
 CHAPTER 

1  What ’ s It All About? 

  Human  in vitro  fertilization involves collecting several eggs from a woman ’ s 
ovaries, which, after fertilization with partner or donor sperm, produce several 
embryos. Some of these are selected and transferred to the woman ’ s uterus. The 
problem is to select the  “ best ”  embryos to use — the ones that are most likely to 
survive. Selection is based on around 60 recorded features of the embryos — char-
acterizing their morphology, oocyte, follicle, and the sperm sample. The number 
of features is suffi ciently large that it is diffi cult for an embryologist to assess them 
all simultaneously and correlate historical data with the crucial outcome of whether 
that embryo did or did not result in a live child. In a research project in England, 
machine learning is being investigated as a technique for making the selection, 
using as training data historical records of embryos and their outcome. 

 Every year, dairy farmers in New Zealand have to make a tough business deci-
sion: which cows to retain in their herd and which to sell off to an abattoir. 
Typically, one-fi fth of the cows in a dairy herd are culled each year near the end 
of the milking season as feed reserves dwindle. Each cow ’ s breeding and milk 
production history infl uences this decision. Other factors include age (a cow is 
nearing the end of its productive life at 8 years), health problems, history of dif-
fi cult calving, undesirable temperament traits (kicking or jumping fences), and not 
being in calf for the following season. About 700 attributes for each of several 
million cows have been recorded over the years. Machine learning is being inves-
tigated as a way of ascertaining which factors are taken into account by successful 
farmers — not to automate the decision but to propagate their skills and experience 
to others. 

 Life and death. From Europe to the antipodes. Family and business. Machine 
learning is a burgeoning new technology for mining knowledge from data, a tech-
nology that a lot of people are starting to take seriously.  

   1.1     DATA MINING AND MACHINE LEARNING 
 We are overwhelmed with data. The amount of data in the world, in our 
lives, continues to increase — and there ’ s no end in sight. Omnipresent personal 
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computers make it too easy to save things that previously we would have trashed. 
Inexpensive multigigabyte disks make it too easy to postpone decisions about 
what to do with all this stuff — we simply buy another disk and keep it all. Ubiq-
uitous electronics record our decisions, our choices in the supermarket, our 
fi nancial habits, our comings and goings. We swipe our way through the world, 
every swipe a record in a database. The World Wide Web overwhelms us with 
information; meanwhile, every choice we make is recorded. And all these are just 
personal choices: they have countless counterparts in the world of commerce and 
industry. We would all testify to the growing gap between the  generation  of data 
and our  understanding  of it. As the volume of data increases, inexorably, the 
proportion of it that people understand decreases, alarmingly. Lying hidden in all 
this data is information, potentially useful information, that is rarely made explicit 
or taken advantage of. 

 This book is about looking for patterns in data. There is nothing new about 
this. People have been seeking patterns in data since human life began. Hunters 
seek patterns in animal migration behavior, farmers seek patterns in crop growth, 
politicians seek patterns in voter opinion, and lovers seek patterns in their part-
ners ’  responses. A scientist ’ s job (like a baby ’ s) is to make sense of data, to discover 
the patterns that govern how the physical world works and encapsulate them in 
theories that can be used for predicting what will happen in new situations. The 
entrepreneur ’ s job is to identify opportunities, that is, patterns in behavior that 
can be turned into a profi table business, and exploit them. 

 In  data mining,  the data is stored electronically and the search is automated —
 or at least augmented — by computer. Even this is not particularly new. Econo-
mists, statisticians, forecasters, and communication engineers have long worked 
with the idea that patterns in data can be sought automatically, identifi ed, vali-
dated, and used for prediction. What is new is the staggering increase in oppor-
tunities for fi nding patterns in data. The unbridled growth of databases in recent 
years, databases on such everyday activities as customer choices, brings data 
mining to the forefront of new business technologies. It has been estimated that 
the amount of data stored in the world ’ s databases doubles every 20 months, 
and although it would surely be diffi cult to justify this fi gure in any quantitative 
sense, we can all relate to the pace of growth qualitatively. As the fl ood of data 
swells and machines that can undertake the searching become commonplace, the 
opportunities for data mining increase. As the world grows in complexity, over-
whelming us with the data it generates, data mining becomes our only hope for 
elucidating the patterns that underlie it. Intelligently analyzed data is a valuable 
resource. It can lead to new insights and, in commercial settings, to competitive 
advantages. 

 Data mining is about solving problems by analyzing data already present in 
databases. Suppose, to take a well-worn example, the problem is fi ckle customer 
loyalty in a highly competitive marketplace. A database of customer choices, along 
with customer profi les, holds the key to this problem. Patterns of behavior of 
former customers can be analyzed to identify distinguishing characteristics of 
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those likely to switch products and those likely to remain loyal. Once such char-
acteristics are found, they can be put to work to identify present customers who 
are likely to jump ship. This group can be targeted for special treatment, treatment 
too costly to apply to the customer base as a whole. More positively, the same 
techniques can be used to identify customers who might be attracted to another 
service the enterprise provides, one they are not presently enjoying, to target 
them for special offers that promote this service. In today ’ s highly competitive, 
customer-centered, service-oriented economy, data is the raw material that fuels 
business growth — if only it can be mined. 

 Data mining is defi ned as the process of discovering patterns in data. The 
process must be automatic or (more usually) semiautomatic. The patterns discov-
ered must be meaningful in that they lead to some advantage, usually an economic 
advantage. The data is invariably present in substantial quantities. 

 How are the patterns expressed? Useful patterns allow us to make nontrivial 
predictions on new data. There are two extremes for the expression of a pattern: 
as a black box whose innards are effectively incomprehensible and as a transpar-
ent box whose construction reveals the structure of the pattern. Both, we are 
assuming, make good predictions. The difference is whether or not the patterns 
that are mined are represented in terms of a structure that can be examined, 
reasoned about, and used to inform future decisions. Such patterns we call  struc-
tural  because they capture the decision structure in an explicit way. In other 
words, they help to explain something about the data. 

 Now, fi nally, we can say what this book is about. It is about techniques for 
fi nding and describing structural patterns in data. Most of the techniques that we 
cover have developed within a fi eld known as  machine learning.  But fi rst let us 
look at what structural patterns are. 

  1.1.1     Describing Structural Patterns 

 What is meant by  structural patterns?  How do you describe them? And what form 
does the input take? We will answer these questions by way of illustration rather 
than by attempting formal, and ultimately sterile, defi nitions. We will present 
plenty of examples later in this chapter, but let ’ s examine one right now to get a 
feeling for what we ’ re talking about. 

 Look at the contact lens data in  Table 1.1   . This gives the conditions under 
which an optician might want to prescribe soft contact lenses, hard contact lenses, 
or no contact lenses at all; we will say more about what the individual features 
mean later. Each line of the table is one of the examples. Part of a structural 
description of this information might be as follows:

    If tear production rate  =  reduced then recommendation  =  none   
   Otherwise, if age  =  young and astigmatic  =  no   
                                             then recommendation  =  soft     

 Structural descriptions need not necessarily be couched as rules such as 
these. Decision trees, which specify the sequences of decisions that need to 
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 Table 1.1      The Contact Lens Data  

 Age 
 Spectacle 
Prescription  Astigmatism 

 Tear Production 
Rate 

 Recommended 
Lenses 

 Young  Myope  No  Reduced  None 

 Young  Myope  No  Normal  Soft 

 Young  Myope  Yes  Reduced  None 

 Young  Myope  Yes  Normal  Hard 

 Young  Hypermetrope  No  Reduced  None 

 Young  Hypermetrope  No  Normal  Soft 

 Young  Hypermetrope  Yes  Reduced  None 

 Young  Hypermetrope  Yes  Normal  Hard 

 Pre-presbyopic  Myope  No  Reduced  None 

 Pre-presbyopic  Myope  No  Normal  Soft 

 Pre-presbyopic  Myope  Yes  Reduced  None 

 Pre-presbyopic  Myope  Yes  Normal  Hard 

 Pre-presbyopic  Hypermetrope  No  Reduced  None 

 Pre-presbyopic  Hypermetrope  No  Normal  Soft 

 Pre-presbyopic  Hypermetrope  Yes  Reduced  None 

 Pre-presbyopic  Hypermetrope  Yes  Normal  None 

 Presbyopic  Myope  No  Reduced  None 

 Presbyopic  Myope  No  Normal  None 

 Presbyopic  Myope  Yes  Reduced  None 

 Presbyopic  Myope  Yes  Normal  Hard 

 Presbyopic  Hypermetrope  No  Reduced  None 

 Presbyopic  Hypermetrope  No  Normal  Soft 

 Presbyopic  Hypermetrope  Yes  Reduced  None 

 Presbyopic  Hypermetrope  Yes  Normal  None 
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be made and the resulting recommendation, are another popular means of 
expression. 

 This example is a simplistic one. First, all combinations of possible values are 
represented in the table. There are 24 rows, representing three possible values of 
age and two values each for spectacle prescription, astigmatism, and tear produc-
tion rate (3  ×  2  ×  2  ×  2  =  24). The rules do not really generalize from the data; 
they merely summarize it. In most learning situations, the set of examples given 
as input is far from complete, and part of the job is to generalize to other, new 
examples. You can imagine omitting some of the rows in the table for which tear 
production rate is  reduced  and still coming up with the rule 

     If tear production rate  =  reduced then recommendation  =  none     

 which would generalize to the missing rows and fi ll them in correctly. Second, 
values are specifi ed for all the features in all the examples. Real-life datasets invari-
ably contain examples in which the values of some features, for some reason or 
other, are unknown — for example, measurements were not taken or were lost. 
Third, the preceding rules classify the examples correctly, whereas often, because 
of errors or  noise  in the data, misclassifi cations occur even on the data that is used 
to train the classifi er.  

