Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2

What Is a CMDB?

Rarely can an IT operations or management tool discussion occur today with-
out someone inevitably bringing the conversation around to the Configuration
Management Database (CMDB). It is a term that is intimately intertwined with
the IT Infrastructure Library (ITIL) and any other IT operations concept. In fact,
the whole notion of operational excellence is a panacea without a robust
CMDB serving as its foundation.

When you think about it, every function performed in IT requires accurate
information to drive decisions. Indeed, this relationship between information
and decisions spans far beyond IT. With no information, decisions are based
on mere guesswork. It is no wonder that these decisions are so frequently
erroneous. To make informed decisions, you need to gather the necessary
information first. This information is most effective if it is available from a
known, trusted source. That trusted source is, in theory, the CMDB, and this
is the ultimate goal of the CMDB.

Information is the key to all decisions, and information is constructed from
building blocks of raw data. This data is encapsulated in the CMDB. To derive
information from the data, one must have an application in mind. These
applications of the CMDB are covered in Chapter 9, “Leveraging the CMS,”
but first, we must define the CMDB and how it is evolving into something we
call the CMS. In Chapter 3, “Planning for the CMS,” we walk you through all
the different steps you need to take to transition from the CMDB to the CMS.
The definition of the CMDB is not as straightforward as you might think and
certainly not what many prevailing definitions would suggest. This chapter
discusses the true definition of a CMDB.

25

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

26 THE CMDB IMPERATIVE

The Birth of the CMDB

As long as there have been complex IT systems (since the 1950s and 1960s),
there has been a need for some form of CMDB. Early implementations were
likely paper and pencil (or even stored in some person’s brain!) because life
was so much simpler then. Few called them CMDBs, but this is precisely what
they were.

The CMDB term did not come into use until after the 1989 arrival of ITIL.
Indeed, the advent of ITIL was necessitated because of the hyperbolic expan-
sion of complexity. IT systems were no longer isolated, simple machines. They
had grown to encompass multiple computers across networks and distributed
software components. The only way to keep track of the complex nature of
these systems was through technology. This technology came in the form of
a CMDB, or what most people called an asset database.

More notably, these complex systems had become inextricably bound to
business execution. Prior to the 1990s, computers were either isolated, well-
defined islands that ran the back office of the business or they were intellec-
tual tools. By the late 1990s, it became clear that the state of IT had a direct
impact on the state of the business, and the state of IT was not good. The
1990s saw the rise of distributed computing as the central nervous system of
the business, and a mechanism was needed to bring discipline to the opera-
tion of this wily beast.

Along came ITIL. Although it grew across Europe in the late 1990s, its
worldwide appeal finally exploded on the scene in 2004 when North
American adoptions reached critical mass. The chart in Figure 2.1 shows how
ITIL hit its inflection point in 2004, followed by the latent impact on mem-
bership in the U.S. branch of the IT Service Management Forum (itSMF),! the
international organization dedicated to the development and promotion of
ITIL and IT service management.

Because CMDB is threaded throughout the ITIL literature, the CMDB phe-
nomenon has grown along with ITIL, albeit more slowly than the general
adoption of ITIL. This relationship also consolidated the function around
common terminology, so CMDB is now the prevailing term for the trusted
data source.

1. The growth figures for itSMF membership were taken from a presentation by David
Cannon, president of itSMF USA. Mr. Cannon presented these growth figures at the April
10, 2008, meeting of the National Capitol local interest group serving the Washington,
D.C, area.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 27

itSMF USA Membership

9000 USA
Discovers [
8000 itSMF [|
7000 —V— =
6000 — [
5000 — [
4000 USA —] —
3000 Discovers [= | L
ITIL
2000 n 1]
1000 —’— —
0 J— — s — 1 . I:I .

T T T T T T T
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

FiGure 2.1 ITIL growth

The Configuration Management process in ITIL was inspired by the early
work by the U.S. Department of Defense and by the newer Software
Configuration Management (SCM) process used in software engineering.
Because of this heritage, you will notice many similarities across the two
process models. Among these are the concept of a Configuration Item (CI) and
a CMDB. In SCM, a type of CMDB is called the Definitive Software Library
(DSL). It is not a full CMDB in the context of modern ITIL taxonomy, but it
is a good first step toward true CMDB. As you will see in Chapter 4, “The
Federated CMS Architecture,” the DSL has been preserved to play a role in a
broader federated CMDB, employing multiple CMDBs in what is now called a
Configuration Management System (CMS) in the language of ITIL v3.

Configuration Items

Each element in the IT environment is an individual entity requiring accurate
capture of its attributes. The representations of these entities in the CMDB are
Configuration Items (Cls). A Cl is a software model that contains the attributes
of the represented entity. In databases, this is described in the schema. Each
entity consists of several attributes of specific data types (for example, string
and integer). Each instance of the entity is its own CI (for example, 200 iden-
tical servers equals 200 CIs, all with the same schema, but as independent
instances with some unique attribute settings). A CI can be physical—that is,
real and tangible (for example, hardware and software code)—or it can be log-
ical abstractions of these (for example, business processes and distributed
applications).

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

28 THE CMDB IMPERATIVE

If we examine 300 Windows servers and 20 Cisco routers, this subset of
the overall environment represents at least 320 Cls. We say “at least 320"
because it is possible, indeed likely, that each device is built from other
devices. For example, each Cisco router may consist of a chassis and multi-
ple cards within the chassis. It is possible to treat the entire router as one CI,
but it makes more sense to also break down the CIs to more granular levels.
We explain why later in the book, but the short reason is that it enables more
flexible abstraction models to be constructed and manipulated.

The concept of a CI must be extensible. Some believe a CI is the most
atomic level only, but a CI is also a more complex assembly of lower-level
CIs. In the server example, a physical server has special attributes. A virtual
server also has special attributes unique to that virtual instance, even though
it is resident on the physical server. This relationship between the two means
they will share certain attributes, but also contain other attributes unique to
each perspective.

Applications, business services, and customer organizations are also Cls
(see Figure 2.2) at even higher levels of the CI hierarchy. Similar relationships
link these various layers to reflect reality. To accurately capture and maintain
the atomic details as well as the relationships, the CMS and the CMDBs are
built upon traditional relational databases and object-oriented models, as
well as a myriad of other formats that include text files, Simple Network
Management Protocol Management Information Bases (SNMP MIBs), and
software Application Programming Interfaces (APIs). The object-oriented
technologies are especially important in the continued development of
Configuration Management information. We cover these technologies in more
detail in Chapter 4.

Employee Department Physical Server Virtual Server Application
ID Number Division Asset Number Asset Number Asset Number
Last Name Manager Vendor Vendor Vendor
First Name Employee 1 Model Model Model
Department S CPU Type Host Server Service
Title CPU Speed Memory Host Server
Service 1) Memory Hosted App 1 Owner
§ Virtual Node 1 § §

o
o
o

o
)
Service 1
o
o
Service n

o
o
o
o

Hosted App n

o
o
Virtual Node n
o
o
o

FiGURe 2.2 Example Configuration Items

o
o
o

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 29

Each CI has several attributes associated with it. Some are compound
abstractions that refer to a number of other CIs (the Department CI consists
of several Employee Cls). By simply viewing the CIs as individual items, it is
difficult to envision how these various Cls interact to form something more
useful. We need to link the correct objects and attributes by creating the
appropriate relationships, as shown in Figure 2.3 by the dark black lines.

