
 CHAPTER

2 Data Acquisition
and Integration

 2.1 INTRODUCTION
 This chapter fi rst provides a brief review of data sources and types of variables
from the point of view of data mining. Then it presents the most common proce-
dures of data rollup and aggregation, sampling, and partitioning.

 2.2 SOURCES OF DATA
 In most organizations today, data is stored in relational databases. The quality and
utility of the data, as well as the amount of effort needed to transform the data to
a form suitable for data mining, depends on the types of the applications the
databases serve. These relational databases serve as data repositories for the fol-
lowing applications.

 2.2.1 Operational Systems

 Operational systems process the transactions that make an organization work. The
data from these systems is, by nature, transient and keeps accumulating in the
repository. A typical example of these systems is any banking transaction process-
ing system that keeps records of opened and closed accounts, deposits, withdraw-
als, balances, and all other values related to the money moving among accounts,
clients, and the outside world. Data extracted from such operational systems is
the most raw form of data, in the sense that it has not been transformed, cleansed,
or changed. It may contain errors as a result of data entry procedures or applica-
tions and usually has many missing values. It is also usually scattered over several
tables and fi les. However, it is the most honest representation of the status of any
business.

38 CHAPTER 2 Data Acquisition and Integration

 2.2.2 Data Warehouses and Data Marts

 Data warehouses and data marts were conceived as a means to facilitate the com-
pilation of regular reports on the status of the business by continuously collecting,
cleaning, and summarizing the core data of the organization. Data warehouses
provide a clean and organized source of data for data mining. In most cases,
however, data warehouses were not created to prepare data for data modelers;
they were rather created with a certain set of reporting functions in mind. There-
fore, data residing in them might have been augmented or processed in a special
way to facilitate those functions. Ideally, a specialized data mart should be created
to house the data needed for data mining modeling and scoring processes.

 2.2.3 Online Analytical Processing Applications

 Online analytical processing (OLAP) and similar software are often given the name
 business intelligence tools. These applications reside in the data warehouse, or
have their own data warehouse, and provide a graphical interface to navigate,
explore, and “ slice and dice ” the data. The data structures that OLAP applications
operate on are called cubes. They also provide comprehensive reporting capa-
bilities. OLAP systems could be a source of data for data mining because of the
interactive exploration capabilities that they offer the user. Therefore, the user
would fi nd the interesting data elements related to the problem through OLAP
applications and then apply data mining modeling for prediction.

 Alternatively, data mining can offer the identifi cation of the signifi cant variables
that govern the behavior of some business measure (such as profi t), and then
OLAP can use these variables (as dimensions) to navigate and get qualitative
insight into existing relationships. Data extracted from OLAP cubes may not be
granular enough for data mining. This is because continuous variables are usually
 binned before they can be used as dimensions in OLAP cubes. This binning
process results in the loss of some information, which may have a signifi cant
impact on the performance of data mining algorithms.

 2.2.4 Surveys

 Surveys are perhaps the most expensive source of data because they require direct
interaction with customers. Surveys collect data through different communication
channels with customers, such as mail, email, interviews, and forms on websites.
There are many anecdotes about the accuracy and validity of the data collected
from the different forms of surveys. However, they all share the following two
common features:

 1. The number of customers who participate in the survey is usually limited
because of the cost and the number of customers willing to participate.

 2. The questions asked in the survey can be designed to directly address the
objective of the planned model. For example, if the objective is to market new

products, the survey would ask customers about their preferences in these
products, whether they would buy them, and what price would they pay for
them.

 These two points highlight the fact that, if well designed and executed, surveys
are indeed the most accurate representation of possible customer behavior.
However, they usually generate a limited amount of data because of the cost
involved.

 2.2.5 Household and Demographic Databases

 In most countries, databases are commercially available that contain detailed
information on consumers of different products and services. The most common
type is demographic databases based on a national census, where the general
demographic profi le of each residential area is surveyed and summarized. Data
obtained from such database providers is usually clean and information rich. Their
only limitation is that data is not provided on the individual customer or record
level but rather is averaged over a group of customers, for example, on the level
of a postal (ZIP) code. Such limitations are usually set by privacy laws aimed at
protecting individuals from abuse of such data.