  1.1.2     Machine Learning 

 Now that we have some idea about the inputs and outputs, let ’ s turn to machine 
learning. What is learning, anyway? What is machine learning? These are philo-
sophic questions, and we will not be much concerned with philosophy in this 
book; our emphasis is fi rmly on the practical. However, it is worth spending a 
few moments at the outset on fundamental issues, just to see how tricky they are, 
before rolling up our sleeves and looking at machine learning in practice. Our 
dictionary defi nes  “ to learn ”  as follows:

    ■      To get knowledge of by study, experience, or being taught.  
   ■      To become aware by information or from observation.  
   ■      To commit to memory.  
   ■      To be informed of, ascertain.  
   ■      To receive instruction.    

 These meanings have some shortcomings when it comes to talking about comput-
ers. For the fi rst two, it is virtually impossible to test whether learning has been 
achieved or not. How do you know whether a machine has got knowledge of 
something? You probably can ’ t just ask it questions; even if you could, you 
wouldn ’ t be testing its ability to learn but would be testing its ability to answer 
questions. How do you know whether it has become aware of something? The 
whole question of whether computers can be aware, or conscious, is a burning 
philosophic issue. As for the last three meanings, although we can see what 
they denote in human terms, merely  “ committing to memory ”  and  “ receiving 
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instruction ”  seem to fall far short of what we might mean by machine learning. 
They are too passive, and we know that computers fi nd these tasks trivial. Instead, 
we are interested in improvements in performance, or at least in the potential for 
performance, in new situations. You can  “ commit something to memory ”  or  “ be 
informed of something ”  by rote learning without being able to apply the new 
knowledge to new situations. You can receive instruction without benefi ting from 
it at all. 

 Earlier we defi ned data mining operationally as the process of discovering 
patterns, automatically or semiautomatically, in large quantities of data — and the 
patterns must be useful. An operational defi nition can be formulated in the same 
way for learning: 

    Things learn when they change their behavior in a way that makes them per-
form better in the future.      

 This ties learning to performance rather than knowledge. You can test learning 
by observing the behavior and comparing it with past behavior. This is a much 
more objective kind of defi nition and appears to be far more satisfactory. 

 But there ’ s still a problem. Learning is a rather slippery concept. Lots of things 
change their behavior in ways that make them perform better in the future, yet 
we wouldn ’ t want to say that they have actually  learned.  A good example is a 
comfortable slipper. Has it  learned  the shape of your foot? It has certainly changed 
its behavior to make it perform better as a slipper! Yet we would hardly want to 
call this  learning.  In everyday language, we often use the word  “ training ”  to 
denote a mindless kind of learning. We train animals and even plants, although it 
would be stretching the word a bit to talk of training objects such as slippers that 
are not in any sense alive. But learning is different. Learning implies thinking. 
Learning implies purpose. Something that learns has to do so intentionally. That 
is why we wouldn ’ t say that a vine has learned to grow round a trellis in a vine-
yard — we ’ d say it has been  trained.  Learning without purpose is merely training. 
Or, more to the point, in learning the purpose is the learner ’ s, whereas in training 
it is the teacher ’ s. 

 Thus, on closer examination the second defi nition of learning, in operational, 
performance-oriented terms, has its own problems when it comes to talking about 
computers. To decide whether something has actually learned, you need to see 
whether it intended to or whether there was any purpose involved. That makes 
the concept moot when applied to machines because whether artifacts can behave 
purposefully is unclear. Philosophic discussions of what is  really  meant by  “ learn-
ing, ”  like discussions of what is  really  meant by  “ intention ”  or  “ purpose, ”  are 
fraught with diffi culty. Even courts of law fi nd intention hard to grapple with.  

  1.1.3     Data Mining 

 Fortunately, the kind of learning techniques explained in this book do not present 
these conceptual problems — they are called machine learning without really pre-



supposing any particular philosophic stance about what learning actually is. Data 
mining is a practical topic and involves learning in a practical, not a theoretic, 
sense. We are interested in techniques for fi nding and describing structural pat-
terns in data as a tool for helping to explain that data and make predictions from 
it. The data will take the form of a set of examples — examples of customers who 
have switched loyalties, for instance, or situations in which certain kinds of 
contact lenses can be prescribed. The output takes the form of predictions about 
new examples — a prediction of whether a particular customer will switch or a 
prediction of what kind of lens will be prescribed under given circumstances. But 
because this book is about fi nding  and describing  patterns in data, the output 
may also include an actual description of a structure that can be used to classify 
unknown examples to explain the decision. As well as performance, it is helpful 
to supply an explicit representation of the knowledge that is acquired. In essence, 
this refl ects both defi nitions of learning considered previously: the acquisition of 
knowledge and the ability to use it. 

 Many learning techniques look for structural descriptions of what is learned, 
descriptions that can become fairly complex and are typically expressed as sets 
of rules such as the ones described previously or the decision trees described later 
in this chapter. Because people can understand them, these descriptions explain 
what has been learned and explain the basis for new predictions. Experience 
shows that in many applications of machine learning to data mining, the explicit 
knowledge structures that are acquired, the structural descriptions, are at least as 
important, and often much more important, than the ability to perform well on 
new examples. People frequently use data mining to gain knowledge, not just 
predictions. Gaining knowledge from data certainly sounds like a good idea if you 
can do it. To fi nd out how, read on!   

  1.2     SIMPLE EXAMPLES: THE WEATHER PROBLEM 
AND OTHERS 

 We use a lot of examples in this book, which seems particularly appropriate con-
sidering that the book is all about learning from examples! There are several 
standard datasets that we will come back to repeatedly. Different datasets tend to 
expose new issues and challenges, and it is interesting and instructive to have in 
mind a variety of problems when considering learning methods. In fact, the need 
to work with different datasets is so important that a corpus containing around 
100 example problems has been gathered together so that different algorithms 
can be tested and compared on the same set of problems. 

 The illustrations used here are all unrealistically simple. Serious application 
of data mining involves thousands, hundreds of thousands, or even millions of 
individual cases. But when explaining what algorithms do and how they work, 
we need simple examples that capture the essence of the problem but are small 
enough to be comprehensible in every detail. The illustrations we will be working 
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with are intended to be  “ academic ”  in the sense that they will help us to under-
stand what is going on. Some actual fi elded applications of learning techniques 
are discussed in  Section 1.3 , and many more are covered in the books mentioned 
in the Further Reading section at the end of the chapter. 

 Another problem with actual real-life datasets is that they are often proprietary. 
No corporation is going to share its customer and product choice database with 
you so that you can understand the details of its data mining application and how 
it works. Corporate data is a valuable asset, one whose value has increased enor-
mously with the development of data mining techniques such as those described 
in this book. Yet we are concerned here with understanding how the methods 
used for data mining work and understanding the details of these methods so that 
we can trace their operation on actual data. That is why our illustrations are simple 
ones. But they are not  simplistic:  they exhibit the features of real datasets. 

  1.2.1     The Weather Problem 

 The weather problem is a tiny dataset that we will use repeatedly to illustrate 
machine learning methods. Entirely fi ctitious, it supposedly concerns the condi-
tions that are suitable for playing some unspecifi ed game. In general, instances in 
a dataset are characterized by the values of features, or  attributes,  that measure 
different aspects of the instance. In this case there are four attributes:  outlook, 
temperature, humidity,  and  windy.  The outcome is whether or not to play. 

 In its simplest form, shown in  Table 1.2   , all four attributes have values that are 
symbolic categories rather than numbers. Outlook can be  sunny, overcast,  or 
 rainy;  temperature can be  hot, mild,  or  cool;  humidity can be  high  or  normal;  
and windy can be  true  or  false.  This creates 36 possible combinations (3  ×  3  ×  
2  ×  2  =  36), of which 14 are present in the set of input examples. 

 A set of rules learned from this information — not necessarily a very good 
one — might look as follows:

    If outlook  =  sunny and humidity  =  high      then play  =  no   
   If outlook  =  rainy and windy  =  true               then play  =  no   
   If outlook  =  overcast                                                         then play  =  yes   
   If humidity  =  normal                                                            then play  =  yes   
   If none of the above                                                            then play  =  yes     

 These rules are meant to be interpreted in order: the fi rst one; then, if it doesn ’ t 
apply, the second; and so on.  

 A set of rules intended to be interpreted in sequence is called a  decision list.  
Interpreted as a decision list, the rules correctly classify all of the examples in the 
table, whereas taken individually, out of context, some of the rules are incorrect. 
For example, the rule  if humidity  =  normal, then play  =  yes  gets one of 
the examples wrong (check which one). The meaning of a set of rules depends 
on how it is interpreted — not surprisingly! 

 In the slightly more complex form shown in  Table 1.3   , two of the attributes —
 temperature and humidity — have numeric values. This means that any learning 
method must create inequalities involving these attributes rather than simple 



equality tests, as in the former case. This is called a  numeric-attribute problem  —
 in this case, a  mixed-attribute problem  because not all attributes are numeric. 

 Now the fi rst rule given earlier might take the following form:

    If outlook  =  sunny and humidity  >  83 then play  =  no     

 A slightly more complex process is required to come up with rules that involve 
numeric tests. 

 The rules we have seen so far are  classifi cation rules:  they predict the classi-
fi cation of the example in terms of whether or not to play. It is equally possible 
to disregard the classifi cation and just look for any rules that strongly associate 
different attribute values. These are called  association rules.  Many association 
rules can be derived from the weather data in  Table 1.2 . Some good ones are as 
follows:

    If temperature  =  cool                                                         then humidity  =  normal   
   If humidity  =  normal and windy  =  false      then play  =  yes   
   If outlook  =  sunny and play  =  no                        then humidity  =  high   
   If windy  =  false and play  =  no                              then outlook  =  sunny   
                                                                                                                                          and humidity  =  high.     