Enpioyee o [& oeparment | [physicaserverdh |V Server sk Apoiaten |
ID Number Division E' Asset Number Asset Number Asset Number E g
Last Name Manager ! Vendor Vendor Vendor E E
First Name Employee 1 i Model Model Model :8
= Department b TPU Type | Li® HostServer ||| Service e
Title CPU Speed Memory =@ Host Server

Service 1 Memory Hosted App 1 @ Owner

° Virtual Node 1 S o

o o o

o
S Hosted App n

Virtual Node n S
o

o

o
o

FIGURE 2.3 Relationships among the Cls

Here the CIs are linked to expand on the appropriate attributes, and it
becomes easier to navigate the map of CIs to each other and to their impact
upon the overall service. The links can be established in many ways, such as
relational database table references and Java class pointers. When we talk
relationships in the CMDB, the links are best implemented with XML. We
explain these relationship links in more detail in Chapter 4 and Chapter 6,
“Integration—There’s No Way Around It!”

In this example, you can also see how there is common data across some
CIs. Good database administrators try to normalize the data to eliminate the
possibility of data overlap. With distributed objects, the normalization is a bit
more difficult. In this particular case, it is possible that these specific attributes
might be linked in from an Asset Management database as yet another CL

You will see many references to relationships in this book—maybe so many
that you will find the repetition annoying. We relentlessly preach about rela-
tionships for a reason. They are indeed the glue that binds everything
together to result in information that is more meaningful. Without adequately
capturing relationships, the CMDB crumbles into a worthless disarray.

A CI can be a small morsel of data or it can be a complex, multilayered
composite of other CIs and other composites, or it can be any level in

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

30 THE CMDB IMPERATIVE

between. This flexibility is essential to a smooth Configuration Management
process. Do not limit your perspective of a CI to just the infrastructure
devices. Such a myopic perspective makes the system of CMDBs inflexible,
fragile, and even more complex than the object-based model. This is one
aspect of the discipline (or lack thereof) noted in Chapter 1, “The Need for
Process Discipline.” The future of the operation can be placed in jeopardy if
these deleterious factors exist.

Cl Candidates

Many elements of the IT and business environment qualify as CIs as we
describe in Chapter 5, “CMS Deployment Strategy.” Ideally, every identifiable
unit of importance can be captured in the CMDB, but realistically, you will be
driven by your business service needs and bound by priorities, staffing, and
technology capabilities. Exactly which CIs you incorporate and in which
order will be determined by each of these factors. Existing technologies offer
plenty of information that can help. In Chapter 4, we cover how this data is
leveraged. Configuration items fall into many domains, which are discussed
in the following sections and in yet more detail in Chapter 5.

Infrastructure Cls

When people think of a CMDB, they usually limit their perspective to the
infrastructure elements (servers, routers, storage, and so on). This is a myopic
view, but the rationale behind this mode of thinking is understandable.
Throughout much of the history of IT, what is now called the CMDB was
known by various other terms, the most common being an asset database.
This infrastructure-centric view persists today, even though the CMDB con-
tains far more than infrastructure elements.

Such a database was used to maintain a record of the individual hardware
assets owned by the enterprise. Advanced organizations expanded the asset
database to include software also. An asset database represents a limited sub-
set of a CMDB, but an important one. It is often the initial phase of a CMDB
journey because of this historical view (and the fact that much of the data has
already been collected).

Infrastructure is most closely associated with the hardware devices in the
environment. For each device, many attributes are identified, collected, and
maintained. Figure 2.4 shows a few common attributes of a CI representing a
server.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cvDpB? 31

server

manufacturer

model

serial number

cpu architecture

physical memory

operating system

ip address

FIGURE 2.4 A few server CI attributes

Even in this simple server CI, you can see some attributes that raise addi-
tional questions. Attributes such as manufacturer and model are straightfor-
ward, but what about CPU architecture and operating system? CPU
architecture could be Intel x86, s/390, or SPARC, and each opens up its own
unique twist on the basic server definition. The operating system could be
Windows Server 2003, Red Hat Enterprise Linux 5, VMware ESX 3.5, or even
something like OpenVMS 7.2-1. Each of these attributes requires more detail,
detail that may be unique to Windows, but totally irrelevant to Linux, for
example.

Where such extensions are needed, object-oriented (00) technologies can
link the relevant extended attributes. This raises some interesting debates
about precisely what constitutes infrastructure. Traditional examples of infra-
structure are network devices (such as hubs and switches), servers, storage
(including disk drives and SAN hardware), and mainframes. This is what we
typically consider to be hardware.

As we continue to embed more sophisticated intelligence into the hard-
ware, the line between infrastructure and applications becomes blurred.
Virtually every single piece of today’s hardware is a complex mixture of gen-
uine hardware (for example, silicon, steel, and plastic) and software (for
example, operating system, BIOS, microcode, and embedded web server). For
the sake of the CMDB discussion, we consider infrastructure to be the self-
contained package of hardware and its embedded software. Infrastructure is
hardware and software.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

32 THE CMDB IMPERATIVE

Software infrastructure differs from applications, as we describe in the
next section. This is sometimes called system software, but software infra-
structure extends beyond traditional system software (such as Linux and
VMware) and into those elements that support applications (such as Tibco
and JBoss). Although they are software, we recommend that infrastructure
should include these software elements as well as traditional hardware.
Infrastructure is no longer limited to those tangible hardware components
that require electrons. The basic intelligence that manipulates those electrons
also counts as infrastructure.

The structural and behavioral aspects of certain attributes will morph over
time. Virtual servers are a good example. Whereas a server once supported a
single operating system, it can now support many.? The operating system
attribute must now be abstracted to link to multiple possible virtual operat-
ing system instances (virtual machines [VM]) on a particular physical server.
To complicate matters even more, that relationship between physical to vir-
tual server can now be highly dynamic (for example, VMware’s VMotion
software easily shuffles a VM from one physical server to another).

Your CMDB plans, architecture, technology, and operations must be flexi-
ble enough to address these frequently shifting requirements. This is a major
reason why object-oriented technologies are becoming more popular for the
CMDB. An 00 approach enables you to adapt data structures to changing
demands. IT systems are irreversibly becoming more dynamic. The so-called
cloud computing® that is gaining popularity marks an acceleration of dynamic
systems, not a plateau.

Application Cls

Applications are the software elements that are directly touched and felt by
end users. Examples include Microsoft Exchange, Siebel, and a custom
shipment-tracking system. Products like SAP, Microsoft Internet Explorer,

2. Mainframes and some minicomputers have long supported virtual machines, but the con-
cept’s popularity has exploded in the distributed server market, thanks mainly to VMware.

