
ODBC Applications:
Writing Good Code

123

Developing performance-optimized ODBC applica-

tions is not easy. Microsoft’s ODBC Programmer’s

Reference does not provide information about perfor-

mance. In addition, ODBC drivers and the ODBC Driver

Manager don’t return warnings when applications run

inefficiently. This chapter describes some general guide-

lines for coding practices that improve ODBC application

performance. These guidelines have been compiled by

examining the ODBC implementations of numerous

shipping ODBC applications. In general, the guidelines

described in this chapter improve performance because

they accomplish one or more of the following goals:

• Reduce network traffic

• Limit disk I/O

• Optimize application-to-driver interaction

• Simplify queries

If you’ve read the other coding chapters (Chapters 6 and

7), you’ll notice that some of the information here resembles

those chapters. While there are some similarities, this chap-

ter focuses on specific information about coding for ODBC.

C H A P T E R F I V E

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 123

Managing Connections

Typically, creating a connection is one of the most performance-expensive oper-

ations that an application performs. Developers often assume that establishing a

connection is a simple request that results in the driver making a single network

round trip to the database server to validate a user’s credentials. In reality, a con-

nection involves many network round trips between the driver and the database

server. For example, when a driver connects to Oracle or Sybase ASE, that con-

nection may require seven to ten network round trips. In addition, the database

establishes resources on behalf of the connection, which involves performance-

expensive disk I/O and memory allocation.

Your time will be well spent if you sit down and design how to handle con-

nections before implementing them in your application. Use the guidelines in

this section to manage your connections more efficiently.

Connecting Efficiently

Database applications use either of the following methods to manage connec-

tions:

• Obtain a connection from a connection pool.

• Create a new connection one at a time as needed.

When choosing a method to manage connections, remember the following

facts about connections and performance:

• Creating a connection is performance expensive.

• Open connections use a substantial amount of memory on both the data-

base server and the database client.

• Opening numerous connections can contribute to an out-of-memory con-

dition, which causes paging of memory to disk and, thus, overall perfor-

mance degradation.

Using Connection Pooling

If your application has multiple users and your database server provides suffi-

cient database resources, using connection pooling can provide significant per-

formance gains. Reusing a connection reduces the number of network round

trips needed to establish a physical connection between the driver and the data-

base. The performance penalty is paid up front at the time the connection pool is

populated with connections. As the connections in the pool are actually used by

124 ODBC Applications: Writing Good Code

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 124

the application, performance improves significantly. Obtaining a connection

becomes one of the fastest operations an application performs instead of one of

the slowest.

Although obtaining connections from a pool is efficient, when your applica-

tion opens and closes connections impacts the scalability of your application.

Open connections just before the user needs them, not sooner, to minimize the

time that the user owns the physical connection. Similarly, close connections as

soon as the user no longer needs them.

To minimize the number of connections required in a connection pool to

service users, you can switch a user associated with a connection to another user

if your database driver supports a feature known as reauthentication.

Minimizing the number of connections conserves memory and can improve

performance. See “Using Reauthentication with Connection Pooling,” page 232.

See Chapter 8, “Connection Pooling and Statement Pooling,” for details about

connection pooling.

Establishing Connections One at a Time

Some applications are not good candidates for using connection pooling, partic-

ularly if connection reuse is limited. See “When Not to Use Connection Pooling,”

page 15, for examples.

Managing Connections 125

Performance Tip

If your application does not use connection pooling, avoid connecting

and disconnecting multiple times throughout your application to execute

SQL statements because of the performance hit your application pays for

opening connections. You don’t need to open a new connection for each

SQL statement your application executes.

Using One Connection for Multiple Statements

When you’re using a single connection for multiple statements, your application

may have to wait for a connection if it connects to a streaming protocol database.

In streaming protocol databases, only one request can be processed at a time over

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 125

a single connection; other requests on the same connection must wait for the

preceding request to complete. Sybase ASE, Microsoft SQL Server, and MySQL

are examples of streaming protocol databases.

In contrast, when connecting to cursor-based protocol databases, the driver

tells the database server when to work and how much data to retrieve. Several

cursors can use the network, each working in small slices of time. Oracle and

DB2 are examples of cursor-based protocol databases. For a more detailed expla-

nation of streaming versus cursor-based protocol databases, see “One

Connection for Multiple Statements,” page 16.