 Table 1.2      The Weather Data  

 Outlook  Temperature  Humidity  Windy  Play 

 Sunny  Hot  High  False  No 

 Sunny  Hot  High  True  No 

 Overcast  Hot  High  False  Yes 

 Rainy  Mild  High  False  Yes 

 Rainy  Cool  Normal  False  Yes 

 Rainy  Cool  Normal  True  No 

 Overcast  Cool  Normal  True  Yes 

 Sunny  Mild  High  False  No 

 Sunny  Cool  Normal  False  Yes 

 Rainy  Mild  Normal  False  Yes 

 Sunny  Mild  Normal  True  Yes 

 Overcast  Mild  High  True  Yes 

 Overcast  Hot  Normal  False  Yes 

 Rainy  Mild  High  True  No 
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 All these rules are 100 percent correct on the given data; they make no false 
predictions. The fi rst two apply to four examples in the dataset, the third to three 
examples, and the fourth to two examples. There are many other rules: in fact, 
nearly 60 association rules can be found that apply to two or more examples of 
the weather data and are completely correct on this data. If you look for rules that 
are less than 100 percent correct, then you will fi nd many more. There are so 
many because unlike classifi cation rules, association rules can  “ predict ”  any of the 
attributes, not just a specifi ed class, and can even predict more than one thing. 
For example, the fourth rule predicts both that  outlook  will be  sunny  and that 
 humidity  will be  high.   

  1.2.2     Contact Lenses: An Idealized Problem 

 The contact lens data introduced earlier tells you the kind of contact lens to pre-
scribe, given certain information about a patient. Note that this example is intended 
for illustration only: it grossly oversimplifi es the problem and should certainly not 
be used for diagnostic purposes! 

 Table 1.3      Weather Data with Some Numeric Attribute  

 Outlook  Temperature  Humidity  Windy  Play 

 Sunny  85  85  False  No 

 Sunny  80  90  True  No 

 Overcast  83  86  False  Yes 

 Rainy  70  96  False  Yes 

 Rainy  68  80  False  Yes 

 Rainy  65  70  True  No 

 Overcast  64  65  True  Yes 

 Sunny  72  95  False  No 

 Sunny  69  70  False  Yes 

 Rainy  75  80  False  Yes 

 Sunny  75  70  True  Yes 

 Overcast  72  90  True  Yes 

 Overcast  81  75  False  Yes 

 Rainy  71  91  True  No 



 The fi rst column of  Table 1.1  gives the age of the patient. In case you ’ re won-
dering,  presbyopia  is a form of longsightedness that accompanies the onset of 
middle age. The second gives the spectacle prescription:  myope  means short-
sighted and  hypermetrope  means longsighted. The third shows whether the 
patient is astigmatic, and the fourth relates to the rate of tear production, which 
is important in this context because tears lubricate contact lenses. The fi nal 
column shows which kind of lenses to prescribe:  hard, soft,  or  none.  All possible 
combinations of the attribute values are represented in the table. 

 A sample set of rules learned from this information is shown in  Figure 1.1   . This 
is a large set of rules, but they do correctly classify all the examples. These rules 
are complete and deterministic: they give a unique prescription for every conceiv-
able example. Generally, this is not the case. Sometimes there are situations in 
which no rule applies; other times more than one rule may apply, resulting in 
confl icting recommendations. Sometimes probabilities or weights may be associ-
ated with the rules themselves to indicate that some are more important, or more 
reliable, than others. 

 You might be wondering whether there is a smaller rule set that performs 
as well. If so, would you be better off using the smaller rule set and, if so, why? 
These are exactly the kinds of questions that will occupy us in this book. Because 
the examples form a complete set for the problem space, the rules do no more 
than summarize all the information that is given, expressing it in a different and 
more concise way. Even though it involves no generalization, this is often a useful 

 FIGURE 1.1 

  Rules for the contact lens data.    

If tear production rate = reduced then recommendation = none

If age = young and astigmatic = no and

   tear production rate = normal then recommendation = soft

If age = pre-presbyopic and astigmatic = no and

   tear production rate = normal then recommendation = soft

If age = presbyopic and spectacle prescription = myope and

   astigmatic = no then recommendation = none

If spectacle prescription = hypermetrope and astigmatic = no and

   tear production rate = normal then recommendation = soft

If spectacle prescription = myope and astigmatic = yes and

   tear production rate = normal then recommendation = hard

If age = young and astigmatic = yes and

   tear production rate = normal then recommendation = hard

If age = pre-presbyopic and

   spectacle prescription = hypermetrope and astigmatic = yes

   then recommendation = none

If age = presbyopic and spectacle prescription = hypermetrope

   and astigmatic = yes then recommendation = none
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thing to do! People frequently use machine learning techniques to gain insight 
into the structure of their data rather than to make predictions for new cases. In 
fact, a prominent and successful line of research in machine learning began as an 
attempt to compress a huge database of possible chess endgames and their out-
comes into a data structure of reasonable size. The data structure chosen for this 
enterprise was not a set of rules, but a decision tree. 

  Figure 1.2    presents a structural description for the contact lens data in the form 
of a decision tree, which for many purposes is a more concise and perspicuous 
representation of the rules and has the advantage that it can be visualized more 
easily. (However, this decision tree — in contrast to the rule set given in  Figure 
1.1  — classifi es two examples incorrectly.) The tree calls fi rst for a test on  tear 
production rate,  and the fi rst two branches correspond to the two possible out-
comes. If  tear production rate  is  reduced  (the left branch), the outcome is  none.  
If it is  normal  (the right branch), a second test is made, this time on  astigmatism.  
Eventually, whatever the outcome of the tests, a leaf of the tree is reached that 
dictates the contact lens recommendation for that case.  

  1.2.3     Irises: A Classic Numeric Dataset 

 The iris dataset, which dates back to seminal work by the eminent statistician 
R. A. Fisher in the mid-1930s and is arguably the most famous dataset used in data 
mining, contains 50 examples each of three types of plant:  Iris setosa, Iris versi-
color,  and  Iris virginica.  It is excerpted in  Table 1.4   . There are four attributes: 
 sepal length, sepal width, petal length,  and  petal width  (all measured in centi-
meters). Unlike previous datasets, all attributes have numeric values. 

 FIGURE 1.2 

  Decision tree for the contact lens data.    

Normal

Tear production rate

Reduced

HypermetropeMyope

None Astigmatism

Soft

Hard None

Spectacle prescription

YesNo



 Table 1.4      The Iris Data  

 Sepal Length 
(cm) 

 Sepal Width 
(cm) 

 Petal Length 
(cm) 

 Petal Width 
(cm)  Type 

 1  5.1  3.5  1.4  0.2   Iris setosa  

 2  4.9  3.0  1.4  0.2   Iris setosa  

 3  4.7  3.2  1.3  0.2   Iris setosa  

 4  4.6  3.1  1.5  0.2   Iris setosa  

 5  5.0  3.6  1.4  0.2   Iris setosa  

  . . .  

 51  7.0  3.2  4.7  1.4   Iris versicolor  

 52  6.4  3.2  4.5  1.5   Iris versicolor  

 53  6.9  3.1  4.9  1.5   Iris versicolor  

 54  5.5  2.3  4.0  1.3   Iris versicolor  

 55  6.5  2.8  4.6  1.5   Iris versicolor  

  . . .  

 101  6.3  3.3  6.0  2.5   Iris virginica  

 102  5.8  2.7  5.1  1.9   Iris virginica  

 103  7.1  3.0  5.9  2.1   Iris virginica  

 104  6.3  2.9  5.6  1.8   Iris virginica  

 105  6.5  3.0  5.8  2.2   Iris virginica  

  . . .  

 The following set of rules might be learned from this dataset:

    If petal length  <  2.45 then Iris setosa   
   If sepal width  <  2.10 then Iris versicolor   
   If sepal width  <  2.45 and petal length  <  4.55 then Iris versicolor   
   If sepal width  <  2.95 and petal width  <  1.35 then Iris versicolor   
   If petal length  ≥  2.45 and petal length  <  4.45 then Iris versicolor   
   If sepal length  ≥  5.85 and petal length  <  4.75 then Iris versicolor   
   If sepal width  <  2.55 and petal length  <  4.95 and   
            petal width  <  1.55 then Iris versicolor   
   If petal length  ≥  2.45 and petal length  <  4.95 and   
            petal width  <  1.55 then Iris versicolor   
   If sepal length  ≥  6.55 and petal length  <  5.05 then Iris versicolor   
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   If sepal width  <  2.75 and petal width  <  1.65 and   
            sepal length  <  6.05 then Iris versicolor   
   If sepal length  ≥  5.85 and sepal length  <  5.95 and   
            petal length  <  4.85 then Iris versicolor   
   If petal length  ≥  5.15 then Iris virginica   
   If petal width  ≥  1.85 then Iris virginica   
   If petal width  ≥  1.75 and sepal width  <  3.05 then Iris virginica   
   If petal length  ≥  4.95 and petal width  <  1.55 then Iris virginica     

 These rules are very cumbersome; more compact rules can be expressed that 
convey the same information.  

  1.2.4     CPU Performance: Introducing Numeric Prediction 

 Although the iris dataset involves numeric attributes, the outcome — the type of 
iris — is a category, not a numeric value.  Table 1.5    shows some data for which the 
outcome and the attributes are numeric. It concerns the relative performance of 
computer processing power on the basis of a number of relevant attributes; each 
row represents 1 of 209 different computer confi gurations. 

 The classic way of dealing with continuous prediction is to write the outcome 
as a linear sum of the attribute values with appropriate weights, for example: 

 PRP MYCT MMIN MMAX CACH= − + + + +
−
55 9 0 0489 0 0153 0 0056 0 6410

0 27

. . . . .

. 000 1 480CHMIN CHMAX+ .
     