3. Cloud computing is a new concept receiving the usual hyperbolic media attention as this
book is being written. Its advocates tout it as the next form of delivering IT to the business.
The most notable characteristic of the cloud is outsourced infrastructure and application
services, sometimes including the entire IT operations organization. Cloud computing has
some merits, but it is too early to declare it a success or failure. Wikipedia’s page on cloud
computing is even somewhat vague and not yet fortified by the usual verifiable references
and citations (http://en.wikipedia.org/wiki/Cloud_computing).

http://en.wikipedia.org/wiki/Cloud_computing

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 33

and Adobe Flash Player can also be seen as applications, but here we are get-
ting more into the domain of software infrastructure, as we just pointed out
in the section on infrastructure CIs. What you deem an application and what
is software infrastructure is up to you, but you should be consistent within
the context of the CMDB.

As you build out your application-level models, you will find that many
applications are abstractions built upon other applications. The gray line
between applications and software infrastructure is where these situations
will occur. Some applications that are used by some end users (such as a data-
base front-end) may become software infrastructure for another, more com-
plex application (for example, a shipping application built on top of SAP and
using this database).

The value of clarifying the demarcation between applications and software
infrastructure comes when using the CMDB for more sophisticated purposes.
We cover these purposes in more detail in Chapter 9, but we present a simple
example here—one that is deeply desired, but also extremely difficult to
achieve.

Consider the exercise of identifying the root cause of an application per-
formance anomaly. The application consists of many software and hardware
components, so the first thing we need to do is understand the structure of
the application’s relationships to these elements (see Figure 2.5). The hierar-
chy of the relationship map will be multiple tiers for the typical modern busi-
ness application.

1 Application
| Infrastructure
--------- - Tier
Applicati ——
pp_lli(: [|| ——— [Router A H Switch B]

[Router B]—[Switch C]

(/2]
g
5]
1
o
Q
[
=
)
<

1
1
1
1
1
1
1
1
1
1
|
: s
| 1
! [|
1 [} |
i | Application I: i :
1 [} |
: b :
1
1
1
1
1
1
1
1
1
1
1
1

Ficure 2.5 Example of tiered application structural relationships

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

34 THE CMDB IMPERATIVE

To determine the root cause, this structure is navigated, and each compo-
nent’s impact on the overall application behavior is assessed. This assessment
first capitalizes on the relationships that bind the various components
together, as they form the paths followed in the navigation. They give us vis-
ibility to potential cause-effect mappings and significantly narrow the field
of possibilities.

The performance, availability, and configuration state of each of these
components can then be analyzed. The mapping significantly reduces the set
of possible root causes by including only those elements that truly matter to
the application in question. By narrowing the scope, you can then attack the
problem more effectively.

Of course, it would be wonderful if you could automate this analysis to the
very end, but this remains a dream for now. This is where the difficulty arises
with application analysis, but such is the topic for another book.

In Chapter 9, we offer more guidance on how the CMDB/CMS works in
conjunction with the Change Management process. In that chapter, we also
show how changes can point to many of the root causes of a myriad of prob-
lems, including the elusive application performance problem. It all begins
with having accurate configuration data or—as we like to call it—the truth.
You must also not forget that there is a Continual Service Improvement com-
ponent to ITIL v3; some of which we describe in Chapter 8, “Continual
Improvement for the CMS.”

Known Error Cls

There is a condition in Incident and Problem Management called a known
error. A known error is an incident or problem whose diagnosis is complete,
but whose final resolution is either delayed or implemented with a temporary
fix. As incidents arise with the known error as a root cause, operations staff
should be able to quickly identify the known errors and take appropriate
action. Actions include proper notification of affected users and possibly
implementing work-around solutions. As the operation gains experience, the
known errors are tied to resolutions. This forms a cause-effect linkage that
accelerates resolution. The error is detected, and the resolution is immediately
found and presented. The responders therefore have a map to guide them to
speedy service restoration.

One of the more important management aspects of known errors is the
need to capture them and maintain them throughout their lifecycles, includ-
ing through end-of-life. To enable this, a known errors database is main-
tained. Many of the common Service Desk products now include some form
of known errors database. Service Desk staff developed a need for this data-
base for the purposes we mention here, as they are the front lines of the IT

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cmDpB? 35

organization. Vendors of Service Desk automation software responded to this
need with full inclusion of a known errors database or supplying it as an
optional module.

Naturally, the known errors database represents yet another family of Cls
for the CMDB. The value of this class of CIs helps streamline many of the
daily functions such as incident analysis and long-term pattern analysis for
Problem Management, capacity planning, and continuous improvement.

The known errors are related to infrastructure, application, and other
classes of CIs. These relationships need to be captured and mapped, as the
known errors are attributes of these “host” Cls. The known error attributes are
subject to change, and there can be multiple known errors for a single host
CIL, which could be dependent, for example, on their particular environment,
configuration, or architecture, so the object model must support such a zero-
to-many set of similar relationship attributes.

Business Process Cls

If applications are abstractions of infrastructure, the next step above applica-
tions is the business service level. Like applications, there can be multiple
layers of business services (for example, a web-based product ordering serv-
ice is a component of the broader supply chain automation service). At the
highest level of this structure are the business processes. Chapter 5 and
Chapter 7, “The Future of the CMS,” have figures that demonstrate this notion
of business services sitting atop the remaining IT structure.

Business process modeling is a functional domain unto itself within the IT
community. It is one of the tightest integration points between IT and the
business and is increasingly owned and controlled by the business side rather
than the IT side. Unfortunately, the CMDB and CMS vendors do not yet offer
complete solutions that automate the discovery of the services without sig-
nificant human intervention. The current state is still very much silo oriented,
but it is changing.

You should work with the business community and the Enterprise Archi-
tecture organization to incorporate business process information into the
CMDB/CMS. Stay up to date with the standards being developed by the
Business Modeling and Integration Domain Task Force so you will be pre-
pared to input your work more easily into the vendor tools when those tools
do come along. All parties will benefit. Newer developments are making this
much easier now because standard object modeling and integration technolo-
gies are gaining acceptance.

Standards have been under development for over a decade. Standards took
a positive turn in 2005 when the Business Process Modeling Initiative (BPMI)
merged with the Object Management Group (OMG) to form the Business

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

36 THE CMDB IMPERATIVE

Modeling and Integration Domain Task Force (BMI).* BMI and OMG are
responsible for some standards, OASIS for others, and the W3C for still oth-
ers.” The flexibility offered by XML allows for many derivatives to be devel-
oped. That’s the good part of XML-based standards. The downside is that it
allows for many derivatives to be developed. You can easily become
overwhelmed by the plethora of standards available.

As you pursue the CMDB, your role in the selection of these specific stan-
dards will be limited. You should leave the painful selection to those in the
Enterprise Architecture team (who have this responsibility anyway), but we
highly recommend you collaborate with that team to help determine the opti-
mum path to linking the business process standards with your CMDB. Chapter
4 provides the basis for your discussions about a federated structure with the
architecture groups.

Much discussion is taking place about Business Service Management
(BSM), the higher-level aspects of IT that produce and manage technology in
the eyes of the business, not so much in the eyes of technologists. The busi-
ness processes and the business services that feed them are the linkage
between core IT (infrastructure and applications) and actual business value.
The relationships between and within these tiers enable us to determine busi-
ness impact of a server failure, for example. Without these relationships,
assessing the business impact is mere guesswork—and very often wrong.
Accurately understanding business impact via the CMDB and its use cases is
absolutely essential if you want to position the IT organization as a valued
business partner. Just as it is in all other functions of IT, the CMDB is a fun-
damental supporting pillar of BSM.