The advantage of using one connection for multiple statements is that it

reduces the overhead of establishing multiple connections, while allowing multi-

ple statements to access the database. The overhead is reduced on both the data-

base server and client machines. The disadvantage is that the application may

have to wait to execute a statement until the single connection is available. See

“One Connection for Multiple Statements,” page 16, for guidelines on using this

model of connection management.

Obtaining Database and Driver Information Efficiently

Remember that creating a connection is one of the most performance-expensive

operations that an application performs.

126 ODBC Applications: Writing Good Code

Performance Tip

Because of the performance hit your application pays for opening con-

nections, once your application is connected, you should avoid establish-

ing additional connections to gather information about the driver and

the database, such as supported data types or database versions, using

SQLGetInfo and SQLGetTypeInfo. For example, some applications estab-

lish a connection and then call a routine in a separate DLL or shared

library that reconnects and gathers information about the driver and the

database.

How often do databases change their supported data types or database ver-

sion between connections? Because this type of information typically doesn’t

change between connections and isn’t a large amount of information to store,

you may want to retrieve and cache the information so the application can access

it later.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 126

Managing Transactions

To ensure data integrity, all statements in a transaction are committed or rolled

back as a unit. For example, when you use a computer to transfer money from

one bank account to another, the request involves a transaction—updating val-

ues stored in the database for both accounts. If all parts of that unit of work suc-

ceed, the transaction is committed. If any part of that unit of work fails, the

transaction is rolled back.

Use the guidelines in this section to help you manage transactions more effi-

ciently.

Managing Commits in Transactions

Committing (and rolling back) transactions is slow because of the disk I/O and,

potentially, the number of network round trips required. What does a commit

actually involve? The database must write to disk every modification made by a

transaction to the database. This is usually a sequential write to a journal file (or

log); nevertheless, it involves expensive disk I/O.

In ODBC, the default transaction commit mode is auto-commit. In auto-

commit mode, a commit is performed for every SQL statement that requires a

request to the database (Insert, Update, Delete, and Select statements). When

auto-commit mode is used, your application doesn’t control when database work

is committed. In fact, commits commonly occur when there’s actually no real

work to commit.

Some databases, such as DB2, don’t support auto-commit mode. For these

databases, the database driver, by default, sends a commit request to the database

after every successful operation (SQL statement). The commit request equates to

a network round trip between the driver and the database. The round trip to the

database occurs even though the application didn’t request the commit and even

if the operation made no changes to the database. For example, the driver makes

a network round trip even when a Select statement is executed.

Let’s look at the following ODBC code, which doesn’t turn off auto-commit

mode. Comments in the code show when commits occur if the driver or the

database performs commits automatically:

/* For conciseness, this code omits error checking */

/* Allocate a statement handle */

rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

Managing Transactions 127

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 127

/* Prepare an INSERT statement for multiple executions */

strcpy (sqlStatement, "INSERT INTO employees " +

"VALUES (?, ?, ?)");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameters */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&id, sizeof(id), NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_CHAR, 20, 0,

name, sizeof(name), NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&salary, sizeof(salary), NULL);

/* Set parameter values before execution */

id = 20;

strcpy(name, "Employee20");

salary = 100000;

rc = SQLExecute(hstmt);

/* A commit occurs because auto-commit is on */

/* Change parameter values for the next execution */

id = 21;

strcpy(name, "Employee21");

salary = 150000;

rc = SQLExecute(hstmt);

/* A commit occurs because auto-commit is on */

/* Reset parameter bindings */

rc = SQLFreeStmt((SQLHSTMT)hstmt, SQL_RESET_PARAMS);

strcpy(sqlStatement, “SELECT id, name, salary “ +

“FROM employees”);

128 ODBC Applications: Writing Good Code

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 128

/* Execute a SELECT statement. A prepare is unnecessary

because it's executed only once. */

rc = SQLExecDirect((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt, 3, SQL_INTEGER, &salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

/* Whether a commit occurs after a SELECT statement

because auto-commit is on depends on the driver.

It's safest to assume a commit occurs here. */

/* Prepare the UPDATE statement for multiple executions */

strcpy (sqlStatement,

"UPDATE employees SET salary = salary * 1.05" +

"WHERE id = ?");

Managing Transactions 129

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 129

rc = SQLPrepare ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameter */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_LONG, SQL_INTEGER, 10, 0,

&index, sizeof(index), NULL);

for (index = 0; index < 10; index++) {

/* Execute the UPDATE statement for each

value of index between 0 and 9 */

rc = SQLExecute (hstmt);

/* Because auto-commit is on, a commit occurs each time

through loop for a total of 10 commits */

}

/* Reset parameter bindings */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_RESET_PARAMS);

/* Execute a SELECT statement. A prepare is unnecessary

because it's only executed once. */

strcpy(sqlStatement, "SELECT id, name, salary" +

"FROM employees");

rc = SQLExecDirect ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

130 ODBC Applications: Writing Good Code

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 130

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt,3,SQL_INTEGER,&salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

/* Whether a commit occurs after a SELECT statement

because auto-commit is on depends on the driver.