 Table 1.5      The CPU Performance Data  

 Cycle  Main Memory (KB)  Cache  Channels 

 Time (ns)  Minimum  Maximum  (KB)  Minimum  Maximum  Performance 

 MYCT  MMIN  MMAX  CACH  CHMIN  CHMAX  PRP 

 1  125  256  6000  256  16  128  198 

 2  29  8000  32000  32  8  32  269 

 3  29  8000  32000  32  8  32  220 

 4  29  8000  32000  32  8  32  172 

 5  29  8000  16000  32  8  16  132 

  . . .  

 207  125  2000  8000  0  2  14  52 

 208  480  512  8000  32  0  0  67 

 209  480  1000  4000  0  0  0  45 



 (The abbreviated variable names are given in the second row of the table.) This 
is called a  regression equation,  and the process of determining the weights is 
called  regression,  a well-known procedure in statistics. However, the basic regres-
sion method is incapable of discovering nonlinear relationships (although variants 
do exist). 

 In the iris and central processing unit (CPU) performance data, all the attributes 
have numeric values. Practical situations frequently present a mixture of numeric 
and nonnumeric attributes.  

  1.2.5     Labor Negotiations: A More Realistic Example 

 The labor negotiations dataset in  Table 1.6    summarizes the outcome of Canadian 
contract negotiations in 1987 and 1988. It includes all collective agreements 

 Table 1.6      The Labor Negotiations Data  

 Attribute  Type  1  2  3   . . .    40 

 Duration  Years  1  2  3  2 

 Wage increase fi rst year  Percentage  2%  4%  4.3%  4.5 

 Wage increase second year  Percentage  ?  5%  4.4%  4.0 

 Wage increase third year  Percentage  ?  ?  ?  ? 

 Cost of living adjustment  {none, tcf, tc}  None  Tcf  ?  None 

 Working hours per week  Hours  28  35  38  40 

 Pension  {none, ret-allw, empl-cntr}  None  ?  ?  ? 

 Standby pay  Percentage  ?  13%  ?  ? 

 Shift-work supplement  Percentage  ?  5%  4%  4 

 Education allowance  {yes, no}  Yes  ?  ?  ? 

 Statutory holidays  Days  11  15  12  12 

 Vacation  {below-avg, avg, gen}  Avg  Gen  Gen  Avg 

 Long-term disability 
assistance 

 {yes, no}  No  ?  ?  Yes 

 Dental plan contribution  {none, half, full}  None  ?  Full  Full 

 Bereavement assistance  {yes, no}  No  ?  ?  Yes 

 Health plan contribution  {none, half, full}  None  ?  Full  Half 

 Acceptability of contract  {good, bad}  Bad  Good  Good  Good 
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reached in the business and personal services sector for organizations with at least 
500 members (teachers, nurses, university staff, police, etc.). Each case concerns 
one contract, and the outcome is whether the contract is deemed  acceptable  
or  unacceptable.  The acceptable contracts are ones in which agreements were 
accepted by both labor and management. The unacceptable ones are either known 
offers that fell through because one party would not accept them or acceptable 
contracts that had been signifi cantly perturbed to the extent that, in the view of 
experts, they would not have been accepted. 

 There are 40 examples in the dataset (plus another 17 that are normally 
reserved for test purposes). Unlike the other tables here,  Table 1.6  presents the 
examples as columns rather than as rows; otherwise, it would have to be stretched 
over several pages. Many of the values are unknown or missing, as indicated by 
question marks. 

 This is a much more realistic dataset than the others we have seen. It contains 
many missing values, and it seems unlikely that an exact classifi cation can be 
obtained. 

  Figure 1.3    shows two decision trees that represent the dataset.  Figure 1.3(a)  
is simple and approximate: it doesn ’ t represent the data exactly. For example, it 
will predict  bad  for some contracts that are actually marked  good.  But it does 
make intuitive sense: a contract is bad (for the employee!) if the wage increase in 
the fi rst year is too small (less than 2.5 percent). If the fi rst-year wage increase is 
larger than this, it is good if there are lots of statutory holidays (more than 10 
days). Even if there are fewer statutory holidays, it is good if the fi rst-year wage 
increase is large enough (more than 4 percent). 

  Figure 1.3(b)  is a more complex decision tree that represents the same dataset. 
In fact, this is a more accurate representation of the actual dataset that was used 
to create the tree. But it is not necessarily a more accurate representation of the 
underlying concept of good versus bad contracts. Look down the left branch. 
It doesn ’ t seem to make sense intuitively that, if the working hours exceed 36, a 
contract is bad if there is no health-plan contribution or a full health-plan contribu-
tion but is good if there is a half health-plan contribution. It is certainly reasonable 
that the health-plan contribution plays a role in the decision but not if half is good 
and both full and none are bad. It seems likely that this is an artifact of the par-
ticular values used to create the decision tree rather than a genuine feature of the 
good versus bad distinction. 

 The tree in  Figure 1.3(b)  is more accurate on the data that was used to train 
the classifi er but will probably perform less well on an independent set of test 
data. It is  “ overfi tted ”  to the training data — it follows it too slavishly. The tree in 
 Figure 1.3(a)  is obtained from the one in  Figure 1.3(b)  by a process of pruning.  

  1.2.6     Soybean Classifi cation: A Classic Machine Learning Success 

 An often-quoted early success story in the application of machine learning to 
practical problems is the identifi cation of rules for diagnosing soybean diseases. 



 FIGURE 1.3 

  Decision trees for the labor negotiations data.      
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The data is taken from questionnaires describing plant diseases. There are about 
680 examples, each representing a diseased plant. Plants were measured on 35 
attributes, each one having a small set of possible values. Examples are labeled 
with the diagnosis of an expert in plant biology: there are 19 disease categories 
altogether — horrible-sounding diseases, such as diaporthe stem canker, rhizocto-
nia root rot, and bacterial blight, to mention just a few. 
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  Table 1.7    gives the attributes, the number of different values that each can 
have, and a sample record for one particular plant. The attributes are placed into 
different categories just to make them easier to read. 

 Here are two example rules, learned from this data:

    If             [ leaf condition is normal and   
                     stem condition is abnormal and   
                     stem cankers is below soil line and   
                     canker lesion color is brown ]    
   then   
                     diagnosis is rhizoctonia root rot   

   If             [ leaf malformation is absent and   
                     stem condition is abnormal and   
                     stem cankers is below soil line and   
                     canker lesion color is brown ]    
   then   
                     diagnosis is rhizoctonia root rot     

 These rules nicely illustrate the potential role of prior knowledge — often called 
 domain knowledge  — in machine learning, because the only difference between 
the two descriptions is  leaf condition is  normal versus  leaf malformation 
is absent . In this domain, if the leaf condition is normal, then leaf malformation 
is necessarily absent, so one of these conditions happens to be a special case of 
the other. Thus, if the fi rst rule is true, the second is necessarily true as well. The 
only time the second rule comes into play is when leaf malformation is absent 

 Table 1.7      The Soybean Data  

 Attribute  Number of Values  Sample Value 

  Environment   Time of occurrence  7  July 

 Precipitation  3  Above normal 

 Temperature  3  Normal 

 Cropping history  4  Same as last year 

 Hail damage  2  Yes 

 Damaged area  4  Scattered 

 Severity  3  Severe 

 Plant height  2  Normal 

 Plant growth  2  Abnormal 

 Seed treatment  3  Fungicide 

 Germination  3  Less than 80% 
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Table 1.7 Continued

 Attribute  Number of Values  Sample Value 

  Seed   Condition  2  Normal 

 Mold growth  2  Absent 

 Discoloration  2  Absent 

 Size  2  Normal 

 Shriveling  2  Absent 

  Fruit   Condition of fruit pods  3  Normal 

 Fruit spots  5   –  

  Leaf   Condition  2  Abnormal 

 Leaf spot size  3   –  

 Yellow leaf spot halo  3  Absent 

 Leaf spot margins  3   –  

 Shredding  2  Absent 

 Leaf malformation  2  Absent 

 Leaf mildew growth  3  Absent 

  Stem   Condition  2  Abnormal 

 Stem lodging  2  Yes 

 Stem cankers  4  Above soil line 

 Canker lesion color  3   –  

 Fruiting bodies on stems  2  Present 

 External decay of stem  3  Firm and dry 

 Mycelium on stem  2  Absent 

 Internal discoloration  3  None 

 Sclerotia  2  Absent 

    Root   Condition  3  Normal 

  Diagnosis   Diaporthe stem 

 19  Canker 
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but leaf condition is  not  normal — that is, when something other than malforma-
tion is wrong with the leaf. This is certainly not apparent from a casual reading 
of the rules. 

 Research on this problem in the late 1970s found that these diagnostic rules 
could be generated by a machine learning algorithm, along with rules for every 
other disease category, from about 300 training examples. The examples were 
carefully selected from the corpus of cases as being quite different from one 
another —  ” far apart ”  in the example space. At the same time, the plant pathologist 
who had produced the diagnoses was interviewed, and his expertise was trans-
lated into diagnostic rules. Surprisingly, the computer-generated rules outper-
formed the expert ’ s rules on the remaining test examples. They gave the correct 
disease top ranking 97.5 percent of the time compared with only 72 percent 
for the expert-derived rules. Furthermore, not only did the learning algorithm 
fi nd rules that outperformed those of the expert collaborator, but the same 
expert was so impressed that he allegedly adopted the discovered rules in place 
of his own!   

  1.3     FIELDED APPLICATIONS 
 The examples that we opened with are speculative research projects, not pro-
duction systems. And the preceding illustrations are toy problems: they are delib-
erately chosen to be small so that we can use them to work through algorithms 
later in the book. Where ’ s the beef? Here are some applications of machine learn-
ing that have actually been put into use. 