Business processes are an often-overlooked element of the CMDB because
of the aforementioned misconception that the CMDB is all about infrastruc-
ture. The omission of business processes further exacerbates the “us and
them” division between IT and business. Inclusion of business processes
ensures more business relevance to the CMDB and enables use cases to have

4. The Business Modeling and Integration Domain Task Force web site (http://bmi.omg.org/)
contains many details about the group’s standards efforts.

5. Standards are a veritable alphabet soup that confuses actual progress. The BMI initiative
owns BPMN (Business Process Modeling Notation), OASIS (Organization for the
Advancement of Structured Information Standards) owns BPEL (Business Process Execution
Language), and W3C (World Wide Web Consortium) owns WS-CDL (Web Services
Choreography Description Language). There are still others in this ever-growing family of
standards. Collectively, they are all part of the greater Service-Oriented Architecture (SOA)
movement to componentized business processes and the software used to automate busi-
ness processes.

http://bmi.omg.org/

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cmDpB? 37

more value to business service management efforts. The result will help
change the language from “us and them” to just “us” in a unified journey
toward business execution excellence.

Human Cls

Human beings are the most important elements of any business. IT services are
no different. You and your colleagues, your end users, your reporting struc-
ture (in both directions), vendors, partners, and many, many others all con-
tribute to your technology and business services. How each of these people fits
into the overall picture is a requirement of any good CMDB. “People” are iden-
tified, tracked, used, and managed according to each individual’s contributions
and responsibilities. Here are just a few attributes of people that are useful:

¢ Identity. Each person needs a unique identity, sometimes called a dig-
ital identity. This identity is a complex data structure far beyond the
person’s name. Among the many attributes tied to the human CI is a
unique key, a means to identify that John Smith is the John Smith
you think he is.

Software tools used to manage IT services are notoriously disjointed
with respect to identities. Each usually has its own identities, requir-
ing tedious replication of data across tools, data that nearly always
falls out of sync. Common identity management technologies are
finally showing promise to unify identities across tools, but the vari-
ous tool vendors must support them. Happily, there is increasing
momentum to support common mechanisms like Active Directory and
Kerberos.

e Authorization. After identity is established, the next step is to assign
authority to take certain actions. These authorizations can be for spe-
cific software or built into managed infrastructure. Here also, the mul-
titude of mechanisms and individual points of management greatly
complicates this situation.

The identity and authorization must be intertwined. Companies are
using identity management products that work in conjunction with
other products using AAA protocols® and related technologies to

6. AAA stands for authentication, authorization, and accounting, a generalization for the
interrelated technologies for maintaining secure systems. See the Wikipedia page,
http://en.wikipedia.org/wiki/AAA_protocol, for more information on AAA.

http://en.wikipedia.org/wiki/AAA_protocol

38

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

THE CMDB IMPERATIVE

understand, manage, and enforce access controls, control privileges,
and other authorization policies.

When a management software function is executed, it must ensure
that the action is allowed (for example, “Can I change the OSPF
parameters on this router?” or “Can she view the schema of the HR
database?”). Proprietary and isolated mechanisms can support these
actions, but managing the dizzying array of identity-authorization
mappings without automation technologies is intractable.

Here lies the solution to this dilemma and one that is already starting
to take root in IT organizations. Configuration and Change Manage-
ment (CCM) products highlight a good example that is bringing some
sanity to the tedious and error-prone tasks of manual configuration
change execution. The tool manages a common AAA mechanism

for all covered elements and then the tool itself is executing the
changes. The disparate access controls are managed centrally in this
common tool.

Logically, each CCM tool has a strong CMDB at its heart, so the tool
can sufficiently understand the configuration of what it is acting
upon and various policies regarding these actions. The result is a
common platform for normalizing task execution that is faster and
more trustworthy, but there are yet other benefits to the CMDB effort.

CCM tools include a CMDB, so they are valuable as elements of an
overall CMDB architecture. By virtue of their basic function, they
almost always do their own discovery of their covered domain and
usually more effectively than other discovery tools in their domain
(there are many). This means the data is highly accurate. As you
build out your wider CMS, these tools are effective CMDBs for their
individual domains.

Roles. Individuals are the soldiers in the service management war, but
these individuals can be classified to guide common tasks across a
related team of individuals. You have many of these teams, and mem-
bers can belong to multiple teams. The teams may not even be formal,;
they just have common goals, so we’ll call them roles instead.

By assigning authorizations to roles, the tools that drive actions can
be simplified. Instead of managing authorizations for each individual,
you can just manage them for roles. The system then cross-checks
roles with people who are assigned to those roles.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 39

Roles institute an additional layer of structure into the human CIs, but
the additional layer is well worth the minimal overhead because of
the operational simplicity we just mentioned. As with the known
errors CIs and many others, the model requires flexibility to support
many roles per person. Here the relationship will be at least one role,
but probably more.

The human CIs are certainly included in the bigger CMDB structure (CMS, to
be more precise). You need not and indeed should not create this CMDB from
scratch. Leverage what already exists, a data source full of excellent data on
your people. It’s called the HR database, and it is most often embedded within
software tools used for HR functions, such as Peoplesoft.

In Figure 2.3, we showed a CI called Employee. The populated Employee
CIs and their attributes can all be extracted from the HR database, requiring
little additional embellishment for CMDB purposes. You won’t need a lot of
the detail existing in the HR databases (they won't give it to you anyway, nor
should they!), although basic identity information (for example, employee
number, name, department number, title, reporting structure, and roles—if
they exist there) will be very handy and more available.

Document Cis

Finally, we present another class of CI that is often overlooked, despite
repeated references in the formal ITIL positions on the CMDB and CMS. That
class is documentation. Together with known errors and other sources, they
embody what some call Knowledge Management. We view this as a valid cat-
egorization.

Documents are different data types than those normally maintained in a
CMDB or relational database. They are files, such as PDF, Excel, MS-Word,
and so on. The document CI has as a core attribute, the path name or (prefer-
ably) the URL that points to the document file. The host CI (infrastructure,
application, and so on) then points to the document CI as appropriate.

If you need to see the installation instructions for a Dell PowerEdge™ M600
server, the attribute for the installation guide in the document CI can be set
to the specific PDF document on Dell’s web site, or you can have your own
internal copy (likely a better idea). The UML diagram for the Order to Cash
business process can be a PDF link included as an attribute in the business
process CI for Order to Cash.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

40 THE CMDB IMPERATIVE

How Much Data Does a Cl Need?

Raw CIs (the actual devices, software elements, and other real-world entities,
not the data stores) contain far more data than you will need in the CMDB.
You must trim this overwhelming data set but still maintain visibility into
enough to be meaningful and useful.

Consider the example of an SNMP MIB for a small branch office router.
This device tracks thousands of individual attributes in its internal memory!
Try performing an SNMP Walk operation on one, and you will see firsthand
the massive set of data that can be gathered. Clearly, you don’t need all of
this. Trying to manage such a voluminous data set would be unwieldy, even
for a few devices.

Where then do you draw the line to delineate what is tracked and what is
not? A good starting point to this answer lies in the DMTF's CIM standard.?
CIM is an impressive body of work, developed by many brilliant people over
several years. It is an elegant and comprehensive object model that is finally
getting some traction after a slow start. We go into more detail on the DMTF
and the CIM specification in Chapter 6.