 The use of averaged data in models could lead to diluting the model ’ s ability
to accurately defi ne a target group. For example, extensive use of census-like
variables in a customer segmentation model would eventually lead to a model that
clusters the population on the basis of the used census demographics and not in
relation to the originally envisaged rate of usage or buying habits of the planned
products or services.

 It is not uncommon that analysts collect data from more than one source to
form the initial mining view and for the scoring of mining models.

 2.3 VARIABLE TYPES
 Designers of applications that use databases and different fi le systems attempt
to optimize their applications in terms of the space required to keep the data
and the speed of processing and accessing the data. Because of these consider-
ations, the data extracted from databases is often not in optimal form from the
point of view of data mining algorithms. To appreciate this issue, we provide the
following discussion of the types of variables that most data mining algorithms
deal with.

 2.3.1 Nominal Variables

 Nominal, or categorical , variables describe values that lack the properties of order,
scale, or distance between them. For example, the variables representing the type
of a housing unit can take the categories House, Apartment, or Shared Accom-

2.3 Variable Types 39

40 CHAPTER 2 Data Acquisition and Integration

modation. One cannot enforce any meaning of order or scale on these values.
Other examples include Gender (Male, Female), Account Type (Savings, Check-
ing), and type of Credit Card (VISA, MasterCard, American Express, Diners Club,
EuroCard, Discover, etc.).

 From the point of view of data mining algorithms, it is important to retain the
 lack of order or scale in categorical variables. Therefore, it is not desirable that a
category be represented in the data by a series of integers. For example, if the
type of a house variable is represented by the integers 1 to 4 (1 = Detached, 2 =
Semidetached, 3 = Townhome, 4 = Bungalow), a numeric algorithm may inadver-
tently add the numbers 1 and 2, resulting implicitly in the erroneous and meaning-
less statement of “ Detached + Semidetached = Townhome ” ! Other erroneous, and
equally meaningless, implications that “ Bungalow > Detached ” or “ Bungalow −
Semidetached = Townhome − Detached. ” The most convenient method of storing
categorical variables in software applications is to use strings. This should force
the application to interpret them as nominal variables.

 2.3.2 Ordinal Variables

 Ordinal, or rank or ordered scalar , variables are categorical variables with the
notion of order added to them. For example, we may defi ne the risk levels of
defaulting on a credit card payment into three levels (Low, Medium, High). We
can assert the order relationships High ≥ Medium ≥ Low. However, we cannot
establish the notion of scale. In other words, we cannot accurately say that the
difference between High and Medium is the same as the difference between
 Medium and Low levels of risk.

 Based on the defi nition of ordinal variables, we can realize the problem that
would arise when such variables are represented by a series of integers. For
example, in the case of the risk level variable, representing these levels with
numbers from 1 to 3 such that (Low = 1, Medium = 2, High = 3) would result in
the imposition of an invalid notion of distance between the different values. In
addition, this defi nition would impose the defi nition of scale on the values by
implying that Medium risk is double the risk of Low, and High risk is three times
the risk of Low.

 Some ordinal variables come with the scale and distance notions added to
them. These are best represented by a series of positive integers. They usually
measure the frequency of occurrence of an event. Examples of such ordinal mea-
sures are number of local telephone calls within a month, number of people using
a credit card in a week, and number of cars purchased by a prospective customer
in her or his lifetime.

 A typical problem, especially in data warehouses, exists in the representation
of ordinal measures. Some ordinal measures are often subjected to binning to
reduce the values we need to store and deal with. For example, a data warehouse
may bin the number of times a customer uses a credit card per month to the
representation 0 – 5 → 1, 6 – 10 → 2, 11 – 20 → 3, more than 20 → 4. Although this

2.4 Data Rollup 41

leads to a more compact representation of the variables, it may be detrimental to
data mining algorithms for two reasons: (1) it reduces the granularity level of the
data, which may result in a reduction in the predictive model accuracy, and
(2) it distorts the ordinal nature of the original quantity being measured.

