
 CHAPTER 

2  Data Acquisition 
and Integration 

   2.1     INTRODUCTION 
 This chapter fi rst provides a brief review of data sources and types of variables 
from the point of view of data mining. Then it presents the most common proce-
dures of data rollup and aggregation, sampling, and partitioning.  

  2.2     SOURCES OF DATA 
 In most organizations today, data is stored in relational databases. The quality and 
utility of the data, as well as the amount of effort needed to transform the data to 
a form suitable for data mining, depends on the types of the applications the 
databases serve. These relational databases serve as data repositories for the fol-
lowing applications. 

  2.2.1     Operational Systems 

 Operational systems process the transactions that make an organization work. The 
data from these systems is, by nature, transient and keeps accumulating in the 
repository. A typical example of these systems is any banking transaction process-
ing system that keeps records of opened and closed accounts, deposits, withdraw-
als, balances, and all other values related to the money moving among accounts, 
clients, and the outside world. Data extracted from such operational systems is 
the most  raw  form of data, in the sense that it has not been transformed, cleansed, 
or changed. It may contain errors as a result of data entry procedures or applica-
tions and usually has many missing values. It is also usually scattered over several 
tables and fi les. However, it is the most honest representation of the status of any 
business.  
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  2.2.2     Data Warehouses and Data Marts 

 Data warehouses and data marts were conceived as a means to facilitate the com-
pilation of regular reports on the status of the business by continuously collecting, 
cleaning, and summarizing the core data of the organization. Data warehouses 
provide a clean and organized source of data for data mining. In most cases, 
however, data warehouses were not created to prepare data for data modelers; 
they were rather created with a certain set of reporting functions in mind. There-
fore, data residing in them might have been augmented or processed in a special 
way to facilitate those functions. Ideally, a specialized data mart should be created 
to house the data needed for data mining modeling and scoring processes.  

  2.2.3     Online Analytical Processing Applications 

 Online analytical processing (OLAP) and similar software are often given the name 
 business intelligence  tools. These applications reside in the data warehouse, or 
have their own data warehouse, and provide a graphical interface to navigate, 
explore, and  “ slice and dice ”  the data. The data structures that OLAP applications 
operate on are called  cubes.  They also provide comprehensive reporting capa-
bilities. OLAP systems could be a source of data for data mining because of the 
interactive exploration capabilities that they offer the user. Therefore, the user 
would fi nd the interesting data elements related to the problem through OLAP 
applications and then apply data mining modeling for prediction. 

 Alternatively, data mining can offer the identifi cation of the signifi cant variables 
that govern the behavior of some business measure (such as profi t), and then 
OLAP can use these variables (as dimensions) to navigate and get qualitative 
insight into existing relationships. Data extracted from OLAP cubes may not be 
granular enough for data mining. This is because continuous variables are usually 
 binned  before they can be used as dimensions in OLAP cubes. This binning 
process results in the loss of some information, which may have a signifi cant 
impact on the performance of data mining algorithms.  

  2.2.4     Surveys 

 Surveys are perhaps the most expensive source of data because they require direct 
interaction with customers. Surveys collect data through different communication 
channels with customers, such as mail, email, interviews, and forms on websites. 
There are many anecdotes about the accuracy and validity of the data collected 
from the different forms of surveys. However, they all share the following two 
common features:

   1.     The number of customers who participate in the survey is usually limited 
because of the cost and the number of customers willing to participate.  

  2.     The questions asked in the survey can be designed to directly address the 
objective of the planned model. For example, if the objective is to market new 



products, the survey would ask customers about their preferences in these 
products, whether they would buy them, and what price would they pay for 
them.    

 These two points highlight the fact that, if well designed and executed, surveys 
are indeed the most accurate representation of possible customer behavior. 
However, they usually generate a limited amount of data because of the cost 
involved.  

  2.2.5     Household and Demographic Databases 

 In most countries, databases are commercially available that contain detailed 
information on consumers of different products and services. The most common 
type is demographic databases based on a national census, where the general 
demographic profi le of each residential area is surveyed and summarized. Data 
obtained from such database providers is usually clean and information rich. Their 
only limitation is that data is not provided on the individual customer or record 
level but rather is averaged over a group of customers, for example, on the level 
of a postal (ZIP) code. Such limitations are usually set by privacy laws aimed at 
protecting individuals from abuse of such data. 