The final determination of the CI data’s richness lies in the use cases for
the data. Some use cases (for example, fault analysis) require very little detail.
Some such as data center automation need much deeper detail. You will
struggle to reach the appropriate level of detail on your own, so this is why
we recommend starting with CIM. Part of the brilliance of CIM is the work
they’'ve already put into assessing the right level of detail.

A Brief Explanation of CMDB Federation

Federation, described in much greater detail in Chapter 4, is a new approach
to maintain accurate configuration information about the IT environment,

7. The Simple Network Management Protocol (SNMP) was originally defined in the IETF doc-
ument RFC 1067 (http://www.ietf.org/rfc/rfc1067.txt?number=1067) in August 1988. It uses
a Management Information Base (MIB) structure to define the attributes represented in a
networked device. It has been expanded to be applicable to servers, applications, and many
other configuration items, but it continues to be seen as largely related to the network.

8. The Distributed Management Task Force (DMTF) produced and maintains the definition of
common data specifications called the Common Information Model (CIM). The first version
of CIM was released in 1996, so it has benefited from years of refinement. XML, UML, and
MOF files for CIM Version 2.18.1 are available at http://www.dmtf.org/standards/cim/
cim_schema_v2181.

http://www.ietf.org/rfc/rfc1067.txt?number=1067
http://www.dmtf.org/standards/cim/cim_schema_v2181
http://www.dmtf.org/standards/cim/cim_schema_v2181

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 41

although the concepts behind federation date back to the 1980s. CMDB fed-
eration was proposed soon after the CMDB first gained traction on the coat-
tails of ITIL, but formal federated CMDB acceptance has been elusive until
recently. The new breakthrough is a definition for integrating data sources
called the CMDB Federation standard. The name is not the most clever title,
but its publication marks an important step toward a successful CMS.
Developed by an ad hoc group of vendors called the CMDB Federation
Working Group (CMDBf), the specification has now been handed off to the
DMTF for further development. We explain the concepts and some details of
the CMDBf specification in Chapter 6.

The federated model enables more flexibility than a monolithic database
model. The standalone model was originally the accepted model and assumes
all data is collected in a single database. This is impractical for a CMDB, as it
is easily corrupted by synchronization issues with data that is usually
geographically diverse and rapidly changing. The monolithic model places a
heavy burden on the database, its related infrastructure, and the related
administrators. Sheer resource utilization forces lengthy update intervals,
which hamper timely updates to the database. Data quickly becomes stale in
such a scenario, and stale data is more harmful than no data at all.

Federation enables a “divide and conquer” approach to the CMDB archi-
tecture, distributing the load and leveraging the optimum tools for each tech-
nology domain and locale. By using the best tool for a specific domain, the
CMDB contents are better tailored to a domain’s unique needs and can be
updated more frequently. Both result in higher accuracy.

To overcome CI differences and still capture the relevant data for the
CMDB, the CI definition extends beyond a simple single-table database struc-
ture. Relational databases can be used to organize and capture these Cls in a
more complete form across multiple linked tables, although the interchange
and federation of data is best addressed by object-oriented technologies such
as object repositories and XML. If a relational database is used for the remote
linking, federating the data is much more cumbersome. Many will dispute this
assertion, but the explosive success of XML is evidence enough that it is the
superior mechanism for linking and exchanging remote data. This fact does
not diminish any RDBMS for what it does best. The RDBMS is indeed inte-
gral to the many pockets of the CMDB. It just doesn’t work well for the com-
plex linking of the distributed and seemingly disparate data sources. For this,
XML works best in partnership with the databases.

In federation, the data is spread across multiple CMDBs, more accurately
referred to as Management Data Repositories (MDR), illustrated with the sim-
plified example in Figure 2.6. There is no single CMDB. Instead, the aggre-
gate “CMDB” is an abstraction built upon the contents of the MDRs, and

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

42 THE CMDB IMPERATIVE

metadata models dictate the assembly of relevant MDR data based upon
needs. The MDRs may reside in different systems and data storage formats.
Federation is at the heart of what ITIL v3 now refers to as the Configuration
Management System (CMS).

If the CIs from Figure 2.3 are reflected in a federated structure, you would
see something similar to Figure 2.6. Here, the MDRs are aligned with domains
as we advise in the CI candidate descriptions.

RDBMS Relationship

Employee Department |Physical Server |Virtual Sen/er| | Application

Server
Hardwarel Vinualizationl Applicationl
HR DB 1 I MDR MDR MDR
[|
C O C O q
Ej_ Ej L I A

Federated CMDB Relationships

=V

FIGURE 2.6 CMS relationships across MDRs

Note how the HR database is represented as one of the MDRs. Two of the
CI categories are embodied within the same database, with a relationship
inherent inside the database. This relationship is a branch of the federation
structure, even though it appears to be isolated. This illusion of isolation
results from viewing federation too myopically.

The HR database is maintained separately from most other MDRs, but its
inclusion emphasizes a growing practice in the whole CMDB arena, that of
the foreign CMDB. A foreign CMDB is an element (an MDR, if you will) that
is not under direct control of the IT organization or those responsible for the
CMDB architecture, design, and operation. It is a data source rich in informa-
tion that can be used, but it is available only in a “read-only” mode. There is
nothing wrong with this. In fact, it is indicative of the future, as third parties
will assume more responsibility for certain domains and therefore the MDRs
and CMDBs of those domains. Your overall CMDB needs this data, so proper
integration and federation are needed beyond just the HR database.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 43

Cls as the CMDB “DNA”

We can propose a simple analogy to highlight the power of CI reuse and fed-
eration from the CMDB. Our example is DNA, the basic building block of all
organic life forms (at least those on Earth!) and how the basic genetic ele-
ments are abstracted to eventually form complex organisms.

Every living organism is built from the same four building blocks.
Geneticists call these nucleotides and represent them by their letters: A (ade-
nine), T (thymine), C (cytosine), and G (guanine). The reason each plant or
animal is different is because these nucleotides are assembled differently.
Arrange them one way, you get a Bengal tiger; arrange them another way,
and you get Tiger Woods.

If we consider the genetic CMDB to contain only four CIs, being the four
nucleotides, we can turn this raw data into extremely sophisticated organisms
using abstraction models known as codons, genes, chromosomes, and organ-
isms. Everything uses the exact same CIs. The secret to each unique finished
organism lies in the abstractions.

Abstractions are themselves CIs with their own special attributes, so we
need a CMDB mechanism to store and retrieve them. It is best to store the
abstractions in separate CMDBs from the one containing the four nucleotides.
This is where federation brings value to the overall CMDB structure. As we
explain later and in Chapter 4, the federated model allows flexible references
to the CMDB data to produce actionable information. In this case, the abstrac-
tions point to the nucleotide CMDB to obtain the correct low-level details,
and all of this is assembled in a usable form based on the structure defined
in the codon, gene, chromosome, and organism CMDBs.