 Because they are fi elded applications, the illustrations that follow tend to stress 
the use of learning in performance situations, in which the emphasis is on ability 
to perform well on new examples. This book also describes the use of learning 
systems to gain knowledge from decision structures that are inferred from the 
data. We believe that this is as important — probably even more important in the 
long run — a use of the technology as merely making high-performance predic-
tions. Still, it will tend to be underrepresented in fi elded applications because 
when learning techniques are used to gain insight, the result is not normally a 
system that is put to work as an application in its own right. Nevertheless, in three 
of the examples that follow, the fact that the decision structure is comprehensible 
is a key feature in the successful adoption of the application. 

  1.3.1     Decisions Involving Judgment 

 When you apply for a loan, you have to fi ll out a questionnaire that asks for rel-
evant fi nancial and personal information. The loan company uses this information 
as the basis for its decision as to whether to lend you money. Such decisions are 
typically made in two stages. First, statistical methods are used to determine clear 



 “ accept ”  and  “ reject ”  cases. The remaining borderline cases are more diffi cult and 
call for human judgment. For example, one loan company uses a statistical deci-
sion procedure to calculate a numeric parameter based on the information sup-
plied in the questionnaire. Applicants are accepted if this parameter exceeds a 
preset threshold and rejected if it falls below a second threshold. This accounts 
for 90 percent of cases, and the remaining 10 percent are referred to loan offi cers 
for a decision. On examining historical data on whether applicants did indeed 
repay their loans, however, it turned out that half of the borderline applicants 
who were granted loans actually defaulted. Although it would be tempting simply 
to deny credit to borderline customers, credit industry professionals pointed out 
that if only their repayment future could be reliably determined it is precisely 
these customers whose business should be wooed; they tend to be active custom-
ers of a credit institution because their fi nances remain in a chronically volatile 
condition. A suitable compromise must be reached between the viewpoint of a 
company accountant, who dislikes bad debt, and that of a sales executive, who 
dislikes turning business away. 

 Enter machine learning. The input was 1000 training examples of borderline 
cases for which a loan had been made that specifi ed whether the borrower had 
fi nally paid off or defaulted. For each training example, about 20 attributes were 
extracted from the questionnaire, such as age, years with current employer, years 
at current address, years with the bank, and other credit cards possessed. A 
machine learning procedure was used to produce a small set of classifi cation rules 
that made correct predictions on two-thirds of the borderline cases in an indepen-
dently chosen test set. Not only did these rules improve the success rate of the 
loan decisions, but the company also found them attractive because they could 
be used to explain to applicants the reasons behind the decision. Although the 
project was an exploratory one that took only a small development effort, the loan 
company was apparently so pleased with the result that the rules were put into 
use immediately.  

  1.3.2     Screening Images 

 Since the early days of satellite technology, environmental scientists have been 
trying to detect oil slicks from satellite images to give early warning of ecologic 
disasters and deter illegal dumping. Radar satellites provide an opportunity for 
monitoring coastal waters day and night, regardless of weather conditions. Oil 
slicks appear as dark regions in the image whose size and shape evolve depending 
on weather and sea conditions. However, other look-alike dark regions can be 
caused by local weather conditions such as high wind. Detecting oil slicks is an 
expensive manual process requiring highly trained personnel who assess each 
region in the image. 

 A hazard detection system has been developed to screen images for subsequent 
manual processing. Intended to be marketed worldwide to a wide variety of 
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users — government agencies and companies — with different objectives, applica-
tions, and geographic areas, it needs to be highly customizable to individual cir-
cumstances. Machine learning allows the system to be trained on examples of 
spills and nonspills supplied by the user and lets the user control the trade-off 
between undetected spills and false alarms. Unlike other machine learning appli-
cations, which generate a classifi er that is then deployed in the fi eld, here it is the 
learning method itself that will be deployed. 

 The input is a set of raw pixel images from a radar satellite, and the output is 
a much smaller set of images with putative oil slicks marked by a colored border. 
First, standard image processing operations are applied to normalize the image. 
Then, suspicious dark regions are identifi ed. Several dozen attributes are extracted 
from each region, characterizing its size, shape, area, intensity, sharpness and jag-
gedness of the boundaries, proximity to other regions, and information about the 
background in the vicinity of the region. Finally, standard learning techniques are 
applied to the resulting attribute vectors. 

 Several interesting problems were encountered. One is the scarcity of training 
data. Oil slicks are (fortunately) very rare, and manual classifi cation is extremely 
costly. Another is the unbalanced nature of the problem: of the many dark regions 
in the training data, only a small fraction are actual oil slicks. A third is that the 
examples group naturally into batches, with regions drawn from each image 
forming a single batch, and background characteristics vary from one batch to 
another. Finally, the performance task is to serve as a fi lter, and the user must be 
provided with a convenient means of varying the false-alarm rate.  

  1.3.3     Load Forecasting 

 In the electricity supply industry, it is important to determine future demand for 
power as far in advance as possible. If accurate estimates can be made for the 
maximum and minimum load for each hour, day, month, season, and year, utility 
companies can make signifi cant economies in areas such as setting the operating 
reserve, maintenance scheduling, and fuel inventory management. 

 An automated load forecasting assistant has been operating at a major utility 
supplier over the past decade to generate hourly forecasts 2 days in advance. The 
fi rst step was to use data collected over the previous 15 years to create a sophis-
ticated load model manually. This model had three components: base load for the 
year, load periodicity over the year, and the effect of holidays. To normalize for 
the base load, the data for each previous year was standardized by subtracting the 
average load for that year from each hourly reading and dividing by the standard 
deviation over the year. Electric load shows periodicity at three fundamental 
frequencies: diurnal, where usage has an early morning minimum and midday 
and afternoon maxima; weekly, where demand is lower at weekends; and sea-
sonal, where increased demand during winter and summer for heating and 
cooling, respectively, creates a yearly cycle. Major holidays such as Thanksgiving, 
Christmas, and New Year ’ s Day show signifi cant variation from the normal load 



and are each modeled separately by averaging hourly loads for that day over the 
past 15 years. Minor offi cial holidays, such as Columbus Day, are lumped together 
as school holidays and treated as an offset to the normal diurnal pattern. All of 
these effects are incorporated by reconstructing a year ’ s load as a sequence of 
typical days, fi tting the holidays in their correct position, and denormalizing the 
load to account for overall growth. 

 Thus far, the load model is a static one, constructed manually from historical 
data, and implicitly assumes  “ normal ”  climatic conditions over the year. The fi nal 
step was to take weather conditions into account using a technique that locates 
the previous day most similar to the current circumstances and uses the historical 
information from that day as a predictor. In this case the prediction is treated as 
an additive correction to the static load model. To guard against outliers, the 8 
most similar days are located and their additive corrections averaged. A database 
was constructed of temperature, humidity, wind speed, and cloud cover at three 
local weather centers for each hour of the 15-year historical record, along with 
the difference between the actual load and that predicted by the static model. A 
linear regression analysis was performed to determine the relative effects of these 
parameters on load, and the coeffi cients were used to weight the distance function 
used to locate the most similar days. 

 The resulting system yielded the same performance as trained human fore-
casters but was far quicker — taking seconds rather than hours to generate a daily 
forecast. Human operators can analyze the forecast ’ s sensitivity to simulated 
changes in weather and bring up for examination the  “ most similar ”  days that the 
system used for weather adjustment.  

  1.3.4     Diagnosis 

 Diagnosis is one of the principal application areas of expert systems. Although the 
handcrafted rules used in expert systems often perform well, machine learning 
can be useful in situations in which producing rules manually is too labor 
intensive. 

 Preventative maintenance of electromechanical devices such as motors and 
generators can forestall failures that disrupt industrial processes. Technicians 
regularly inspect each device, measuring vibrations at various points to determine 
whether the device needs servicing. Typical faults include shaft misalignment, 
mechanical loosening, faulty bearings, and unbalanced pumps. A particular chem-
ical plant uses more than 1000 different devices, ranging from small pumps to 
very large turbo-alternators, which until recently were diagnosed by a human 
expert with 20 years of experience. Faults are identifi ed by measuring vibrations 
at different places on the device ’ s mounting and using Fourier analysis to check 
the energy present in three different directions at each harmonic of the basic 
rotation speed. The expert studies this information, which is noisy because 
of limitations in the measurement and recording procedure, to arrive at a diagno-
sis. Although handcrafted expert system rules had been developed for some 
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situations, the elicitation process would have to be repeated several times for dif-
ferent types of machinery; so a learning approach was investigated. 

 Six hundred faults, each comprising a set of measurements along with the 
expert ’ s diagnosis, were available, representing 20 years of experience in the fi eld. 
About half were unsatisfactory for various reasons and had to be discarded; the 
remainder were used as training examples. The goal was not to determine whether 
or not a fault existed but to diagnose the kind of fault, given that one was there. 
Thus, there was no need to include fault-free cases in the training set. The mea-
sured attributes were rather low level and had to be augmented by intermediate 
concepts, that is, functions of basic attributes, which were defi ned in consultation 
with the expert and embodied some causal domain knowledge. The derived attri-
butes were run through an induction algorithm to produce a set of diagnostic 
rules. Initially, the expert was not satisfi ed with the rules because he could not 
relate them to his own knowledge and experience. For him, mere statistical evi-
dence was not, by itself, an adequate explanation. Further background knowledge 
had to be used before satisfactory rules were generated. Although the resulting 
rules were complex, the expert liked them because he could justify them in light 
of his mechanical knowledge. He was pleased that a third of the rules coincided 
with ones he used himself and was delighted to gain new insight from some of 
the others. 

 Performance tests indicated that the learned rules were slightly superior to the 
handcrafted ones that the expert had previously elicited, and subsequent use in 
the chemical factory confi rmed this result. It is interesting to note, however, that 
the system was put into use not because of its good performance but because the 
domain expert approved of the rules that had been learned.  

  1.3.5     Marketing and Sales 

 Some of the most active applications of data mining have been in the area of 
marketing and sales. These are domains in which companies possess massive 
volumes of precisely recorded data, data that — it has only recently been real-
ized — is potentially extremely valuable. In these applications, predictions them-
selves are the chief interest: the structure of how decisions are made is often 
completely irrelevant. 