 2.3.3 Real Measures

 Real measures, or continuous variables , are the easiest to use and interpret.
Continuous variables have all the desirable properties of variables: order, scale,
and distance. They also have the meanings of zero and negative values defi ned.
There could be some constraints imposed on the defi nition of continuous vari-
ables. For example, the age of a person cannot be negative and the monthly bill
of a telephone line cannot be less than the subscription fees. Real measures are
represented by real numbers, with any reasonably required precision.

 The use of ratios in constrained continuous variables is sometimes trouble-
some. For example, if we allow the balance of a customer to be negative or
positive, then the ratio between $ − 10,000.00 and $ − 5,000.00 is the same as that
between $ + 10,000.00 and $ + 5,000.00. Therefore, some analysts like to distin-
guish between the so-called interval and ratio variables. We do not make that
distinction here because in most cases the context of the implementation is clear.
For example, if we wished to use the ratio of balances, we would restrict the bal-
ances to positive values only; if negative values occurred, we would devise another
measure to signify that fact.

 With the three types of variable from the mining point of view, the fi rst task
the analyst should consider, when acquiring the data, is to decide on the type of
data to be used for each variable depending on its meaning. Of special interest
are variables that represent dates and times . With the exception of time series
analysis, dates and times are not useful in their raw form. One of the most effec-
tive methods of dealing with date and time values is to convert them to a period
measure, that is, to calculate the difference between the values and a fi xed refer-
ence value. For example, instead of dealing with the date of opening an account,
we deal with total tenure as the difference between today ’ s date and the date of
opening the account. In fact, we use this method every day by referring to the
age of a person instead of her or his birth date. In this way, we convert dates and
times to real measures, with some constraint if necessary, as in the case of a
person ’ s age. (Negative age is not well defi ned!)

 2.4 DATA ROLLUP
 The simplest defi nition of data rollup is that we convert categories to variables.
Let us consider an illustrative example.

 Table 2.1 shows some records from the transaction table of a bank where
deposits are denoted by positive amounts and withdrawals are shown as negative

42 CHAPTER 2 Data Acquisition and Integration

amounts. We further assume that we are building the mining view as a customer
view . Because the fi rst requirement is to have one, and only one, row per cus-
tomer, we create a new view such that each unique customer ID appears in one
and only one row. To roll up the multiple records on the customer level, we
create a set of new variables to represent the combination of the account type
and the month of the transaction. This is illustrated in Figure 2.1 . The result of
the rollup is shown in Table 2.2 .

 Table 2.1 shows that we managed to aggregate the values of the transactions
in the different accounts and months into new variables. The only issue is what
to do when we have more than one transaction per account per month. In this
case, which is the more realistic one, we have to summarize the data in some
form. For example, we can calculate the sum of the transactions values, or their
average, or even create a new set of variables giving the count of such transactions
for each month – account type combination.

 It is obvious that this process will lead to the generation of possibly hundreds,
if not thousands, of variables in any data-rich business applications. Dealing with
such a large number of fi elds could present a challenge for the data preparation
and data mining software tools. It is therefore required that we keep the number

 Table 2.1 A Sample of Banking Transactions

 Customer ID Date Amount Account Type

 1100-55555 11Jun2003 114.56 Savings

 1100-55555 21Jun2003 − 56.78 Checking

 1100-55555 07Jul2003 359.31 Savings

 1100-55555 19Jul2003 89.56 Checking

 1100-55555 03Aug2003 1000.00 Savings

 1100-55555 17Aug2003 − 1200.00 Checking

 1100-88888 14June2003 122.51 Savings

 1100-88888 27June2003 42.07 Checking

 1100-88888 09July2003 − 146.30 Savings

 1100-88888 09July2003 − 1254.48 Checking

 1100-88888 10Aug2003 400.00 Savings

 1100-88888 11Aug 2003 500.00 Checking

 . . .