Figure 2.7 depicts the genetic hierarchy followed as we navigate from the
top-level organism all the way down to the nucleotides. Obviously, genetics
is a far more complex field than is shown in this example, but it does illus-
trate how the various abstractions interact and relate. Note how each abstrac-
tion layer uses its own CMDB to hold the models that define the structure of
the abstraction and the references to the layers below. An organism model
defines the right mix of chromosomes, each chromosome model defines the
right mix of genes, each gene model defines the right mix of what geneticists
call codons, and each of the 64 codon combinations is built from a unique
structure of nucleotides. If there was a need to further deconstruct the
nucleotides, one could break down each nucleotide to its molecules, atoms,
and subatomic particles through the use of additional abstraction layers.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

44 THE CMDB IMPERATIVE

~Organism> Chromosomd\ (Gene
—Models | N_Models ~| _Models |

?Q —>
N S N

Nucleotide CMDB

Nf2 o o\ NH2
/jN IA %
Codon models N I P)
form 64 total) ‘NH/gO QN N ‘NH)%
amino acids A T G c

FiGurRe 2.7 Genetics example of federated Cls

It would be wasteful to replicate copies of data from each lower level of
this structure. By the time we get to the chromosome level, the number of
nucleotide combinations is astronomical. The use of abstraction tiers greatly
simplifies this situation. For example, the chromosome level only needs to
reference models of individual gene strands, not the entire structure of each.
The raw data remains accurate and up to date, and we have the flexibility of
creating new abstractions merely by rearranging the most practical model.
Everything below that model remains unchanged.

Every good CMDB follows a similar pattern of hierarchical references as
the models and data are navigated for a particular use case. The idea is sim-
ilar to database normalization, where the goal is to optimize flexible data
construction with a minimum of data replication and maximum performance.
Object federation in a CMDB structure differs from database normalization in
that it can link a wider variety of data sources in many physical places (if
needed). Object models can also contain behavioral information such as rules.
Good object models go far beyond mere structural information.

Data from the level below is not duplicated in each model. This would
cause severe data overload and synchronization issues, especially at the
higher levels. Each abstraction merely references the appropriate elements of
the layer below. For example, there is no need to define the molecular struc-
ture of every codon when simply referring to the A, T, C, and G nucleotides
and their assemblies are sufficient. A behavioral aspect of the genetic CMDB

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 45

that can be encoded in the model further simplifies the nucleotide references.
Because the only possible nucleotide combinations in the genetic code can be
A to T and C to G, there are not four possibilities, but only two (an A-T pair
and a C-G pair—or a one and a zero, if you wish).

It is ironic that life forms can be deconstructed down to the same binary
code used in computer science! This is one reason we chose the genetic exam-
ple. Clearly the genetic code is hideously complex, but building the layered
models greatly simplifies the navigation of the system and optimizes per-
formance, data reuse, and reliability. IT services are no different. If a feder-
ated model can allow us to tackle something as convoluted as the genome, IT
services should be much easier. Nobody can credibly state that a federated
CMDB is easy, but we often overcomplicate an already complex mission by
our failure to leverage best practices and novel solutions. CMDB federation is
such a novel solution, and ITIL (or similar process models) can offer the best
practices.

Reconciliation

In the existing world of CMDB, reconciliation is considered to be a necessity
and indeed it is...today. Reconciliation is the synchronization of two or more
matching database segments to ensure consistency across them. Data stores
that should be identical copies are compared. If any differences exist, the rec-
onciliation engine attempts to correct this inconsistency. Most existing
CMDBs are isolated, and integration involves a periodic upload or download
of bulk data. It is not federation. In this “unfederated” model, data synchro-
nization decays over time. The copies drift apart and become inaccurate.
Reconciliation attempts to sync the CMDBs, usually in a brute-force manner
that scans all CMDBs and makes corrections as the reconciliation engine finds
discrepancies.

Reconciliation is driven by policies that determine who “wins” when a con-
flict arises. Some may be by majority vote (for example, three of the four
CMDBs agree, so the fourth is forced into agreement), some by pre-establishing
the winner (for example, the network CMDB is the trusted source for the net-
work), and others can get more complicated. Full reconciliation can be auto-
mated to correct the discrepancy, or it can merely inform a CMDB manager to
take action to reconcile. Initial phases will be the latter, but those that are trust-
worthy or become annoyingly repetitive can be automated.

Figure 2.8 shows a simplified example of three CMDB instances where rec-
onciliation is needed. This VMware virtual server is identical across all

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

46 THE CMDB IMPERATIVE

instances except for the middle one’s physical host. This is a bit like that
Sesame Street game “one of these things is not like the other.”

Europa Europa Europa
mfgr VMware mfgr VMware mfgr VMware
model ESX model ESX model ESX
version | 2.5.5 version 255 version 255
host Saturn host Jupiter host Saturn
memory | 4 GB memory | 4 GB memory | 4 GB

Figure 2.8 Three CMDBs needing reconciliation

The reconciliation engine scans these three and recognizes this discrep-
ancy. It can either notify someone of the issue or it can correct it to match
the other two. If automated action is taken, you must be absolutely certain
that the results will be as desired. In this situation, one might think that the
“majority vote” rule would apply, but that middle instance might be the
trusted source extracted directly from VMware. Because it reflects the truth,
it has precedence over the other two, and they, not the middle one, must be
corrected. As systems become more dynamic (for example, virtualization), sit-
uations like this will become more common. By the way, Europa is the sixth
moon of Jupiter, so of course the middle instance is right!

No matter how you view reconciliation, all agree that it is difficult to get
it right and even harder to get it properly automated. From firsthand experi-
ence, we can tell you that there will be many weeks and months spent tweak-
ing your reconciliation rules to try and automate the reconciliation process.
The ideal CMS would eliminate reconciliation because it is too painful (our
VMware example is only the tip of the iceberg). As the CMDB gets ever closer
to the CMS ideal, we will approach the ideal of eliminating the need for rec-
onciliation. When we finally achieve that ideal is a great mystery, but don’t
expect to totally shed reconciliation before 2012.

A properly federated CMS will significantly minimize the need for recon-
ciliation because the very nature of federation (as you will see in Chapter 4.)
implies that data is always captured and managed only once. There is no need
to reconcile CI details because there should never be duplicate copies! The
only attributes that are duplicated—and therefore need reconciliation—are
those representing the matching criteria for referencing the relevant data. As
in RDBMS development, these are the indices (the matching attributes) to
point to the right federated data. Even these attributes will eventually grad-
uate beyond a need for reconciliation as better XML-based remote-linking

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 47

technologies emerge. Technologies that enable an idealized view of federation
are only now beginning to appear. Over the next several years, vendors and
end users alike will chip away at the pockets of duplicate data. Someday we
will tackle that final step, but be patient and diligent. If there was ever a real-
life situation where “slow and steady wins the race” in IT, it is in the pursuit
of a true CMS.

The CMS Arrives

In June 2007, the UK Office of Government Commerce (0GC)—the official ITIL
caretakers—released ITIL version 3 (ITIL v3). In this book, we do not expand
on the many improvements in ITIL v3, but the most significant change to
configuration data is the emergence of the CMS.