 The use of averaged data in models could lead to  diluting  the model ’ s ability 
to accurately defi ne a target group. For example, extensive use of census-like 
variables in a customer segmentation model would eventually lead to a model that 
clusters the population on the basis of the used census demographics and not in 
relation to the originally envisaged rate of usage or buying habits of the planned 
products or services. 

 It is not uncommon that analysts collect data from more than one source to 
form the initial mining view and for the scoring of mining models.   

  2.3     VARIABLE TYPES 
 Designers of applications that use databases and different fi le systems attempt 
to optimize their applications in terms of the space required to keep the data 
and the speed of processing and accessing the data. Because of these consider-
ations, the data extracted from databases is often not in optimal form from the 
point of view of data mining algorithms. To appreciate this issue, we provide the 
following discussion of the types of variables that most data mining algorithms 
deal with. 

  2.3.1     Nominal Variables 

 Nominal, or  categorical , variables describe values that lack the properties of order, 
scale, or distance between them. For example, the variables representing the type 
of a housing unit can take the categories House, Apartment, or Shared Accom-
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modation. One cannot enforce any meaning of order or scale on these values. 
Other examples include Gender (Male, Female), Account Type (Savings, Check-
ing), and type of Credit Card (VISA, MasterCard, American Express, Diners Club, 
EuroCard, Discover, etc.). 

 From the point of view of data mining algorithms, it is important to retain the 
 lack  of order or scale in categorical variables. Therefore, it is not desirable that a 
category be represented in the data by a series of integers. For example, if the 
type of a house variable is represented by the integers 1 to 4 (1  =  Detached, 2  =  
Semidetached, 3  =  Townhome, 4  =  Bungalow), a numeric algorithm may inadver-
tently add the numbers 1 and 2, resulting implicitly in the erroneous and meaning-
less statement of  “ Detached  +  Semidetached  =  Townhome ” ! Other erroneous, and 
equally meaningless, implications that  “ Bungalow  >  Detached ”  or  “ Bungalow  −  
Semidetached  =  Townhome  −  Detached. ”  The most convenient method of storing 
categorical variables in software applications is to use strings. This should force 
the application to interpret them as nominal variables.  

  2.3.2     Ordinal Variables 

 Ordinal, or  rank  or  ordered scalar , variables are categorical variables with the 
notion of order added to them. For example, we may defi ne the risk levels of 
defaulting on a credit card payment into three levels (Low, Medium, High). We 
can assert the order relationships High  ≥  Medium  ≥  Low. However, we cannot 
establish the notion of scale. In other words, we cannot accurately say that the 
difference between  High  and  Medium  is the same as the difference between 
 Medium  and  Low  levels of risk. 

 Based on the defi nition of ordinal variables, we can realize the problem that 
would arise when such variables are represented by a series of integers. For 
example, in the case of the risk level variable, representing these levels with 
numbers from 1 to 3 such that (Low  =  1, Medium  =  2, High  =  3) would result in 
the imposition of an invalid notion of distance between the different values. In 
addition, this defi nition would impose the defi nition of scale on the values by 
implying that Medium risk is double the risk of Low, and High risk is three times 
the risk of Low. 

 Some ordinal variables come with the scale and distance notions added to 
them. These are best represented by a series of positive integers. They usually 
measure the frequency of occurrence of an event. Examples of such ordinal mea-
sures are number of local telephone calls within a month, number of people using 
a credit card in a week, and number of cars purchased by a prospective customer 
in her or his lifetime. 

 A typical problem, especially in data warehouses, exists in the representation 
of ordinal measures. Some ordinal measures are often subjected to binning to 
reduce the values we need to store and deal with. For example, a data warehouse 
may bin the number of times a customer uses a credit card per month to the 
representation 0 – 5  →  1, 6 – 10  →  2, 11 – 20  →  3, more than 20  →  4. Although this 
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leads to a more compact representation of the variables, it may be detrimental to 
data mining algorithms for two reasons: (1) it reduces the granularity level of the 
data, which may result in a reduction in the predictive model accuracy, and 
(2) it distorts the ordinal nature of the original quantity being measured.  