2.4 Data Rollup 43

 FIGURE 2.1

 Data rollup.

Customer ID
1100-55555
1100-55555
1100-55555
1100-55555
1100-55555
1100-55555

Date
11June2003
21June2003
07Jul2003
19Jul2003
03Aug2003
17Aug2003

Amount
114.56

–56.78
359.31

89.56
1000.00

–1200.00

Account Type
Savings
Checking
Savings
Checking
Savings
Checking

Customer ID

Rolled-up DataTransaction Data

1100-55555
Checking—June 2003

–56.78

{

 Table 2.2 Result of Rolling up the Data of Table 2.1

 Cust. ID C-6 C-7 C-8 S-6 S-7 S-8

 1100-55555 − 56.78 89.56 − 1200.00 114.56 359.30 1000.00

 1100-88888 42.07 − 1254.00 500.00 122.51 − 146.30 400.00

of these new fi elds to a minimum while keeping as much information about the
nature of the data as possible. Unfortunately, there is no magic recipe to achieve
this balance. However, a closer look at the preceding data reveals that the key to
controlling the number of new variables is to decide on the level of granularity
required to perform the rollup. For example, is it necessary to roll up the transac-
tions of each month, or is it enough to roll up the data per quarter? Similarly, in
our simplifi ed case, we had only two categories for the account type, but typically,
there would be many more categories. Then comes the question of which
categories we can group together, or even ignore, to reduce the number of new
variables.

 In the end, even with careful selection of the categories and resolution of
combining the different categories to form new variables, we usually end up with
a relatively large number of variables, which most implementations of data mining
algorithms cannot handle adequately. However, we should not worry too much
about this problem for the moment because data reduction is a basic step in our
planned approach. In later chapters, we will investigate techniques to reduce the
number of variables.

 In the last example demonstrating the rollup process, we performed the rollup
on the level of two variables: the account type and the transaction month. This
is usually called multilevel rollup . On the other hand, if we had had only one type
of account, say only savings, then we could have performed a simpler rollup using
only the transaction month as the summation variable. This type of rollup is called
 simple rollup . In fact, multilevel rollup is only an aggregation of several simple

44 CHAPTER 2 Data Acquisition and Integration

rollups on the row level, which is the customer ID in our example. Therefore,
data preparation procedures, in either SAS or SQL, can use this property to
simplify the implementation by performing several simple rollups for each com-
bination of the summarization variables and combining them. This is the approach
we will adopt in developing our macro to demonstrate the rollup of our sample
dataset.

 Now let us describe how to perform the rollup operation using SAS. We will
do this using our simple example fi rst and then generalize the code using macros
to facilitate its use with other datasets. We stress again that in writing the code
we preferred to keep the code simple and readable at the occasional price of
effi ciency of execution, and the use of memory resources. You are welcome to
modify the code to make it more effi cient or general as required.

 We use Table 2.1 to create the dataset as follows:

 Data Transaction;
 Informat CustID $10.;
 Informat TransDate date9.;
 format TransDate Date9.;
 input CustID $ TransDate Amount AccountType$; Cards;
 55555 11Jun2003 114.56 Savings
 55555 12Jun2003 119.56 Savings
 55555 21Jun2003 − 56.78 Checking
 55555 07Jul2003 359.31 Savings
 55555 19Jul2003 89.56 Checking
 55555 03Aug2003 1000.00 Savings
 66666 22Feb2003 549.56 Checking
 77777 03Dec2003 645.21 Savings
 55555 17Aug2003 − 1200.00 Checking
 88888 14Jun2003 122.51 Savings
 88888 27Jun2003 42.07 Checking
 88888 09Jul2003 − 146.30 Savings
 88888 09Jul2003 − 1254.48 Checking
 88888 10Aug2003 400.00 Savings
 88888 11Aug2003 500.00 Checking
 ;
 run;

 The next step is to create the month fi eld using the SAS Month function:

 data Trans;
 set Transaction;
 Month = month(TransDate);
 run;