A CMS is a vast improvement over a simple CMDB for many reasons. A
few of the more prominent benefits of CMS are the following:

e (CMS implies distributed data in line with, but beyond, the historical
notion of a CMDB. The CMS is inherently federated, whereas the
CMDB required a dramatic new twist. As you will see, the new con-
cept of a federated CMDB is really a CMS.

e [TIL v3 more clearly articulates practical applications for configura-
tion data and endorses references to and from the broader CMS, rather
than direct integration to a CMDB. The distinction between federation
and integration is important, and we describe this difference in detail
in Chapter 4.

e The genesis of the CMS marks the beginning of the end of the CMDB
term. CMDB is a misleading term, but its ubiquity will make it persist-
ent for years. Still, it is much more fruitful to shift many of the CMDB
discussions to CMS instead. Even in the CMS description in the ITIL
v3 literature, the CMDB term remains, but it is redefined into what is
essentially an MDR. We believe that the CMDB Federation Working
Group’s concept of the MDR will prevail in the long run and that
“CMDB” eventually will fade away from the vernacular.

e (CMS is richer in its inclusion of applications and services. Prior
notions of the CMDB were vague and fragmented beyond simple
infrastructure characteristics. Because the CMS is inherently object-
oriented, it can make use of behavioral information to make the struc-
tural information more accurate and more useful.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

48 THE CMDB IMPERATIVE

e Relationships are at the heart of the CMS. CMDB was often viewed as
just a repository of attributes. Linking and federating these attributes
were usually limited by technology solutions that were in fact
designed according to these misguided, restrictive attribute-centric
requirements. CMS is a force to break this cycle by mandating the
relationships necessary to make raw data meaningful.

Throughout the remainder of this book, we use the MDR, CMDB, and CMS
terms. As much as we dislike the CMDB term, it remains relevant for now. A
CMDB in the newer order represents a specialized repository, usually targeted
at a specific technology domain. We prefer to call this an MDR, and we will
usually do that. Note that the two are nearly interchangeable in the new order
of the CMS. It is also important to sometimes refer to CMDB in its historical
context. To properly convey the meaning and value of the CMS, we must
address, and in many cases overturn, common CMDB perceptions.

Populating the CMS

The CMS is only useful if it is accurate. In fact, the most dangerous situation
with a CMS is when the data is wrong, which is why the concept of federa-
tion, as described in Chapter 4, is so critical to your design. Decisions are
based on the CMS, and when the data is wrong, the decisions are wrong.
Instead of the CMS being an enabler for improvement, it can actually cause
further deterioration when the data is suspect. CMS population, therefore, is
among the most important of all facets of Configuration Management. How
you populate your CMS and keep it accurate will directly affect the success
or failure of the CMS and—as we pointed out in Chapter 1—the entire IT oper-
ation itself.

The CMS is populated in two ways: manually and automatically. The
majority of CMDB population so far has been manual. This is one main rea-
son most CMDB initiatives have suffered or failed altogether. Manual popu-
lation is risky because it is too difficult to maintain its accuracy. By the time
population is finished, the contents are already partially obsolete.

To optimize CMDB accuracy, you want to automate as much of the popu-
lation as possible. We call this automated discovery, or auto-discovery. For our
purposes, we refer to discovery as the automated population mechanism.

Discovery is a wonderful innovation for the CMDB, but alas, many CMDB
elements cannot be discovered. Therefore, you will inevitably have a mix of
both population modes. The following figures show how this mix works.

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 49

Figure 2.9 is a simple diagram showing a collection of Cls in a CMS. It is
merely illustrative of the point, not an actual CMS.

22020202020
NNONSREREN
CALAGAGS

Configuration ltems

FIGURE 2.9 Cls in a CMS

You need to identify what can be discovered and what must be manually
populated. By segmenting the CMS in this way, you can set forth with your
plans to build automation technologies and operational tasks to build and
maintain the CMS. Figure 2.10 shows how the CMS is divided between the
two. Discovery usually gives you the core elements, whereas manual meth-
ods are used to supplement this core.

Discovered Complete CMS Manual Entry

FIGURE 2.10 Two modes of populating the CMS

Both modes can be further broken down into the relevant CMS domains,
which are most effectively aligned with the MDRs. Figure 2.11 shows this

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

50 THE CMDB IMPERATIVE

additional breakdown. Note how many domains will have both discovered
and manual components.

Server
Manual Entry

Application
Manual Entry

Server
Discovery

Application
Discovery

Storage
Discovery

\

U \
AN
\
Business . Users
Service Manual Entry
Manual Entry
// \ \
7 Network *\
Discovery "\

Ficure 2.11 A further breakdown of CMS population

Domains like the network lend themselves well to discovery because the
common instrumentation (for example, SNMP) is pervasive and full of useful
data. Others, such as business services, are more heavily manual because of a
lack of instrumentation. As we explained earlier, even these domains are
improving for discovery. As new technologies emerge to enable discovery, you
should capitalize on them to continue building more accuracy into the CMS.

CMS as an Integration Mechanism

Data integration is a longstanding problem with software systems, especially
with management software. Proprietary management tool interfaces have
long ruled this market. They created a nice development partner ecosystem
for the major vendors, but the practice makes it difficult to plug tool A into
tool B to attain more comprehensive value from the union of the two. In
defense of the major vendors, they appeared on the scene at a time when pro-
prietary integration was the only option. Once established, these interfaces

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 51

took on a life of their own and are now so deeply entrenched, they are nearly
impossible to replace. That said, however, it is time to change. The integra-
tion pain has become so severe that progress toward unified service manage-
ment is being hampered.

Software tools are gravitating toward functions that act as either data
providers (such as discovery) or data consumers (such as analysis tools). These
classifications establish the major points of integration, where one must inte-
grate with the other. Some tools act as both providers and consumers (for
example, the server agent), consuming data for one purpose (localized analy-
sis on the server, for instance) and providing data for another (in this exam-
ple, presenting the server’s data for analysis in a broader context). Either way,
integration can be a quagmire.

Figure 2.12 is a picture of a simple integration challenge. As you can see,
many integration points are required, each with its own data model and its
own access and exchange protocols. As the number of tools increases, the
integration challenge grows exponentially. Clearly, this is not sustainable in
a large environment.

Application Application
Discovery Analysis
Tool Tool
Server Capacity
Discovery Planning
Tool Tool
Network Capacity
Discovery Planning
Tool Tool

Data Providers

Data Consumers

FIGURE 2.12 Proprietary tool integration

The DMTF’s CIM and other standards promised to address this situation
long ago. Until recently, the standards were held back. Either vendors were
unwilling to support the standards effectively or technology limitations pre-
vented a vendor from “shoehorning” a standard into its antiquated technol-
ogy. New technologies based on true object models and object integration are
finally now gaining enough of a groundswell to move the industry toward
acceptance of standards-based integration.

Data and messages are the basis of tool integration, with much of the
emphasis being on the data. Standards for message exchange are already

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

52 THE CMDB IMPERATIVE

accepted practice (for example, SNMP trap or CIM Event), although more
work is needed. The data side of integration is the gap, and that gap is filled
very nicely by a CMS.

As the CMDB gains popularity, vendors and users alike are recognizing its
potential to simplify the integration problem. The very nature of the CMS is
grounded in common data formats and interchange specifications, so it seems
to be suitable for tool integration. Indeed it is. You will see many more pos-
sibilities emerge over the next few years to act in this capacity. Most of the
innovations will not even be so explicit, but if two tools are using a common
CMS, there is no need to explicitly send a piece of data from one tool to
another. The data is already in the right place. Figure 2.13 indicates how the
CMS simplifies the integration problem of Figure 2.12.

