and configuration of inter-
connected networking among the database server nodes that will be part of an Oracle
RAC database. Common tasks executed in the deployment phase include the
following:

• Hardware configuration This task includes configuring database servers,
allocating storage, and configuring the network. Server configuration may also
involve tasks pertaining to setting up a cluster to support the Oracle RAC data-
base. In addition, the hardware configuration task involves setting up systems,
networks, and storage at the disaster recovery site. Care must be taken when
sizing the hardware and storage based on the workload profile of the application
and the database. Policies and procedures need to be developed for deploying
Oracle databases in a private cloud environment so that instances of Oracle
databases can be provisioned as and when they are needed, and to consolidate
Oracle databases onto the Oracle Exadata database machine platform.

• Software installation and configuration This task primarily consists of
installing and configuring the Oracle software, and installing the migrated Oracle
database schema on the systems deployed in the production environment to
support the applications. After the database schema has been set up, database
security roles and privileges need to be assigned to application users, along with
access to the physical servers.

• Initial data loading After creating the database schemas in the production
environment, the next task is to load the most current data from the source
database. In cases where the source production database cannot be impacted with
data extraction, the most recent backups are restored on a different server and the
latest data is extracted from the backup. Then the data is loaded into the new
Oracle database using tools and scripts that were chosen for the task during the
analysis and design phase. It is also essential to ensure that desired indexes are
created on all the tables in the database and that the latest table and index statistics
are collected before the database is ready for users.

• Testing of backup and recovery scripts and processes It is very important to
test all scripts and processes for database backup and restore operations. In many
instances, administrators use a standard template to generate new scripts for the

Methodology and Design 65



new databases. However, these scripts need to be tested to ensure that they will
perform as expected when it really matters; if they don’t perform as expected,
database recovery can be jeopardized. OEM allows configuration of backup and
recovery tasks in an automated fashion which can help in avoiding any errors
associated with manually scripting these tasks.

• Capture of changes (from source) and switchover For databases that cannot
afford downtime and are required to be available 24/7, it is essential that changes
that took place during the initial data loading process or during the switchover
phase be captured and applied to the new database to avoid missing any
transactions affecting the integrity of the data in the new environment. Oracle
GoldenGate can play a crucial role in this task of capturing changes in the source
database and replicating them in the Oracle database after the initial data loading
task is complete. It can continue to capture changes on the source database while
the data loading operation is in progress on the Oracle database. The following
steps are required in this process:
1. Set up the changed data capture process on the source database.
2. Extract the data from the source database.
3. Load the data into the target database (Oracle).
4. Apply the changed data captured from the source database to Oracle.
5. Open the Oracle database for business use.

Post-Production Support
It is a common practice to support a newly deployed database environment with
personnel who were involved in the migration process to troubleshoot any issues that
may come up immediately after the new environment goes live. The following issues
may arise during this time:

• Issues related to unfamiliarity with the new environment.
• Performance issues with SQL statements.
• Applications not performing as expected (missing functionality or incorrect

behavior). This may happen if some components of the application were not
migrated properly to the new environment and were not tested.

• Problems with data representation in the applications (formatting, Date/Time
mask, etc.).

• Time required for database administrators and developers to become fully
familiar with the new environment, including procedures for administering
routine tasks.

MIGRATION SERVICES
Managing a large migration project requires careful planning, sufficient resources,
and certain skill sets. Many system integrators have specialized practices focused on
migrations, and have their own methodology, tools, and best practices.

66 CHAPTER 3 Methodology and Design



For IT organizations that are planning to migrate many databases as part of
a strategic move to consolidate database platforms, it makes sense to engage
a system integrator to execute the project, because a system integrator can bring
industrialized migration expertise to the table. It is also possible that the system
integrator can simply augment his IT staff temporarily to enable him to perform
migrations on his own. ISVs, on the other hand, can port their applications on their
own because, for them, it is a matter of implementing new database functionality in
existing applications as they have to support the other databases as well.