 Then we accumulate the transactions into a new fi eld to represent the balance in
each account:

 proc sort data = Trans;
 by CustID month AccountType;
 run;

2.4 Data Rollup 45

 / * Create cumulative balances for each of the accounts * /
 data Trans2;
 retain Balance 0;
 set Trans;
 by CustID month AccountType;
 if fi rst.AccountType then Balance = 0;
 Balance = Balance + Amount;
 if last.AccountType then output;
 drop amount;
 run;

 Finally, we use PROC TRANSPOSE to roll up the data in each account type and
merge the two resulting datasets into the fi nal fi le:

 / * Prepare for the transpose * /
 proc sort data = trans2;
 by CustID accounttype;
 run;

 proc transpose data = Trans2 out = rolled _ C prefi x = C _ ;
 by CustID accounttype;
 ID month ;
 var balance ;
 where AccountType = ' Checking ' ;
 run;

 proc transpose data = Trans2 out = rolled _ S prefi x = S _ ;
 by CustID accounttype;
 ID month ;
 var balance ;
 where AccountType = ' Savings ' ;
 run;

 data Rollup;
 merge Rolled _ S Rolled _ C;
 by CustID;
 drop AccountType _ Name _ ;
 run;

 To pack this procedure in a general macro using the combination of two vari-
ables, one for transaction categories and one for time, we simply replace the Month
variable with a TimeVar, the customer ID with IDVar, and the AccountType with
 TypeVar. We also specify the number of characters to be used from the category
variable to prefi x the time values. Finally, we replace the two repeated TRANSPOSE
code segments with a %do loop that iterates over the categories of the TypeVar
(which requires extracting these categories and counting them). The following
steps detail the resulting macro.

46 CHAPTER 2 Data Acquisition and Integration

 Step 1
 Sort the transaction fi le using the ID, Time, and Type variables:

 proc sort data = & TDS;
 by & IDVar & TimeVar & TypeVar;
 run;

 Step 2
 Accumulate the values over time to a temporary _ Tot variable in the temporary
table Temp1 (see Table 2.3). Then sort Temp1 using the ID and the Type variables:

 data Temp1;
 retain _ TOT 0;
 set & TDS;
 by & IDVar & TimeVar & TypeVar;
 if fi rst. & TypeVar then _ TOT = 0;
 _ TOT = _ TOT + & Value;
 if last. & TypeVar then output;
 drop & Value;
 run;
 proc sort data = Temp1;
 by & IDVar & TypeVar;
 run;

 Step 3
 Extract the categories of the Type variable, using PROC FREQ , and store them in
macro variables:

 proc freq data = Temp1 noprint;
 tables & TypeVar /out = Types ;
 run;

 Table 2.3 Parameters of TBRollup() Macro

 TBRollup (TDS, IDVar, TimeVar, TypeVar, Nchars, Value, RDS)
 Header Parameter Description

 TDS Input transaction dataset

 IDVar ID variable

 TimeVar Time variable

 TypeVar Quantity being rolled up

 Nchars Number of characters to be used in rollup

 Value Values to be accumulated

 RDS The output rolled up dataset

2.4 Data Rollup 47

 data _ null _ ;
 set Types nobs = Ncount;
 if & typeVar ne “ then
 call symput(' Cat _ ' | | left(_ n _), & TypeVar);
 if _ N _ = Ncount then call symput(' N ' , Ncount);
 run;

 Step 4
 Loop over these N categories and generate their rollup part:

 %do i = 1 %to & N;
 proc transpose
 data = Temp1
 out = _ R _ & i
 prefi x = %substr(& & Cat _ & i, 1, & Nchars) _ ;
 by & IDVar & TypeVar;
 ID & TimeVar ;
 var _ TOT ;
 where & TypeVar = “ & & Cat _ & i ” ;
 run;
 %end;

 Step 5
 Finally, assemble the parts using the ID variable:

 data & RDS;
 merge %do i = 1 %to & N; _ R _ & i %end ; ;
 by & IDVar;
 drop & TypeVar _ Name _ ;
 run;