 We have already mentioned the problem of fi ckle customer loyalty and the 
challenge of detecting customers who are likely to defect so that they can be 
wooed back into the fold by giving them special treatment. Banks were early 
adopters of data mining technology because of their successes in the use of 
machine learning for credit assessment. Data mining is now being used to reduce 
customer attrition by detecting changes in individual banking patterns that may 
herald a change of bank or even life changes, such as a move to another city, that 
could result in a different bank being chosen. It may reveal, for example, a group 
of customers with above-average attrition rate who do most of their banking by 
phone after hours when telephone response is slow. Data mining may determine 



groups for whom new services are appropriate, such as a cluster of profi table, 
reliable customers who rarely get cash advances from their credit card except in 
November and December, when they are prepared to pay exorbitant interest rates 
to see them through the holiday season. In another domain, cellular phone com-
panies fi ght  churn  by detecting patterns of behavior that could benefi t from new 
services and then advertise such services to retain their customer base. Incentives 
provided specifi cally to retain existing customers can be expensive, and success-
ful data mining allows them to be precisely targeted to those customers where 
they are likely to yield maximum benefi t. 

  Market basket analysis  is the use of association techniques to fi nd groups of 
items that tend to occur together in transactions, typically supermarket checkout 
data. For many retailers, this is the only source of sales information that is available 
for data mining. For example, automated analysis of checkout data may uncover 
the fact that customers who buy beer also buy chips, a discovery that could be 
signifi cant from the supermarket operator ’ s point of view (although rather an 
obvious one that probably does not need a data mining exercise to discover). Or 
it may come up with the fact that on Thursdays, customers often purchase diapers 
and beer together, an initially surprising result that, on refl ection, makes some 
sense as young parents stock up for a weekend at home. Such information could 
be used for many purposes: planning store layouts, limiting special discounts to 
just one of a set of items that tend to be purchased together, offering coupons for 
a matching product when one of them is sold alone, and so on. There is enormous 
added value in being able to identify individual customer ’ s sales histories. In fact, 
this value is leading to a proliferation of discount cards or  “ loyalty ”  cards that 
allow retailers to identify individual customers whenever they make a purchase; 
the personal data that results will be far more valuable than the cash value of the 
discount. Identifi cation of individual customers not only allows historical analysis 
of purchasing patterns but also permits precisely targeted special offers to be 
mailed out to prospective customers. 

 This brings us to direct marketing, another popular domain for data mining. 
Promotional offers are expensive and have an extremely low — but highly profi t-
able — response rate. Any technique that allows a promotional mailout to be more 
tightly focused, achieving the same or nearly the same response from a much 
smaller sample, is valuable. Commercially available databases containing demo-
graphic information based on ZIP codes that characterize the associated neigh-
borhood can be correlated with information on existing customers to fi nd a 
socioeconomic model that predicts what kind of people will turn out to be actual 
customers. This model can then be used on information gained in response to an 
initial mailout, where people send back a response card or call an 800 number 
for more information, to predict likely future customers. Direct mail companies 
have the advantage over shopping mall retailers of having complete purchasing 
histories for each individual customer and can use data mining to determine those 
likely to respond to special offers. Targeted campaigns are cheaper than mass-
marketed campaigns because companies save money by sending offers only to 
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those likely to want the product. Machine learning can help companies to fi nd 
the targets.  

  1.3.6     Other Applications 

 There are countless other applications of machine learning. We briefl y mention a 
few more areas to illustrate the breadth of what has been done. 

 Sophisticated manufacturing processes often involve tweaking control param-
eters. Separating crude oil from natural gas is an essential prerequisite to oil refi ne-
ment, and controlling the separation process is a tricky job. British Petroleum used 
machine learning to create rules for setting the parameters. This now takes just 
10 minutes, whereas previously human experts took more than a day. Westing-
house faced problems in its process for manufacturing nuclear fuel pellets and 
used machine learning to create rules to control the process. This was reported 
to save the company more than $10 million per year (in 1984). The Tennessee 
printing company R. R. Donnelley applied the same idea to control rotogravure 
printing presses to reduce artifacts caused by inappropriate parameter settings, 
reducing the number of artifacts from more than 500 each year to fewer 
than 30. 

 In the realm of customer support and service, we have already described adju-
dicating loans and marketing and sales applications. Another example arises when 
a customer reports a telephone problem and the company must decide what kind 
of technician to assign to the job. An expert system developed by Bell Atlantic in 
1991 to make this decision was replaced in 1999 by a set of rules acquired using 
machine learning, which saved more than $10 million per year by making fewer 
incorrect decisions. 

 There are many scientifi c applications. In biology, machine learning is used to 
help identify the thousands of genes within each new genome. In biomedicine, 
it is used to predict drug activity by analyzing not just the chemical properties of 
drugs but also their three-dimensional structure. This accelerates drug discovery 
and reduces its cost. In astronomy, machine learning has been used to develop a 
fully automatic cataloging system for celestial objects that are too faint to be seen 
by visual inspection. In chemistry, it has been used to predict the structure of 
certain organic compounds from magnetic resonance spectra. In all these applica-
tions, machine learning techniques have attained levels of performance — or should 
we say skill? — that rival or surpass human experts. 

 Automation is especially welcome in situations involving continuous monitor-
ing, a job that is time consuming and exceptionally tedious for humans. Ecologic 
applications include the oil spill monitoring described earlier. Some other applica-
tions are rather less consequential — for example, machine learning is being used 
to predict preferences for TV programs based on past choices and advise viewers 
about the available channels. Still others may save lives. Intensive care patients 
may be monitored to detect changes in variables that cannot be explained by 
circadian rhythm, medication, and so on, raising an alarm when appropriate. 



Finally, in a world that relies on vulnerable networked computer systems and is 
increasingly concerned about cyber security, machine learning is used to detect 
intrusion by recognizing unusual patterns of operation.   

  1.4     MACHINE LEARNING AND STATISTICS 
 What ’ s the difference between machine learning and statistics? Cynics, looking 
wryly at the explosion of commercial interest (and hype) in this area, equate data 
mining to statistics plus marketing. In truth, you should not look for a dividing 
line between machine learning and statistics because there is a continuum — and 
a multidimensional one at that — of data analysis techniques. Some derive from the 
skills taught in standard statistics courses, and others are more closely associated 
with the kind of machine learning that has arisen out of computer science. His-
torically, the two sides have had rather different traditions. If forced to point to a 
single difference of emphasis, it might be that statistics has been more concerned 
with testing hypotheses, whereas machine learning has been more concerned 
with formulating the process of generalization as a search through possible hypoth-
eses. But this is a gross oversimplifi cation: statistics is far more than hypothesis 
testing, and many machine learning techniques do not involve any searching 
at all. 

 In the past, similar methods have developed in parallel in machine learning 
and statistics. One is decision tree induction. Four statisticians (Breiman et   al. 
1984) published a book,  Classifi cation and Regression Trees,  in the mid-1980s, 
and throughout the 1970s and early 1980s a prominent machine learning 
researcher, J. Ross Quinlan, was developing a system for inferring classifi cation 
trees from examples. These two independent projects produced similar methods 
for generating trees from examples, and the researchers only became aware of 
one another ’ s work much later. A second area in which similar methods have 
arisen involves the use of nearest-neighbor methods for classifi cation. These are 
standard statistical techniques that have been extensively adapted by machine 
learning researchers, both to improve classifi cation performance and to make the 
procedure more effi cient computationally. 

 But now the two perspectives have converged. The techniques we will examine 
in this book incorporate a great deal of statistical thinking. From the beginning, 
when constructing and refi ning the initial example set, standard statistical methods 
apply: visualization of data, selection of attributes, discarding outliers, and so on. 
Most learning algorithms use statistical tests when constructing rules or trees and 
for correcting models that are  “ overfi tted, ”  in that they depend too strongly on 
the details of the particular examples used to produce them (we have already seen 
an example of this in the two decision trees of  Figure 1.3  for the labor negotia-
tions problem). Statistical tests are used to validate machine learning models and 
to evaluate machine learning algorithms. In our study of practical techniques for 
data mining, we will learn a great deal about statistics.  
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  1.5     GENERALIZATION AS SEARCH 
 One way of visualizing the problem of learning — and one that distinguishes it from 
statistical approaches — is to imagine a search through a space of possible concept 
descriptions for one that fi ts the data. Although the idea of generalization as search 
is a powerful conceptual tool for thinking about machine learning, it is not essen-
tial for understanding the practical methods described here. That is why this 
section is considered optional. 

 Suppose, for defi niteness, that  concepts  — the result of learning — are expressed 
as rules such as the ones given for the weather problem in  Section 1.2  (although 
other concept description languages would do just as well). Suppose that we list 
all possible sets of rules and then look for ones that satisfy a given set of examples. 
A big job? Yes. An  infi nite  job? At fi rst glance it seems so because there is no limit 
to the number of rules there might be. But actually the number of possible rule 
sets is fi nite. Note fi rst that each individual rule is no greater than a fi xed maximum 
size, with at most one term for each attribute: for the weather data of  Table 1.2  
this involves four terms in all. Because the number of possible rules is fi nite, the 
number of possible rule  sets  is fi nite, too, although extremely large. However, 
we ’ d hardly be interested in sets that contained a very large number of rules. In 
fact, we ’ d hardly be interested in sets that had more rules than there are examples 
because it is diffi cult to imagine needing more than one rule for each example. 
So if we were to restrict consideration to rule sets smaller than that, the problem 
would be substantially reduced, although still very large. 