Application Application

Discovery Analysis
Tool Tool

Server Capacity

Discovery Planning
Tool cms Tool

Network Capacity

Discovery Planning
Tool Tool

Data Providers Data Consumers

FiGure 2.13 CMDB as a common tool integration point

Frequently Asked Questions

Question: What are the Citizen CMDB and Core CMDB? You do not men-
tion these here, but many others do.

Answer: The Citizen and Core CMDBs are relics of the monolithic model of
the CMDB. The premise is that the core CMDB is the “master”
CMDB that holds the unified expanse of all data. The Citizen
CMDB “feeds” data into the Core. It implies, in most cases, a two-
tier hierarchy. We already mentioned that a true CMS will be mul-
tiple levels, built upon a chain of Management Data Repositories
and liberal use of relationships. You can view the Citizen as the

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 53

MDR at the lower level of a link in the chain and the Core as the
higher level of that same link. As you traverse the chain, Cores
become Citizens at the next higher link, and the inverse is true as
you move lower. It is admittedly rather confusing, but we explain
this more suitable structural chain in Chapter 4.

Why did the early asset databases fail to deliver the promise of
the CMDB?

There are two major reasons, among others. First, the asset data-
bases did not generally contain relationships rich enough to sup-
port the navigation of dependencies between assets and the
services they support. Second, the data itself was difficult to pop-
ulate and therefore inaccurate. As we mentioned in this chapter,
inaccurate data is not just useless—it is harmful!

The CMDB appears to be very similar to a data warehouse. Can
we use a data warehouse as a CMDB?

Technically, the CMDB is similar in many philosophical ways to
a data warehouse. Where they differ is in the actual delivery of
the technology and how the whole system of data is used within
an ITIL-based organization. As a CMS with federation, the parts
(the MDRs) are linked differently than a data warehouse, and the
tools that produce and consume the data are aligning with the
CMS direction. It is certainly conceivable—and indeed expected—
that data warehouses will play some role in the CMS, just as tra-
ditional relational databases will. The overall system that brings
all of these parts together is the CMS.

I would love to include my applications in my CMDB, but it is too
difficult. How can I do this?

The majority of CMDB efforts are now aimed at infrastructure.
Applications are indeed more difficult because of the lack of
instrumentation to tell us the real structure of the applications.
New discovery tools are now available to help. We explore how
these tools work in Chapter 4.

How can you advocate extending the CMDB to such high-level
concepts as business processes, documents, and the human ele-
ment when we are still struggling with the basic infrastructure?
Isn’t this an overly aggressive “boil the ocean” approach that is
bound to fail?

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

54 THE CMDB IMPERATIVE

Answer:

Question:

Answer:

Question:

Answer:

A “big bang” attempt at a CMDB/CMS is almost guaranteed to
fail. Like any other ambitious journey, you make progress one
step at a time. We do advocate building the higher layers of
abstraction, but infrastructure is a necessary foundation that sup-
ports these higher layers. Get the lower levels to a reasonable
state of maturity before moving “up the stack,” and your journey
will be easier. A growing number of organizations are now in a
position to make this move, as their infrastructure layer is in a
more capable state.

I have implemented a CMDB, but my people spend too much time
populating and reconciling the data. The overhead is diminishing
the value of the CMDB so much that many intended beneficiaries
are revolting. How can I minimize this work and save the CMDB
effort?

Automation is the key to simplifying ongoing CMDB/CMS main-
tenance, including initial mapping and ongoing population
updates. The category of automation products is discovery tools.
We explain discovery in detail in Chapter 4. A CMS without dis-
covery is doomed, so it is wise to implement discovery as soon as
you can.

You imply that ITIL v3 is the end of the CMDB, but it too refer-
ences a CMDB. What is the truth here?

On page 68 of the ITIL v3 Service Transition book, the CMS dia-
gram contains an “Integrated CMDB” and Physical CMDBs within
the mix of parts. Note that the diagram is just an example of a
CMS, not a definitive description. Also note that this section of
the book on Service Asset and Configuration Management
(SACM) is rather vague on CMDB. This is intentional, as the ITIL
v3 authors share our critical view of the CMDB term. They talk
extensively about CIs and their interrelationships, which is all
good. The ambiguity about CMDB is also good because it marks
the beginning of the end of the CMDB, not the instant death of
the term. We continue to foretell that the end is coming, but it
will take a while. The CMDB portions of the CMS diagram can be
more effectively represented in the view taken by the CMDBf
Working Group. Both CMDBf and ITIL v3 were developed simul-
taneously and a bit isolated from one another. This question is
related to the next one, so please read on.

Question:

Answer:

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

CHAPTER 2 WHAT IS A cMDB? 55

If the proper, forward-looking term is CMS—and not CMDB—why
does the groundbreaking CMDB Federation Working Group even
call it a CMDB?

The CMDBf Working Group began its work long before the release
of ITIL v3. During this period, CMDB was still the prevalent term
and gaining momentum. ITIL v3 outlines the overarching purpose
and principles of the CMS, whereas CMDBf clarifies the technol-
ogy needed to make the CMS work. They both address the same
challenge and align very well with each other. Each is an impor-
tant innovation that together drives us forward from the CMDB
of yore and the CMS of the future. One major intent of this book
is to bridge the gap between these two brilliant developments.
The CMS is an evolution and will continue to be. Neither CMDBf
nor ITIL v3 is perfect, nor is this book, but all are forward steps
in the ongoing continuum of the CMS.

To eliminate confusion, we encourage a simplification that gen-
eralizes the “CMDB” parts of both initiatives according to the
hierarchical structure presented by the CMDBf. We call each indi-
vidual part an MDR, and the whole system is the CMS. We expand
on this structure much more in Chapter 4.

We prefer to euthanize the CMDB term, but we realize that will
take time. A growing number of other influential members of the
IT service management community agree, including authors of
both CMDBf and ITIL v3. It is indeed uncanny how many people
enthusiastically agree when we express our disdain for the CMDB
term!

Summary

At this point in the book, we hope we have conveyed a clear picture of the
macro-level challenges and opportunities of the CMS. In this chapter, we
explained the enigma that is a CMDB. The CMDB is many things, but it cer-
tainly is not a single database. The CMDB is bound by the limitations imposed
on it by rampant misinformation. Although we dislike the term, the CMDB'’s
woes are more a product of culture than definition. We strongly endorse the

Copyright © 2009 Pearson Education, Inc.; The CMDB; 0137008373;
Feb. 2009; Glenn O'Donnell/Glenn/Carlos Casanova;

56 THE CMDB IMPERATIVE

transition from discussing CMDB to the more flexible and powerful CMS.
CMS is fresh, and we all have a profound opportunity and duty to get it right.

Leading thinkers and practitioners have embraced the principles of the
CMS. The publication of ITIL v3 was a catalyst for this inflection. It will take
a long time, probably years, to abandon the CMDB term, so we will all con-
tinue to use it in conversation. For the purposes of this book, we call the
entity a CMS. This is the future. Because we encourage its use, it is our
responsibility to follow our own advice. We use CMDB only in a historical
context throughout the remainder of this book.