 Step 6
 Clean the workspace and fi nish the macro:

 proc datasets library = work nodetails;
 delete Temp1 Types %do i = 1 %to & N; _ R _ & I %end; ;
 run;
 quit;

 %mend;

 We can now call this macro to roll up the previous example Transaction dataset
using the following code:

 data Trans;
 set Transaction;
 Month = month(TransDate);
 drop transdate;
 run;

48 CHAPTER 2 Data Acquisition and Integration

 %let IDVar = CustID; / * The row ID variable * /
 %let TimeVar = Month; / * The time variable * /
 %let TypeVar = AccountType; / * The Type variable * /
 %let Value = Amount; / * The time measurement variable * /
 %let Nchars = 1; / * Number of letters in Prefi x * /
 %let TDS = Trans; / * The value variable * /
 %let RDS = Rollup; / * the rollup fi le * /
 %TBRollup(& TDS, & IDVar, & TimeVar, & TypeVar, & Nchars, & Value,
 & RDS);

 The result of this call is shown in Table 2.4 .

 Table 2.4 Result of Rollup Macro

 CustID C 6 C 7 C 8 C 12 S 6 S 7 S 8 S 12

 5555 − 56.78 89.56 − 1200 . 234.12 359.31 1000 .

 6666 . . . 549.56

 7777 645.21

 8888 42.07 − 1254.48 500 . 122.51 − 146.3 400 .

 2.5 ROLLUP WITH SUMS, AVERAGES, AND COUNTS
 In addition to fi nding the sum of a value variable during the rollup, it may also be
more meaningful sometimes to calculate average value or the number of records
that represent certain events — for example, number of deposits, number of with-
drawals, or number of mailings a customer received responding to an offer.

 In our rollup macro, these requirements would alter only the middle part of
our code, where we calculated the cumulative value of the Value variable. The
following code segment would modify the macro to calculate the average value
and the number of transactions for each account type instead of the total:

 Step 2

 data _ Temp1;
 retain _ TOT 0;
 retain _ NT 0;
 set & TDS;
 by & IDVar & TimeVar & TypeVar;
 if fi rst. & TypeVar then _ TOT = 0;
 _ TOT = _ TOT + & Value;
 if & Value ne . then _ NT = _ NT + 1;
 if last. & TypeVar then
 do;

 _ AVG = _ TOT/ _ NT;
 output;
 _ NT = 0;
 end;
 drop & Value;
 run;

 Furthermore, the code inside the %do loop should also refl ect our interest in trans-
posing the values of the average variable, _ AVG . Therefore, the code will be as
follows:

 Step 4

 %do i = 1 %to & N;
 0proc transpose
 data = _ Temp1
 out = _ R _ & i
 prefi x = %substr(& & Cat _ & i, 1, & Nchars) _ ;
 by & IDVar & TypeVar;
 ID & TimeVar;
 var _ AVG;
 where & TypeVar = “ & & Cat _ & i ” ;
 run;
 %end;

 The complete code for the modifi ed code to roll up the average value is
included in the macro ABRollup() .

 2.6 CALCULATION OF THE MODE
 Another useful summary statistic is the mode, which is used in both the rollup
stage and the event-driven architecture (EDA). The mode is the most common
category of transaction. The mode for nominal variables is equivalent to the use
of the average or the sum for the continuous case. For example, when customers
use different payment methods, it may be benefi cial to identify the payment
method most frequently used by each customer.