It's safest to assume a commit occurs here. */

Managing Transactions 131

Performance Tip

Because of the significant amount of disk I/O on the database server

required to commit every operation and the extra network round trips

that occur between the driver and the database server, it’s a good idea to

turn off auto-commit mode in your application and use manual commits

instead. Using manual commits allows your application to control when

database work is committed, which provides dramatically better perfor-

mance. To turn off auto-commit mode, use the SQLSetConnectAttr func-

tion, for example, SQLSetConnectAttr(hstmt, SQL_ATTR_AUTOCOMMIT,

SQL_AUTOCOMMIT_OFF).

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 131

For example, let’s look at the following ODBC code. It’s identical to the pre-

vious ODBC code except that it turns off auto-commit mode and uses manual

commits:

/* For conciseness, this code omits error checking */

/* Allocate a statement handle */

rc = SQLAllocStmt((SQLHDBC)hdbc, (SQLHSTMT *)&hstmt);

/* Turn auto-commit off */

rc = SQLSetConnectAttr (hdbc, SQL_AUTOCOMMIT,

SQL_AUTOCOMMIT_OFF);

/* Prepare an INSERT statement for multiple executions */

strcpy (sqlStatement, "INSERT INTO employees" +

"VALUES (?, ?, ?)");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameters */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&id, sizeof(id), NULL);

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_CHAR, 20, 0,

name, sizeof(name), NULL);

rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&salary, sizeof(salary), NULL);

/* Set parameter values before execution */

id = 20;

strcpy(name,"Employee20");

salary = 100000;

rc = SQLExecute(hstmt);

/* Change parameter values for the next execution */

id = 21;

strcpy(name,"Employee21");

132 ODBC Applications: Writing Good Code

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 132

salary = 150000;

rc = SQLExecute(hstmt);

/* Reset parameter bindings */

rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);

/* Manual commit */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

/* Execute a SELECT statement. A prepare is unnecessary

because it's only executed once. */

strcpy(sqlStatement, "SELECT id, name, salary" +

"FROM employees");

rc = SQLExecDirect((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt, 3, SQL_INTEGER, &salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

Managing Transactions 133

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 133

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

strcpy (sqlStatement,

"UPDATE employees SET salary = salary * 1.05" +

"WHERE id = ?");

/* Prepare the UPDATE statement for multiple executions */

rc = SQLPrepare ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

/* Bind parameter */

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_SLONG, SQL_INTEGER, 10, 0,

&index, sizeof(index), NULL);

for (index = 0; index < 10; index++) {

/* Execute the UPDATE statement for each

value of index between 0 and 9 */

rc = SQLExecute (hstmt);

}

/* Manual commit */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

/* Reset parameter bindings */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_RESET_PARAMS);

/* Execute a SELECT statement. A prepare is unnecessary

because it's only executed once. */

strcpy(sqlStatement, "SELECT id, name, salary" +

"FROM employees");

rc = SQLExecDirect ((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

134 ODBC Applications: Writing Good Code

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 134

/* Fetch the first row */

rc = SQLFetch(hstmt);

while (rc != SQL_NO_DATA_FOUND) {

/* All rows are returned when fetch

returns SQL_NO_DATA_FOUND */

/* Get the data for each column in the result set row */

rc = SQLGetData (hstmt, 1, SQL_INTEGER, &id,

sizeof(id), NULL);

rc = SQLGetData (hstmt, 2, SQL_VARCHAR, &name,

sizeof(name), NULL);

rc = SQLGetData (hstmt,3,SQL_INTEGER,&salary,

sizeof(salary), NULL);

printf("\nID: %d Name: %s Salary: %d", id, name, salary);

/* Fetch the next row of data */

rc = SQLFetch(hstmt);

}

/* Close the cursor */

rc = SQLFreeStmt ((SQLHSTMT)hstmt, SQL_CLOSE);

/* Manual commit */

rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

See “Managing Commits in Transactions,” page 22, for information on when

to commit work if you’ve turned off auto-commit mode.