 The threat of an infi nite number of possible concept descriptions seems more 
serious for the second version of the weather problem in  Table 1.3  because these 
rules contain numbers. If they are real numbers, you can ’ t enumerate them, even 
in principle. However, on refl ection, the problem again disappears because the 
numbers really just represent breakpoints in the numeric values that appear in the 
examples. For instance, consider the  temperature  attribute in  Table 1.3 . It involves 
the numbers 64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, and 85 — 12 different 
numbers. There are 13 possible places in which we might want to put a break-
point for a rule involving temperature. The problem isn ’ t infi nite after all. 

 So the process of generalization can be regarded as a search through an enor-
mous, but fi nite, search space. In principle, the problem can be solved by enu-
merating descriptions and striking out those that do not fi t the examples presented. 
A positive example eliminates all descriptions that it does not match, and a nega-
tive one eliminates those it does match. With each example, the set of remaining 
descriptions shrinks (or stays the same). If only one is left, it is the target descrip-
tion — the target concept. 

 If several descriptions are left, they may still be used to classify unknown 
objects. An unknown object that matches all remaining descriptions should be 
classifi ed as matching the target; if it fails to match any description, it should be 
classifi ed as being outside the target concept. Only when it matches some descrip-
tions, but not others, is there ambiguity. In this case, if the classifi cation of the 



unknown object were revealed, it would cause the set of remaining descriptions 
to shrink because rule sets that classifi ed the object the wrong way would be 
rejected. 

  1.5.1     Enumerating the Concept Space 

 Regarding it as search is a good way of looking at the learning process. However, 
the search space, although fi nite, is extremely big, and it is generally impractical 
to enumerate all possible descriptions and then see which ones fi t. In the weather 
problem there are 4  ×  4  ×  3  ×  3  ×  2  =  288 possibilities for each rule. There are 
four possibilities for the  outlook  attribute:  sunny, overcast, rainy,  or it may not 
participate in the rule at all. Similarly, there are four for  temperature,  three for 
 weather  and  humidity,  and two for the class. If we restrict the rule set to contain 
no more than 14 rules (because there are 14 examples in the training set), there 
are around 2.7  ×  10  34   possible different rule sets. That ’ s a lot to enumerate, espe-
cially for such a patently trivial problem. 

 Although there are ways of making the enumeration procedure more feasible, 
a serious problem remains: in practice, it is rare for the process to converge on a 
unique acceptable description. Either many descriptions are still in the running 
after the examples are processed or the descriptors are all eliminated. The fi rst 
case arises when the examples are not suffi ciently comprehensive to eliminate all 
possible descriptions except for the  “ correct ”  one. In practice, people often want 
a single  “ best ”  description, and it is necessary to apply some other criteria to select 
the best one from the set of remaining descriptions. The second problem arises 
either because the description language is not expressive enough to capture the 
actual concept or because of noise in the examples. If an example comes in with 
the  “ wrong ”  classifi cation because of an error in some of the attribute values or 
in the class that is assigned to it, this will likely eliminate the correct description 
from the space. The result is that the set of remaining descriptions becomes 
empty. This situation is very likely to happen if the examples contain any noise 
at all, which inevitably they do except in artifi cial situations. 

 Another way of looking at generalization as search is to imagine it, not as a 
process of enumerating descriptions and striking out those that don ’ t apply, but 
as a kind of hill-climbing in description space to fi nd the description that best 
matches the set of examples according to some prespecifi ed matching criterion. 
This is the way that most practical machine learning methods work. However, 
except in the most trivial cases, it is impractical to search the whole space exhaus-
tively; most practical algorithms involve heuristic search and cannot guarantee to 
fi nd the optimal description.  

  1.5.2     Bias 

 Viewing generalization as a search in a space of possible concepts makes it clear 
that the following are most important decisions in a machine learning system.
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    ■      The concept description language.  
   ■      The order in which the space is searched.  
   ■      The way that overfi tting to the particular training data is avoided.    

 These three properties are generally referred to as the  bias  of the search and are 
called  language bias, search bias,  and  overfi tting-avoidance bias.  You bias the 
learning scheme by choosing a language in which to express concepts, by search-
ing in a particular way for an acceptable description, and by deciding when the 
concept has become so complex that it needs to be simplifi ed. 

  Language Bias 
 The most important question for language bias is whether the concept description 
language is universal, or whether it imposes constraints on what concepts can be 
learned. If you consider the set of all possible examples, a concept is really just a 
division of it into subsets. In the weather example, if you were to enumerate all 
possible weather conditions, the  play  concept is a subset of possible weather 
conditions. A  “ universal ”  language is one that is capable of expressing every pos-
sible subset of examples. In practice, the set of possible examples is generally 
huge, and in this respect our perspective is a theoretic, not a practical, one. 

 If the concept description language permits statements involving logical 
 or,  that is,  disjunctions,  then any subset can be represented. If the description 
language is rule based, disjunction can be achieved by using separate rules. 
For example, one possible concept representation is just to enumerate the 
examples:

    If outlook  =  overcast and temperature  =  hot and humidity  =  high   
            and windy  =  false then play  =  yes   
   If outlook  =  rainy and temperature  =  mild and humidity  =  high   
            and windy  =  false then play  =  yes   
   If outlook  =  rainy and temperature  =  cool and humidity  =  normal   
            and windy  =  false then play  =  yes   
   If outlook  =  overcast and temperature  =  cool and humidity  =  normal   
            and windy  =  true then play  =  yes   
    . . .    
   If none of the above then play  =  no     

 This is not a particularly enlightening concept description; it simply records 
the positive examples that have been observed and assumes that all the rest are 
negative. Each positive example is given its own rule, and the concept is the 
disjunction of the rules. Alternatively, you could imagine having individual rules 
for each of the negative examples, too — an equally uninteresting concept. In 
either case, the concept description does not perform any generalization; it simply 
records the original data. 

 On the other hand, if disjunction is  not  allowed, some possible concepts — sets 
of examples — may not be able to be represented at all. In that case, a machine 
learning scheme may simply be unable to achieve good performance. 



 Another kind of language bias is that obtained from knowledge of the particu-
lar domain being used. For example, it may be that some combinations of attribute 
values can never happen. This would be the case if one attribute implied another. 
We saw an example of this when considering the rules for the soybean problem 
described earlier. Then, it would be pointless to even consider concepts that 
involved redundant or impossible combinations of attribute values. Domain knowl-
edge can be used to cut down the search space. Knowledge is power: a little goes 
a long way, and even a small hint can reduce the search space dramatically.  

  Search Bias 
 In realistic data mining problems, there are many alternative concept descriptions 
that fi t the data, and the problem is to fi nd the  “ best ”  one according to some 
criterion — usually simplicity. We use the term  fi t  in a statistical sense; we seek 
the best description that fi ts the data reasonably well. Moreover, it is often com-
putationally infeasible to search the whole space and guarantee that the descrip-
tion found really is the best. Consequently, the search procedure is heuristic, and 
no guarantees can be made about the optimality of the fi nal result. This leaves 
plenty of room for bias: different search heuristics bias the search in different 
ways. 

 For example, a learning algorithm might adopt a  “ greedy ”  search for rules by 
trying to fi nd the best rule at each stage and adding it in to the rule set. However, 
it may be that the best  pair  of rules is not just the two rules that are individually 
found to be the best. Or when building a decision tree, a commitment to split 
early on using a particular attribute might turn out later to be ill considered in 
light of how the tree develops below that node. To get around these problems, a 
 beam search  could be used in which irrevocable commitments are not made but 
instead a set of several active alternatives — whose number is the  beam width  — are 
pursued in parallel. This will complicate the learning algorithm considerably but 
has the potential to avoid the myopia associated with a greedy search. Of course, 
if the beam width is not large enough, myopia may still occur. There are more 
complex search strategies that help to overcome this problem. 

 A more general and higher-level kind of search bias concerns whether the 
search is done by starting with a general description and refi ning it or by starting 
with a specifi c example and generalizing it. The former is called a  general-to-
specifi c  search bias, the latter a  specifi c-to-general  one. Many learning algorithms 
adopt the former policy, starting with an empty decision tree, or a very general 
rule, and specializing it to fi t the examples. However, it is perfectly possible to 
work in the other direction. Instance-based methods start with a particular example 
and see how it can be generalized to cover nearby examples in the same class.  

  Overfi tting-Avoidance Bias 
 Overfi tting-avoidance bias is often just another kind of search bias. But because it 
addresses a rather special problem, we treat it separately. Recall the disjunction 
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problem described previously. The problem is that if disjunction is allowed, 
useless concept descriptions that merely summarize the data become possible, 
whereas if it is prohibited, some concepts are unlearnable. To get around this 
problem, it is common to search the concept space starting with the simplest 
concept descriptions and proceeding to more complex ones: simplest-fi rst order-
ing. This biases the search toward simple concept descriptions. 

 Using a simplest-fi rst search and stopping when a suffi ciently complex concept 
description is found is a good way of avoiding overfi tting. It is sometimes called 
 forward pruning  or  prepruning  because complex descriptions are pruned away 
before they are reached. The alternative,  backward pruning  or  postpruning,  is 
also viable. Here, we fi rst fi nd a description that fi ts the data well and then prune 
it back to a simpler description that also fi ts the data. This is not as redundant as 
it sounds: often the only way to arrive at a simple theory is to fi nd a complex one 
and then simplify it. Forward and backward pruning are both a kind of overfi tting-
avoidance bias. 

 In summary, although generalization as search is a nice way to think about the 
learning problem, bias is the only way to make it feasible in practice. Different 
learning algorithms correspond to different concept description spaces searched 
with different biases. This is what makes it interesting: different description 
languages and biases serve some problems well and other problems badly. There 
is no universal  “ best ”  learning method — as every teacher knows!    

  1.6     DATA MINING AND ETHICS 
 The use of data — particularly data about people — for data mining has serious 
ethical implications, and practitioners of data mining techniques must act respon-
sibly by making themselves aware of the ethical issues that surround their par-
ticular application. 