 The computation of the mode on the mining view entity level from a transac-
tion dataset is a demanding task because we need to search for the frequencies
of the different categories for each unique value of the entity variable. The macro
shown in Table 2.5 is based on a classic SQL query for fi nding the mode on the
entity level from a transaction table. The variable being searched is XVar , and the
entity level is identifi ed through the unique value of the variable IDVar :

 %macro VarMode(TransDS, XVar, IDVar, OutDS);
 / * A classic implementation of the mode of transactional
 data using SQL * /
 proc sql noprint;
 create table & OutDS as

2.6 Calculation of the Mode 49

50 CHAPTER 2 Data Acquisition and Integration

 SELECT & IDVar , MIN(& XVar) AS mode
 FROM (
 SELECT & IDVar, & XVar
 FROM & TransDS p1
 GROUP BY & IDVar, & XVar
 HAVING COUNT(*) =
 (SELECT MAX(CNT)
 FROM (SELECT COUNT(*) AS CNT
 FROM & TransDS p2
 WHERE p2. & IDVar = p1. & IDVar
 GROUP BY p2. & XVar
) AS p3
)
) AS p
 GROUP BY p. & IDVar;
 quit;
 %mend;

 The query works by calculating a list holding the frequency of the XVar catego-
ries, identifi ed as CNT , then using the maximum of these counts as the mode. The
query then creates a new table containing IDVar and XVar where the XVar cate-
gory frequency is equal to the maximum count, that is, the mode.

 The preceding compound SELECT statement is computationally demanding
because of the use of several layers of GROUP BY and HAVING clauses. Indexing
should always be considered when dealing with large datasets. Sometimes it is
even necessary to partition the transaction dataset into smaller datasets before
applying such a query to overcome memory limitations.

 2.7 DATA INTEGRATION
 The data necessary to compile the mining view usually comes from many different
tables. The rollup and summarization operations described in the last two sections
can be performed on the data coming from each of these data sources indepen-

 Table 2.5 Parameters of VarMode() Macro

 Header Parameter VarMode (TransDS, XVar, IDVar, OutDS)
 Description

 TransDS Input transaction dataset

 XVar Variable for which the mode is to be calculated

 IDVar ID variable

 OutDS The output dataset with the mode for unique IDs

dently. Finally, we would be required to assemble all these segments in one mining
view. The most used assembly operations are merging and concatenation . Merging
is used to collect data for the same key variable (e.g., customer ID) from different
sources. Concatenation is used to assemble different portions of the same data
fi elds for different segments of the key variable. It is most useful when preparing
the scoring view with a very large number of observations (many millions). In this
case, it is more effi cient to partition the data into smaller segments, prepare each
segment, and fi nally concatenate them together.

 2.7.1 Merging

 SAS provides several options for merging and concatenating tables together using
 DATA step commands. However, we could also use SQL queries, through PROC
SQL, to perform the same operations. In general, SAS DATA step options are more
effi cient in merging datasets than PROC SQL is. However, DATA step merging may
require sorting of the datasets before merging them, which could be a slow
process for large datasets. On the other hand, the performance of SQL queries can
be enhanced signifi cantly by creating indexes on the key variables used in
merging.

 Because of the requirement that the mining view have a unique record
per category of key variable, most merging operations required to integrate
different pieces of the mining view are of the type called match-merge with
nonmatched observations . We demonstrate this type of merging with a simple
example.

 EXAMPLE 2.1

 We start with two datasets, Left and Right , as shown in Table 2.6 .
 The two tables can be joined using the MERGE – BY commands within a DATA step

operation as follows:

 DATA Left;
 INPUT ID Age Status $;
 datalines;
 1 30 Gold
 2 20 .
 4 40 Gold
 5 50 Silver
 ;
 RUN;

 DATA Right;
 INPUT ID Balance Status $;
 datalines;
 2 3000 Gold
 4 4000 Silver
 ;
 RUN;

2.7 Data Integration 51

52 CHAPTER 2 Data Acquisition and Integration

 DATA Both;
 MERGE Left Right;
 BY ID;
 RUN;

 PROC PRINT DATA = Both;
 RUN;

 The result of the merging is the dataset Both given in Table 2.7 , which shows that the
 MERGE-BY commands did merge the two datasets as needed using ID as the key variable.
We also notice that the common fi le Status was overwritten by values from the Right
dataset. Therefore, we have to be careful about this possible side effect. In most practical
cases, common fi elds should have identical values. In our case, where the variable repre-
sented some customer designation status (Gold or Silver), the customer should have had
the same status in different datasets. Therefore, checking these status values should be one
of the data integrity tests to be performed before performing the merging.