  2.3.3     Real Measures 

 Real measures, or  continuous variables , are the easiest to use and interpret. 
Continuous variables have all the desirable properties of variables: order, scale, 
and distance. They also have the meanings of zero and negative values defi ned. 
There could be some constraints imposed on the defi nition of continuous vari-
ables. For example, the age of a person cannot be negative and the monthly bill 
of a telephone line cannot be less than the subscription fees. Real measures are 
represented by real numbers, with any reasonably required precision. 

 The use of ratios in constrained continuous variables is sometimes trouble-
some. For example, if we allow the balance of a customer to be negative or 
positive, then the ratio between $  − 10,000.00 and $  − 5,000.00 is the same as that 
between $  + 10,000.00 and $  + 5,000.00. Therefore, some analysts like to distin-
guish between the so-called interval and ratio variables. We do not make that 
distinction here because in most cases the context of the implementation is clear. 
For example, if we wished to use the ratio of balances, we would restrict the bal-
ances to positive values only; if negative values occurred, we would devise another 
measure to signify that fact. 

 With the three types of variable from the mining point of view, the fi rst task 
the analyst should consider, when acquiring the data, is to decide on the type of 
data to be used for each variable depending on its meaning. Of special interest 
are variables that represent  dates  and  times . With the exception of time series 
analysis, dates and times are not useful in their raw form. One of the most effec-
tive methods of dealing with date and time values is to convert them to a  period  
measure, that is, to calculate the  difference  between the values and a fi xed  refer-
ence  value. For example, instead of dealing with the date of opening an account, 
we deal with total tenure as the difference between today ’ s date and the date of 
opening the account. In fact, we use this method every day by referring to the 
age of a person instead of her or his birth date. In this way, we convert dates and 
times to real measures, with some constraint if necessary, as in the case of a 
person ’ s age. (Negative age is not well defi ned!)   

  2.4     DATA ROLLUP 
 The simplest defi nition of data rollup is that we convert categories to variables. 
Let us consider an illustrative example. 

  Table 2.1    shows some records from the transaction table of a bank where 
deposits are denoted by positive amounts and withdrawals are shown as negative 
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amounts. We further assume that we are building the mining view as a  customer 
view . Because the fi rst requirement is to have one, and only one, row per cus-
tomer, we create a new view such that each unique customer ID appears in one 
and only one row. To  roll up  the multiple records on the customer level, we 
create a set of new variables to represent the combination of the account type 
and the month of the transaction. This is illustrated in  Figure 2.1   . The result of 
the rollup is shown in  Table 2.2   . 

  Table 2.1  shows that we managed to aggregate the values of the transactions 
in the different accounts and months into new variables. The only issue is what 
to do when we have more than one transaction per account per month. In this 
case, which is the more realistic one, we have to summarize the data in some 
form. For example, we can calculate the sum of the transactions values, or their 
average, or even create a new set of variables giving the count of such transactions 
for each month – account type combination. 

 It is obvious that this process will lead to the generation of possibly hundreds, 
if not thousands, of variables in any data-rich business applications. Dealing with 
such a large number of fi elds could present a challenge for the data preparation 
and data mining software tools. It is therefore required that we keep the number 

 Table 2.1      A Sample of Banking Transactions  

 Customer ID  Date  Amount  Account Type 

 1100-55555  11Jun2003  114.56  Savings 

 1100-55555  21Jun2003   − 56.78  Checking 

 1100-55555  07Jul2003  359.31  Savings 

 1100-55555  19Jul2003  89.56  Checking 

 1100-55555  03Aug2003  1000.00  Savings 

 1100-55555  17Aug2003   − 1200.00  Checking 

 1100-88888  14June2003  122.51  Savings 

 1100-88888  27June2003  42.07  Checking 

 1100-88888  09July2003   − 146.30  Savings 

 1100-88888  09July2003   − 1254.48  Checking 

 1100-88888  10Aug2003  400.00  Savings 

 1100-88888  11Aug 2003  500.00  Checking 

  . . .  
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 FIGURE 2.1 

  Data rollup.    