 When applied to people, data mining is frequently used to discriminate — who 
gets the loan, who gets the special offer, and so on. Certain kinds of discrimina-
tion — racial, sexual, religious, and so on — are not only unethical but also illegal. 
However, the situation is complex: everything depends on the application. Using 
sexual and racial information for medical diagnosis is certainly ethical, but using 
the same information when mining loan payment behavior is not. Even when 
sensitive information is discarded, there is a risk that models will be built that rely 
on variables that can be shown to substitute for racial or sexual characteristics. 
For example, people frequently live in areas that are associated with particular 
ethnic identities, so using an area code in a data mining study runs the risk of 
building models that are based on race — even though racial information has been 
explicitly excluded from the data. 

 It is widely accepted that before people make a decision to provide personal 
information they need to know how it will be used and what it will be used 
for, what steps will be taken to protect its confi dentiality and integrity, what the 



consequences of supplying or withholding the information are, and any rights of 
redress they may have. Whenever such information is collected, individuals should 
be told these things — not in legalistic small print but straightforwardly in plain 
language they can understand. 

 The potential use of data mining techniques means that the ways in which a 
repository of data can be used may stretch far beyond what was conceived when 
the data was originally collected. This creates a serious problem: it is necessary 
to determine the conditions under which the data was collected and for what 
purposes it may be used. Does the ownership of data bestow the right to use it 
in ways other than those purported when it was originally recorded? Clearly in 
the case of explicitly collected personal data it does not. But in general the situa-
tion is complex. 

 Surprising results emerge from data mining. For example, it has been reported 
that one of the leading consumer groups in France has found that people with 
red cars are more likely to default on their car loans. What is the status of such a 
 “ discovery ” ? What information is it based on? Under what conditions was that 
information collected? In what ways is it ethical to use it? Clearly, insurance com-
panies are in the business of discriminating among people based on stereotypes —
 young males pay heavily for automobile insurance — but such stereotypes are not 
based solely on statistical correlations; they also involve commonsense knowledge 
about the world. Whether the preceding fi nding says something about the kind 
of person who chooses a red car, or whether it should be discarded as an irrele-
vancy is a matter for human judgment based on knowledge of the world, rather 
than on purely statistical criteria. 

 When presented with data, you need to ask who is permitted to have access 
to it, for what purpose it was collected, and what kind of conclusions is it legiti-
mate to draw from it. The ethical dimension raises tough questions for those 
involved in practical data mining. It is necessary to consider the norms of the 
community that is used to dealing with the kind of data involved, standards that 
may have evolved over decades or centuries but ones that the information special-
ist may not know. For example, did you know that in the library community, it is 
taken for granted that the privacy of readers is a right that is jealously protected? 
If you call your university library and ask who has such-and-such a textbook out 
on loan, they will not tell you. This prevents a student from being subjected to 
pressure from an irate professor to yield access to a book that she desperately 
needs for her latest grant application. It also prohibits inquiry into the dubious 
recreational reading tastes of the university ethics committee chairperson. Those 
who build, say, digital libraries may not be aware of these sensitivities and might 
incorporate data mining systems that analyze and compare individuals ’  reading 
habits to recommend new books — perhaps even selling the results to publishers! 

 In addition to community standards for the use of data, logical and scientifi c 
standards must be adhered to when drawing conclusions from it. If you do come 
up with conclusions (such as red car owners being greater credit risks), you need 
to attach caveats to them and back them up with arguments other than purely 
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statistical ones. The point is that data mining is just a tool in the whole process: 
It is people who take the results, along with other knowledge, and decide what 
action to apply. 

 Data mining prompts another question, which is really a political one: To what 
use are society ’ s resources being put? We mentioned previously the application 
of data mining to basket analysis, where supermarket checkout records are ana-
lyzed to detect associations among items that people purchase. What use should 
be made of the resulting information? Should the supermarket manager place the 
beer and chips together, to make it easier for shoppers, or farther apart, making 
it less convenient for them, maximizing their time in the store, and therefore 
increasing their likelihood of being drawn into unplanned further purchases? 
Should the manager move the most expensive, most profi table diapers near the 
beer, increasing sales to harried fathers of a high-margin item and add further 
luxury baby products nearby? 

 Of course, those who use advanced technologies should consider the wisdom 
of what they are doing. If  data  is characterized as recorded facts, then  informa-
tion  is the set of patterns, or expectations, that underlie the data. You could go 
on to defi ne  knowledge  as the accumulation of your set of expectations and 
 wisdom  as the value attached to knowledge. Although we will not pursue it 
further here, this issue is worth pondering. 

 As we saw at the very beginning of this chapter, the techniques described in 
this book may be called on to help make some of the most profound and intimate 
decisions that life presents. Data mining is a technology that we need to take 
seriously.  

  1.7     RESOURCES 
 This section describes papers, books, and other resources relevant to the material 
covered in this chapter. The human  in vitro  fertilization research mentioned in 
the opening of this chapter was undertaken by the Oxford University Computing 
Laboratory, and the research on cow culling was performed in the Computer 
Science Department at the University of Waikato, New Zealand. 

 The example of the weather problem is from Quinlan (1986) and has been 
widely used to explain machine learning schemes. The corpus of example prob-
lems mentioned in the introduction to  Section 1.2  is available from Blake et   al. 
(1998). The contact lens example is from Cendrowska (1998), who introduced 
the PRISM rule-learning algorithm. The iris dataset was described in a classic early 
paper on statistical inference (Fisher 1936). The labor negotiations data is from 
the  Collective Bargaining Review,  a publication of Labour Canada issued by the 
Industrial Relations Information Service (BLI 1988), and the soybean problem was 
fi rst described by Michalski and Chilausky (1980). 

 Some of the applications in  Section 1.3  are covered in an excellent paper that 
gives plenty of other applications of machine learning and rule induction (Langley 



 &  Simon 1995); another source of fi elded applications is a special issue of the 
 Machine Learning Journal  (Kohavi  &  Provost 1998). The loan company applica-
tion is described in more detail by Michie (1989), the oil slick detector is from 
Kubat et   al. (1998), the electric load forecasting work is by Jabbour et   al. (1988), 
and the application to preventative maintenance of electromechanical devices is 
from Saitta and Neri (1998). Fuller descriptions of some of the other projects 
mentioned in  Section 1.3  (including the fi gures of dollars saved and related litera-
ture references) appear at the websites of the Alberta Ingenuity Centre for Machine 
Learning and MLnet, a European network for machine learning. 

 The book  Classifi cation and Regression Trees  mentioned in  Section 1.4  is by 
Breiman et   al. (1984), and the independently derived but similar scheme of Quinlan 
was described in a series of papers that eventually led to a book (Quinlan 
1993). 

 The fi rst book on data mining appeared in 1991 (Piatetsky-Shapiro  &  Frawley 
1991), a collection of papers presented at a workshop on knowledge discovery 
in databases in the late 1980s. Another book from the same stable has appeared 
since (Fayyad et   al. 1996) from a 1994 workshop. There followed a rash of 
business-oriented books on data mining, focusing mainly on practical aspects of 
how it can be put into practice with only superfi cial descriptions of the technol-
ogy that underlies the methods used. They are valuable sources of applications 
and inspiration. For example, Adriaans and Zantige (1996) from Syllogic, a Euro-
pean systems and database consultancy, provide an early introduction to data 
mining. Berry and Linoff (1997), from a Pennsylvania-based company specializing 
in data warehousing and data mining, give an excellent and example-studded 
review of data mining techniques for marketing, sales, and customer support. The 
work of Cabena et   al. (1998), written by people from fi ve international IBM labo-
ratories, presents an overview the data mining process with many examples of 
real-world applications. Dhar and Stein (1997) give a business perspective on data 
mining and include broad-brush, popularized reviews of many of the technologies 
involved. Groth (1998), working for a provider of data mining software, gives a 
brief introduction to data mining and then a fairly extensive review of data mining 
software products; the book includes a CD containing a demo version of his 
company ’ s product. Weiss and Indurkhya (1998) look at a wide variety of statisti-
cal techniques for making predictions from what they call  “ big data. ”  Han and 
Kamber (2001) cover data mining from a database perspective, focusing on the 
discovery of knowledge in large corporate databases. Finally, Hand et   al. (2001) 
produced an interdisciplinary book on data mining from an international group 
of authors who are well respected in the fi eld. 

 Books on machine learning, on the other hand, tend to be academic texts 
suited for use in university courses rather than practical guides. Mitchell (1997) 
wrote an excellent book that covers many techniques of machine learning, 
including some — notably genetic algorithms and reinforcement learning — that are 
not covered here. Langley (1996) offers another good text. Although the previ-
ously mentioned book by Quinlan (1993) concentrates on a particular learning 
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algorithm, C4.5, it is a good introduction to some of the problems and techniques 
of machine learning. An excellent book on machine learning from a statistical 
perspective is from Hastie et   al. (2001). This is a theoretically oriented work and 
is beautifully produced with apt and telling illustrations. 

 Pattern recognition is a topic that is closely related to machine learning, and 
many of the same techniques apply. Duda et   al. (2001) offer the second edition 
of a classic and successful book on pattern recognition (Duda  &  Hart 1973). Ripley 
(1996) and Bishop (1995) describe the use of neural networks for pattern 
recognition. Data mining with neural networks is the subject of a book by Bigus 
(1996) of IBM, which features the IBM Neural Network Utility Product that he 
developed. 

 There is a great deal of current interest in support vector machines. Cristianini 
and Shawe-Taylor (2000) give a nice introduction, and a follow-up work general-
izes this to cover additional algorithms, kernels, and solutions with applications 
to pattern discovery problems in fi elds such as bioinformatics, text analysis, and 
image analysis (Shawe-Taylor  &  Cristianini 2004). Sch ö lkopf and Smola (2002) 
provide a comprehensive introduction to support vector machines and related 
kernel methods by two young researchers who did their PhD research in this 
rapidly developing area.       