 Merging datasets using this technique is very effi cient. It can be used with more than
two datasets as long as all the datasets in the MERGE statement have the common variable
used in the BY statement. The only possible diffi culty is that SAS requires that all the data-
sets be sorted by the BY variable. Sorting very large datasets can sometimes be slow.

 Table 2.6 Two Sample Tables: Left and Right

 Table: Left Table: Right

 ID Age Status ID Balance Status

 1 30 Gold 2 3000 Gold

 2 20 . 4 4000 Silver

 4 40 Gold

 5 50 Silver

 Table 2.7 Result of Merging: Dataset Both

 Obs ID Age Status Balance

 1 1 30 Gold .

 2 2 20 Gold 3000

 3 4 40 Silver 4000

 4 5 50 Silver .

 You have probably realized by now that writing a general macro to merge a
 list of datasets using an ID variable is a simple task. Assuming that all the datasets
have been sorted using ID before attempting to merge them, the macro would
simply be given as follows:

 %macro MergeDS(List, IDVar, ALL);
 DATA & ALL;
 MERGE & List; by
 & IDVar;
 run;
 %mend;

 Finally, calling this macro to merge the two datasets in Table 2.6 would simply
be as follows:

 %let List = Left Right;
 %let IDVar = ID;
 %let ALL = Both;
 %MergeDS(& List, & IDVar, & ALL);

 2.7.2 Concatenation

 Concatenation is used to attach the contents of one dataset to the end of another
dataset without duplicating the common fi elds. Fields unique to one of the two
fi les would be fi lled with missing values. Concatenating datasets in this fashion
does not check on the uniqueness of the ID variable. However, if the data acqui-
sition and rollup procedures were correctly performed, such a problem should
not exist.

 Performing concatenation in SAS is straightforward. We list the datasets to be
concatenated in a SET statement within the destination dataset. This is illustrated
in the following example.

 EXAMPLE 2.2

 Start with two datasets TOP and BOTTOM , as shown in Tables 2.8 and 2.9 .
 We then use the following code to implement the concatenation of the two datasets into

a new dataset:

 DATA TOP;
 input ID Age Status $;
 datalines;
 1 30 Gold
 2 20 .
 3 30 Silver
 4 40 Gold
 5 50 Silver
 ;
 run;

2.7 Data Integration 53

54 CHAPTER 2 Data Acquisition and Integration

 DATA BOTTOM;
 input ID Balance Status $;
 datalines;
 6 6000 Gold
 7 7000 Silver
 ;
 run;

 DATA BOTH;
 SET TOP BOTTOM;
 run;

 DATA BOTH;
 SET TOP BOTTOM;
 run;

 The resulting dataset is shown in Table 2.10 .
 As in the case of merging datasets, we may include a list of several datasets in the SET

statement to concatenate. The resulting dataset will contain all the records of the contribut-
ing datasets in the same order in which they appear in the SET statement.

 Table 2.8 Table: TOP

 Obs ID Age Status

 1 1 30 Gold

 2 2 20 .

 3 3 30 Silver

 4 4 40 Gold

 5 5 50 Silver

 Table 2.9 Table: BOTTOM

 Obs ID Balance Status

 1 6 6000 Gold

 2 7 7000 Silver

 The preceding process can be packed into the following macro:

 %macro ConcatDS(List, ALL);
 DATA & ALL;
 SET & List;
 run;
 %mend;

 To use this macro to achieve the same result as in the previous example, we use
the following calling code:

 %let List = TOP BOTTOM;
 %let ALL = BOTH;
 %ConcatDS(& List, & ALL);

 Table 2.10 Table: BOTH

 Obs ID Age Status Balance

 1 1 30 Gold .

 2 2 20 . .

 3 3 30 Silver .

 4 4 40 Gold .

 5 5 50 Silver .

 6 6 . Gold 6000

 7 7 . Silver 7000

2.7 Data Integration 55