Customer ID
1100-55555
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Date
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114.56

–56.78
359.31
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–1200.00
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Savings
Checking
Savings
Checking
Savings
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Rolled-up DataTransaction Data

1100-55555
Checking—June 2003

–56.78

{

 Table 2.2      Result of Rolling up the Data of  Table 2.1   

 Cust. ID  C-6  C-7  C-8  S-6  S-7  S-8 

 1100-55555   − 56.78  89.56   − 1200.00  114.56  359.30  1000.00 

 1100-88888  42.07   − 1254.00  500.00  122.51   − 146.30  400.00 

of these new fi elds to a minimum while keeping as much information about the 
nature of the data as possible. Unfortunately, there is no magic recipe to achieve 
this balance. However, a closer look at the preceding data reveals that the key to 
controlling the number of new variables is to decide on the level of granularity 
required to perform the rollup. For example, is it necessary to roll up the transac-
tions of each month, or is it enough to roll up the data per quarter? Similarly, in 
our simplifi ed case, we had only two categories for the account type, but typically, 
there would be many more categories. Then comes the question of which 
categories we can group together, or even ignore, to reduce the number of new 
variables. 

 In the end, even with careful selection of the categories and resolution of 
combining the different categories to form new variables, we usually end up with 
a relatively large number of variables, which most implementations of data mining 
algorithms cannot handle adequately. However, we should not worry too much 
about this problem for the moment because data reduction is a basic step in our 
planned approach. In later chapters, we will investigate techniques to reduce the 
number of variables. 

 In the last example demonstrating the rollup process, we performed the rollup 
on the level of two variables: the account type and the transaction month. This 
is usually called  multilevel rollup . On the other hand, if we had had only one type 
of account, say only savings, then we could have performed a simpler rollup using 
only the transaction month as the summation variable. This type of rollup is called 
 simple rollup . In fact, multilevel rollup is only an aggregation of several simple 



44  CHAPTER 2 Data Acquisition and Integration

rollups on the row level, which is the customer ID in our example. Therefore, 
data preparation procedures, in either SAS or SQL, can use this property to 
simplify the implementation by performing several simple rollups for each com-
bination of the summarization variables and combining them. This is the approach 
we will adopt in developing our macro to demonstrate the rollup of our sample 
dataset. 

 Now let us describe how to perform the rollup operation using SAS. We will 
do this using our simple example fi rst and then generalize the code using macros 
to facilitate its use with other datasets. We stress again that in writing the code 
we preferred to keep the code simple and readable at the occasional price of 
effi ciency of execution, and the use of memory resources. You are welcome to 
modify the code to make it more effi cient or general as required. 

 We use  Table 2.1  to create the dataset as follows:

    Data Transaction;   
   Informat CustID $10.;   
   Informat TransDate date9.;   
   format TransDate Date9.;   
   input CustID $ TransDate Amount AccountType$; Cards;   
   55555                        11Jun2003            114.56         Savings   
   55555                        12Jun2003            119.56         Savings   
   55555                        21Jun2003             − 56.78         Checking   
   55555                        07Jul2003            359.31         Savings   
   55555                        19Jul2003               89.56         Checking   
   55555                        03Aug2003         1000.00         Savings   
   66666                        22Feb2003            549.56         Checking   
   77777                        03Dec2003            645.21         Savings   
   55555                        17Aug2003       − 1200.00         Checking   
   88888                        14Jun2003            122.51         Savings   
   88888                        27Jun2003               42.07         Checking   
   88888                        09Jul2003          − 146.30         Savings   
   88888                        09Jul2003       − 1254.48         Checking   
   88888                        10Aug2003            400.00         Savings   
   88888                        11Aug2003            500.00         Checking   
   ;   
   run;     

 The next step is to create the month fi eld using the SAS  Month  function:

    data Trans;   
      set Transaction;   
         Month  =  month(TransDate);   
   run;     

 Then we accumulate the transactions into a new fi eld to represent the balance in 
each account:

    proc sort data = Trans;   
                     by CustID month AccountType;   
   run;     
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     / *  Create cumulative balances for each of the accounts  * /   
   data Trans2;   
      retain Balance 0;   
      set Trans;   
         by CustID month AccountType;   
         if fi rst.AccountType then Balance = 0;   
            Balance  =  Balance  +  Amount;   
            if last.AccountType then output;   
            drop amount;   
   run;     

 Finally, we use  PROC TRANSPOSE  to roll up the data in each account type and 
merge the two resulting datasets into the fi nal fi le:

    / *  Prepare for the transpose  * /   
   proc sort data = trans2;   
         by CustID accounttype;   
         run;     

     proc transpose data  = Trans2 out = rolled _ C prefi x = C _ ;   
         by CustID accounttype;   
   ID month ;   
   var balance ;   
   where AccountType =  ' Checking ' ;   
   run;     

     proc transpose data  = Trans2 out = rolled _ S prefi x = S _ ;   
   by CustID accounttype;   
   ID month ;   
   var balance ;   
   where AccountType =  ' Savings ' ;   
   run;     

     data Rollup;   
      merge Rolled _ S Rolled _ C;   
      by CustID;   
      drop AccountType  _ Name _ ;   
   run;     

 To pack this procedure in a general macro using the combination of two vari-
ables, one for transaction categories and one for time, we simply replace the  Month  
variable with a  TimeVar,  the  customer ID  with  IDVar,  and the  AccountType  with 
 TypeVar.  We also specify the number of characters to be used from the category 
variable to prefi x the time values. Finally, we replace the two repeated  TRANSPOSE  
code segments with a  %do  loop that iterates over the categories of the  TypeVar  
(which requires extracting these categories and counting them). The following 
steps detail the resulting macro. 
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     Step 1 
 Sort the transaction fi le using the  ID, Time,  and  Type  variables:

    proc sort data =  & TDS;   
   by  & IDVar  & TimeVar  & TypeVar;   
   run;      

  Step 2 
 Accumulate the values over time to a temporary   _ Tot  variable in the temporary 
table  Temp1  (see  Table 2.3   ). Then sort  Temp1  using the  ID  and the  Type  variables:

    data Temp1;   
   retain  _ TOT 0;   
   set  & TDS;   
   by  & IDVar  & TimeVar  & TypeVar;   
   if fi rst. & TypeVar then  _ TOT = 0;   
    _ TOT  =   _ TOT  +   & Value;   
   if last. & TypeVar then output;   
   drop  & Value;   
          run;   
   proc sort data = Temp1;   
   by  & IDVar  & TypeVar;   
   run;      

  Step 3 
 Extract the categories of the  Type  variable, using  PROC FREQ , and store them in 
macro variables:

    proc freq data  = Temp1 noprint;   
   tables  & TypeVar /out = Types ;   
   run;     

 Table 2.3      Parameters of  TBRollup()  Macro  

 TBRollup (TDS, IDVar, TimeVar, TypeVar, Nchars, Value, RDS) 
 Header Parameter  Description 

  TDS   Input transaction dataset 

  IDVar   ID variable 

  TimeVar   Time variable 

  TypeVar   Quantity being rolled up 

  Nchars   Number of characters to be used in rollup 

  Value   Values to be accumulated 

  RDS   The output rolled up dataset 
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     data  _ null _ ;   
   set Types nobs = Ncount;   
   if  & typeVar ne  “  then   
   call symput( ' Cat _  '  |  | left( _ n _ ),  & TypeVar);   
   if  _ N _  = Ncount then call symput( ' N ' , Ncount);   
   run;      

  Step 4 
 Loop over these  N  categories and generate their rollup part:

    %do i = 1 %to  & N;   
   proc transpose   
   data  = Temp1   
   out =  _ R _  & i   
   prefi x = %substr( &  & Cat _  & i, 1,  & Nchars) _ ;   
   by  & IDVar  & TypeVar;   
   ID  & TimeVar ;   
   var  _ TOT ;   
   where  & TypeVar =  “  &  & Cat _  & i ” ;   
   run;   
   %end;      

  Step 5 
 Finally, assemble the parts using the ID variable:

    data  & RDS;   
   merge %do i = 1 %to  & N;  _ R _  & i %end ; ;   
   by  & IDVar;   
   drop  & TypeVar  _ Name _ ;   
   run;      

  Step 6 
 Clean the workspace and fi nish the macro:

     proc datasets library = work nodetails;    
   delete Temp1 Types %do i = 1 %to  & N;  _ R _  & I %end; ;   
   run;   
   quit;     

     %mend;     