Choosing the Right Transaction Model

Which type of transaction should you use: local or distributed? A local transac-

tion accesses and updates data on a single database. A distributed transaction

accesses and updates data on multiple databases; therefore, it must be coordi-

nated among those databases.

Managing Transactions 135

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 135

Be aware that the default transaction behavior of many COM+ components

uses distributed transactions, so changing that default transaction behavior to

local transactions as shown can improve performance.

// Disable MTS Transactions.

XACTOPT options[1] = {XACTSTAT_NONE,"NOT SUPPORTED"};

hr = Itxoptions->SetOptions(options);

See “Transaction Management,” page 21, for more information about per-

formance and transactions.

Executing SQL Statements

Use the guidelines in this section to help you select which ODBC functions will

give you the best performance when executing SQL statements.

Using Stored Procedures

Database drivers can call stored procedures on the database using either of the

following methods:

• Execute the procedure the same way as any other SQL statement. The data-

base parses the SQL statement, validates argument types, and converts argu-

ments into the correct data types.

• Invoke a Remote Procedure Call (RPC) directly in the database. The data-

base skips the parsing and optimization that executing a SQL statement

requires.

136 ODBC Applications: Writing Good Code

Performance Tip

Distributed transactions, as defined by ODBC and the Microsoft

Distributed Transaction Coordinator (DTC), are substantially slower than

local transactions because of the logging and network round trips

needed to communicate between all the components involved in the dis-

tributed transaction. Unless distributed transactions are required, you

should use local transactions.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 136

Remember that SQL is always sent to the database as a character string. For

example, consider the following stored procedure call, which passes a literal

argument to the stored procedure:

{call getCustName (12345)}

Although the argument to getCustName() is an integer, the argument is

passed inside a character string to the database, namely {call getCustName

(12345)}. The database parses the SQL statement, isolates the single argument

value of 12345, and converts the string 12345 into an integer value before execut-

ing the procedure as a SQL language event. Using an RPC on the database, your

application can pass the parameters to the RPC. The driver sends a database pro-

tocol packet that contains the parameters in their native data type formats, skip-

ping the parsing and optimization required to execute the stored procedure as a

SQL statement. Compare the following examples.

Executing SQL Statements 137

Performance Tip

Call stored procedures by invoking an RPC with parameter markers for

arguments instead of using literal arguments. Because the database skips

the parsing and optimization required in executing the stored procedure

as a SQL statement, performance is significantly improved.

Example A: Not Using a Server-Side RPC

The stored procedure getCustName is not optimized to use a server-side

RPC. The database treats the SQL stored procedure execution request as

a normal SQL language event, which includes parsing the statement,

validating argument types, and converting arguments into the correct

data types before executing the procedure.

strcpy (sqlStatement,"{call getCustName (12345)}");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

rc = SQLExecute(hstmt);

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 137

Why doesn’t the driver parse and automatically change the SQL stored pro-

cedure call when it encounters a literal argument so that it can execute the stored

procedure using an RPC? Consider this example:

{call getCustname (12345)}

The driver doesn’t know if the value 12345 represents an integer, a decimal, a

smallint, a bigint, or another numeric data type. To determine the correct data

type for packaging the RPC request, the driver must make an expensive network

round trip to the database server. The overhead needed to determine the true

data type of the literal argument far outweighs the benefit of trying to execute the

request as an RPC.

Using Statements Versus Prepared Statements

Most applications have a certain set of SQL statements that are executed multiple

times and a few SQL statements that are executed only once or twice during the

life of the application. Choose the SQLExecDirect function or the

SQLPrepare/SQLExecute functions depending on how frequently you plan to

execute the SQL statement.

138 ODBC Applications: Writing Good Code

Example B: Using a Server-Side RPC

The stored procedure getCustName is optimized to use a server-side

RPC. Because the application avoids literal arguments and calls the pro-

cedure by specifying arguments as parameters, the driver optimizes the

execution by invoking the stored procedure directly on the database as

an RPC. The SQL language processing by the database is avoided, and

execution time is faster.

strcpy (sqlStatement,"{call getCustName (?)}");

rc = SQLPrepare((SQLHSTMT)hstmt, sqlStatement, SQL_NTS);

rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT,

SQL_C_LONG, SQL_INTEGER, 10, 0,

&id, sizeof(id), NULL);

id = 12345;

rc = SQLExecute(hstmt);

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 138

The SQLExecDirect function is optimized for a SQL statement that is only

executed once. In contrast, the SQLPrepare/SQLExecute functions are optimized

for SQL statements that use parameter markers and are executed multiple times.