Migrating database platforms for packaged applications bought from ISVs, and
installing additional software components of the application, such as the database
access layer or, in some cases, new versions of the packaged application certified to
run against an Oracle database, may be required. In such cases, it is best if either the
ISV or an established system integrator with a dedicated practice focused on these
applications is engaged to carry out the database platform migration. The application
vendor may have a different codebase for each database that needs to be installed
first. As such, migrating from one database to another without changing the appli-
cation codebase will not work in those cases, and it may jeopardize the ISV’s ability
to support the application. For example, migrating a PeopleSoft human resources
management system (HRMS) application deployed against an IBM DB2 database to
a PeopleSoft HRMS application deployed against an Oracle database involves the
following steps:

1. Install the PeopleSoft HRMS software and database schema for Oracle.
2. Migrate all the customizations in the PeopleSoft HRMS software from IBMDB2

to the Oracle database.
3. Migrate all the data from IBM DB2 to Oracle.
4. Test the new environment.

Migration of the database schema associated with a packaged application directly to
Oracle using migration tools is not supported in most cases by the packaged
application vendors. Many system integrators have practices dedicated to migrations
and upgrades of a particular application package. Leveraging such system integra-
tors can ensure seamless migration to the new environment.

SUMMARY
Migration projects of any size require careful planning. Assessing its current port-
folio of applications can help an organization understand the challenges, complexity,
and level of effort required to have its databases migrated to Oracle. Many tools
facilitate database and application migrations. These tools differ in the level of
automation they provide in migrations and in the accuracy of the migrated SQL
statements. Performing proofs of concept with these tools to better understand
their capabilities will be beneficial in the long run for large migration projects.
Database migrations also have an impact on applications that are dependent on them.

Summary 67



Design-related issues in migrations will vary in complexity and nature within
organizations depending upon feature/functionality usage. Some organizations set
up policies to develop applications with the goal of being database-agnostic. In such
cases, the impact of database changes will be minimal, as they would have avoided
implementation of the proprietary features of a database. There is no substitute for
comprehensive testing of the migrated/ported application along with the new
database platform.

In this chapter, we discussed various migration approaches, tools, and the
migration life cycle in depth. We also explored migration service options for
different organizations (e.g., ISVs, IT organizations, etc.). The goal was to inform
readers about potential choices in migration tools, and various design issues that
should be considered. The next chapter will provide an overview of migration tools
and technologies along with their strengths and weaknesses.

68 CHAPTER 3 Methodology and Design



Relational Migration Tools 4
INFORMATION IN THIS CHAPTER:

• Initial Database Migration

• Initial Stored Object Migration

• Application SQL Migration

• Unit Testing

• Performance Testing

• System Testing

• Production Rollout

• Global and Niche Service Providers

This chapter covers the products and tools from Oracle and third-party partners that
can help to accelerate the relational migration and associated application component
of your cloud migration. The chapter is organized by project phase to keep the
content consistent with the way we covered the migration process in Chapters 2 and
3. Some of the tools and products discussed in this chapter can be leveraged across
the migration phases in different ways. However, we will make sure not to duplicate
details of the products and tools where this occurs. You will most likely use the
following products and tools in your database migration effort, shown here in order
of most-heavily to least-heavily used:

• SQL Developer Migration Workbench
• SQL Developer Application Migration Assistant
• Oracle Enterprise Manager Performance Packs
• Oracle GoldenGate, Oracle Gateways, Oracle Warehouse Builder, and/or Oracle

Data Integrator

Most customers use as many Oracle tools and products as possible. There are several
reasons for this, but the most pertinent reason is that the tool you will use the most,
SQL Developer, is both free and fully supported by Oracle. SQL Developer
Migration Workbench is a feature of SQL Developer. Throughout this chapter, we
will use the term SQL Developer Migration Workbenchwhen the database migration
features of SQL Developer are being used. Another reason is that customers prefer to
use tools and products from the same vendor to which they are migrating their
database. This makes it easier from a training and support perspective, but it also
means there is only one vendor to go to if issues are encountered.

We will be covering third-party tools which offer support for source databases
that Oracle does not support and, in some cases, offer capabilities not found in

CHAPTER

Migrating to the Cloud. DOI: 10.1016/B978-1-59749-647-6.00004-1
Copyright � 2012 Elsevier Inc. All rights reserved.

69