 We can now call this macro to roll up the previous example  Transaction  dataset 
using the following code:

    data Trans;   
   set Transaction;   
   Month  =  month(TransDate);   
   drop transdate;   
   run;     
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           %let IDVar          =  CustID;                  / *  The row ID variable  * /   
         %let TimeVar    =  Month;                     / *  The time variable  * /   
         %let TypeVar    =  AccountType;   / *  The Type variable  * /   
         %let Value          =  Amount;                  / *  The time measurement variable  * /   
         %let Nchars       =  1;                                 / *  Number of letters in Prefi x  * /   
         %let TDS                =  Trans;                        / *  The value variable  * /   
         %let RDS                =  Rollup;                  / *  the rollup fi le  * /   
         %TBRollup( & TDS,  & IDVar,  & TimeVar,  & TypeVar,  & Nchars,  & Value, 
 & RDS);     

 The result of this call is shown in  Table 2.4   .    

 Table 2.4      Result of  Rollup  Macro  

 CustID  C 6   C 7   C 8   C 12   S 6   S 7   S 8   S 12  

 5555   − 56.78  89.56   − 1200  .  234.12  359.31  1000  . 

 6666  .  .  .  549.56  .  .  .  . 

 7777  .  .  .  .  .  .  .  645.21 

 8888  42.07   − 1254.48  500  .  122.51   − 146.3  400  . 

  2.5     ROLLUP WITH SUMS, AVERAGES, AND COUNTS 
 In addition to fi nding the sum of a value variable during the rollup, it may also be 
more meaningful sometimes to calculate average value or the number of records 
that represent certain events — for example, number of deposits, number of with-
drawals, or number of mailings a customer received responding to an offer. 

 In our rollup macro, these requirements would alter only the middle part of 
our code, where we calculated the cumulative value of the  Value  variable. The 
following code segment would modify the macro to calculate the average value 
and the number of transactions for each account type instead of the total: 

     Step 2   

   data  _ Temp1;   
   retain  _ TOT 0;   
   retain  _ NT 0;   
   set  & TDS;   
   by  & IDVar  & TimeVar  & TypeVar;   
   if fi rst. & TypeVar then  _ TOT = 0;   
    _ TOT  =   _ TOT  +   & Value;   
   if  & Value ne . then  _ NT =  _ NT + 1;   
   if last. & TypeVar then   
   do;   



    _ AVG =  _ TOT/ _ NT;   
   output;   
    _ NT = 0;   
   end;   
   drop  & Value;   
   run;     

 Furthermore, the code inside the  %do  loop should also refl ect our interest in trans-
posing the values of the average variable,   _ AVG . Therefore, the code will be as 
follows:  

  Step 4   

   %do i = 1 %to  & N;   
   0proc transpose   
   data  =  _ Temp1   
   out =  _ R _  & i   
   prefi x = %substr( &  & Cat _  & i, 1,  & Nchars) _ ;   
   by  & IDVar  & TypeVar;   
   ID  & TimeVar;   
   var  _ AVG;   
   where  & TypeVar =  “  &  & Cat _  & i ” ;   
   run;   
   %end;     

 The complete code for the modifi ed code to roll up the average value is 
included in the macro  ABRollup() .    

  2.6     CALCULATION OF THE MODE 
 Another useful summary statistic is the mode, which is used in both the rollup 
stage and the event-driven architecture (EDA). The mode is the most common 
category of transaction. The mode for nominal variables is equivalent to the use 
of the average or the sum for the continuous case. For example, when customers 
use different payment methods, it may be benefi cial to identify the payment 
method most frequently used by each customer. 

 The computation of the mode on the mining view entity level from a transac-
tion dataset is a demanding task because we need to search for the frequencies 
of the different categories for  each  unique value of the entity variable. The macro 
shown in  Table 2.5    is based on a  classic  SQL query for fi nding the mode on the 
entity level from a transaction table. The variable being searched is  XVar , and the 
entity level is identifi ed through the unique value of the variable  IDVar :

    %macro VarMode(TransDS, XVar, IDVar, OutDS);   
   / *  A classic implementation of the mode of transactional   
            data using SQL  * /   
   proc sql noprint;   
   create table  & OutDS as   

2.6 Calculation of the Mode  49
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   SELECT  & IDVar , MIN( & XVar ) AS mode   
   FROM (   
                                                SELECT  & IDVar,  & XVar   
                                                FROM  & TransDS p1   
                                                GROUP BY  & IDVar,  & XVar   
                                                HAVING COUNT(  *  )  =    
                                                                  (SELECT MAX(CNT )   
                                                                  FROM (SELECT COUNT(  *  ) AS CNT   
                                                                                    FROM  & TransDS p2   
                                                                                    WHERE p2. & IDVar =  p1. & IDVar   
                                                                                    GROUP BY p2. & XVar   
                                                                                    ) AS p3   
                                                                  )   
                                                ) AS p   
                              GROUP BY p. & IDVar;   
   quit;   
   %mend;     

 The query works by calculating a list holding the frequency of the  XVar  catego-
ries, identifi ed as  CNT , then using the maximum of these counts as the mode. The 
query then creates a new table containing  IDVar  and  XVar  where the  XVar  cate-
gory frequency is equal to the maximum count, that is, the mode. 

 The preceding compound  SELECT  statement is computationally demanding 
because of the use of several layers of  GROUP BY  and  HAVING  clauses. Indexing 
should always be considered when dealing with large datasets. Sometimes it is 
even necessary to partition the transaction dataset into smaller datasets before 
applying such a query to overcome memory limitations.  

  2.7     DATA INTEGRATION 
 The data necessary to compile the mining view usually comes from many different 
tables. The rollup and summarization operations described in the last two sections 
can be performed on the data coming from each of these data sources indepen-

 Table 2.5      Parameters of  VarMode()  Macro  

 Header Parameter  VarMode (TransDS, XVar, IDVar, OutDS) 
 Description 

  TransDS   Input transaction dataset 

  XVar   Variable for which the mode is to be calculated 

  IDVar   ID variable 

  OutDS   The output dataset with the mode for unique IDs 



dently. Finally, we would be required to assemble all these segments in one mining 
view. The most used assembly operations are  merging  and  concatenation . Merging 
is used to collect data for the same key variable (e.g., customer ID) from different 
sources. Concatenation is used to assemble different portions of the same data 
fi elds for different segments of the key variable. It is most useful when preparing 
the scoring view with a very large number of observations (many millions). In this 
case, it is more effi cient to partition the data into smaller segments, prepare each 
segment, and fi nally concatenate them together. 

  2.7.1     Merging 

 SAS provides several options for merging and concatenating tables together using 
 DATA  step commands. However, we could also use SQL queries, through  PROC 
SQL,  to perform the same operations. In general, SAS  DATA  step options are more 
effi cient in merging datasets than  PROC SQL  is. However,  DATA  step merging may 
require sorting of the datasets before merging them, which could be a slow 
process for large datasets. On the other hand, the performance of SQL queries can 
be enhanced signifi cantly by creating indexes on the key variables used in 
merging. 

 Because of the requirement that the mining view have a unique record 
per category of key variable, most merging operations required to integrate 
different pieces of the mining view are of the type called  match-merge with 
nonmatched observations . We demonstrate this type of merging with a simple 
example. 

     EXAMPLE 2.1  

   We start with two datasets,  Left  and  Right , as shown in  Table 2.6   . 
 The two tables can be joined using the  MERGE – BY  commands within a  DATA  step 

operation as follows:

    DATA Left;   
      INPUT ID Age Status $;   
      datalines;   
      1      30      Gold   
      2      20      .   
      4      40      Gold   
      5      50      Silver   
      ;   
   RUN;       

   DATA Right;   
   INPUT ID Balance Status $;   
      datalines;   
      2      3000      Gold   
      4      4000      Silver   
   ;   
   RUN;       
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   DATA Both;   
      MERGE Left Right;   
      BY ID;   
   RUN;       

   PROC PRINT DATA = Both;   
   RUN;     

 The result of the merging is the dataset  Both  given in  Table 2.7   , which shows that the 
 MERGE-BY  commands did merge the two datasets as needed using  ID  as the key variable. 
We also notice that the common fi le  Status  was overwritten by values from the  Right  
dataset. Therefore, we have to be careful about this possible side effect. In most practical 
cases, common fi elds should have identical values. In our case, where the variable repre-
sented some customer designation status ( Gold  or  Silver ), the customer should have had 
the same status in different datasets. Therefore, checking these status values should be one 
of the data integrity tests to be performed before performing the merging. 

 Merging datasets using this technique is very effi cient. It can be used with more than 
two datasets as long as all the datasets in the  MERGE  statement have the common variable 
used in the  BY  statement. The only possible diffi culty is that SAS requires that  all  the data-
sets be sorted by the  BY  variable. Sorting very large datasets can sometimes be slow.      

 Table 2.6      Two Sample Tables:  Left  and  Right   

 Table:  Left   Table:  Right  

 ID  Age  Status  ID  Balance  Status 

 1  30  Gold  2  3000  Gold 

 2  20  .  4  4000  Silver 

 4  40  Gold 

 5  50  Silver 

 Table 2.7      Result of Merging: Dataset  Both   

 Obs  ID  Age  Status  Balance 

 1  1  30  Gold  . 

 2  2  20  Gold  3000 

 3  4  40  Silver  4000 

 4  5  50  Silver  . 



 You have probably realized by now that writing a general macro to merge a 
 list  of datasets using an  ID  variable is a simple task. Assuming that all the datasets 
have been sorted using  ID  before attempting to merge them, the macro would 
simply be given as follows:

    %macro MergeDS(List, IDVar, ALL);   
   DATA  & ALL;   
               MERGE  & List; by   
                & IDVar;   
   run;   
   %mend;     

 Finally, calling this macro to merge the two datasets in  Table 2.6  would simply 
be as follows:

    %let List = Left Right;   
   %let IDVar = ID;   
   %let ALL  =  Both;   
   %MergeDS( & List,  & IDVar,  & ALL);      

  2.7.2     Concatenation 

 Concatenation is used to attach the contents of one dataset to the end of another 
dataset without duplicating the common fi elds. Fields unique to one of the two 
fi les would be fi lled with missing values. Concatenating datasets in this fashion 
does not check on the uniqueness of the  ID  variable. However, if the data acqui-
sition and rollup procedures were correctly performed, such a problem should 
not exist. 

 Performing concatenation in SAS is straightforward. We list the datasets to be 
concatenated in a  SET  statement within the destination dataset. This is illustrated 
in the following example. 

     EXAMPLE 2.2  

   Start with two datasets  TOP  and  BOTTOM , as shown in  Tables 2.8 and 2.9     . 
 We then use the following code to implement the concatenation of the two datasets into 

a new dataset:

    DATA TOP;   
      input ID Age Status $;   
      datalines;   
      1      30      Gold   
      2      20      .   
      3      30      Silver   
      4      40      Gold   
      5      50      Silver   
      ;   
   run;   
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   DATA BOTTOM;   
   input ID Balance Status $;   
      datalines;   
      6      6000      Gold   
      7      7000      Silver   
      ;   
   run;       

   DATA BOTH;   
      SET TOP BOTTOM;   
   run;       

   DATA BOTH;   
      SET TOP BOTTOM;   
   run;     

 The resulting dataset is shown in  Table 2.10   . 
 As in the case of merging datasets, we may include a list of several datasets in the  SET  

statement to concatenate. The resulting dataset will contain all the records of the contribut-
ing datasets in the same order in which they appear in the  SET  statement.      

 Table 2.8      Table:  TOP   

 Obs  ID  Age  Status 

 1  1  30  Gold 

 2  2  20  . 

 3  3  30  Silver 

 4  4  40  Gold 

 5  5  50  Silver 

 Table 2.9      Table:  BOTTOM   

 Obs  ID  Balance  Status 

 1  6  6000  Gold 

 2  7  7000  Silver 



 The preceding process can be packed into the following macro:

    %macro ConcatDS(List, ALL);   
   DATA  & ALL;   
      SET  & List;   
   run;   
   %mend;     

 To use this macro to achieve the same result as in the previous example, we use 
the following calling code:

    %let List = TOP BOTTOM;   
   %let ALL  =  BOTH;   
   %ConcatDS( & List,  & ALL);         

 Table 2.10      Table:  BOTH   

 Obs  ID  Age  Status  Balance 

 1  1  30  Gold  . 

 2  2  20  .  . 

 3  3  30  Silver  . 

 4  4  40  Gold  . 

 5  5  50  Silver  . 

 6  6  .  Gold  6000 

 7  7  .  Silver  7000 
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