Although the overhead for the initial execution of a prepared statement is high,

the advantage is realized with subsequent executions of the SQL statement.

Using the SQLPrepare/SQLExecute functions typically results in at least two

network round trips to the database server:

• One network round trip to parse and optimize the statement

• One or more network round trips to execute the statement and retrieve

results

Executing SQL Statements 139

Performance Tip

If your application makes a request only once during its life span, using

the SQLExecDirect function is a better choice than using the

SQLPrepare/SQLExecute function because SQLExecDirect results in only

a single network round trip. Remember, reducing network communica-

tion typically provides the most performance gain. For example, if you

have an application that runs an end-of-day sales report, send the query

that generates the data for that report to the database using the

SQLExecDirect function, not the SQLPrepare/SQLExecute function.

See “SQL Statements,” page 27, for more information about statements ver-

sus prepared statements.

Using Arrays of Parameters

Updating large amounts of data typically is done by preparing an Insert state-

ment and executing that statement multiple times, resulting in many network

round trips.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 139

With ODBC 3.x, calls to SQLSetStmtAttr with the SQL_ATTR_

PARAMSET_SIZE, SQL_ATTR_PARAMS_PROCESSED_PTR, and SQL_ATTR_PARAM_

STATUS_PTR arguments supersede the ODBC 2.x call to SQLParamOptions.

Before executing the statement, the application sets the value of each data

element in the bound array. When the statement is executed, the driver tries to

process the entire array contents using one network round trip. For example, let’s

compare the following examples.

140 ODBC Applications: Writing Good Code

Performance Tip

To reduce the number of network round trips when updating large

amounts of data, you can send multiple Insert statements to the data-

base at a time using the SQLSetStmtAttr function with the following

arguments: SQL_ATTR_PARAMSET_SIZE sets the array size of the parame-

ter, SQL_ATTR_PARAMS_PROCESSED_PTR assigns a variable filled by

SQLExecute (containing the number of rows that are inserted), and

SQL_ATTR_PARAM_STATUS_PTR points to an array in which status informa-

tion for each row of parameter values is retrieved.

Example A: Executing a Prepared Statement Multiple Times

A prepared statement is used to execute an Insert statement multiple

times, requiring 101 network round trips to perform 100 Insert opera-

tions: 1 round trip to prepare the statement and 100 additional round

trips to execute its iterations.

rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)" +

"VALUES (?,?,...)", SQL_NTS);

// bind parameters

...

do {

// read ledger values into bound parameter buffers

...

rc = SQLExecute (hstmt);

// insert row

} while ! (eof);

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 140

Using the Cursor Library

The ODBC cursor library is a component of Microsoft Data Access Components

(MDAC) and is used to implement static cursors (one type of scrollable cursor)

for drivers that normally don’t support them.

Executing SQL Statements 141

Example B: Arrays of Parameters

When arrays of parameters are used to consolidate 100 Insert opera-

tions, only two network round trips are required: one to prepare the

statement and another to execute the array. Although arrays of parame-

ters use more CPU cycles, performance is gained by reducing the num-

ber of network round trips.

SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)" +

"VALUES (?,?,...)", SQL_NTS);

SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMSET_SIZE, (UDWORD)100,

SQL_IS_UINTEGER);

SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR,

&rows_processed, SQL_IS_POINTER);

// Specify an array in which to retrieve the status of

// each set of parameters.

SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_STATUS_PTR,

ParamStatusArray, SQL_IS_POINTER);

// pass 100 parameters per execute

// bind parameters

...

do {

// read up to 100 ledger values into

// bound parameter buffers.

...

rc = SQLExecute (hstmt);

// insert a group of 100 rows

} while ! (eof);

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 141

What if you don’t know whether your driver supports scrollable cursors?

Using the following code ensures that the ODBC cursor library is only used when

the driver doesn’t support scrollable cursors:

rc = SQLSetConnectAttr (hstmt, SQL_ATTR_ODBC_CURSORS,

SQL_CUR_USE_IF_NEEDED, SQL_IS_INTEGER);

Retrieving Data

Retrieve only the data you need, and choose the most efficient method to retrieve

that data. Use the guidelines in this section to optimize your performance when

retrieving data.

Retrieving Long Data

Retrieving long data—such as large XML data, long varchar/text, long varbinary,

Clobs, and Blobs—across a network is slow and resource intensive. Most users

really don’t want to see long data. For example, consider the user interface of an

employee directory application that allows the user to look up an employee’s

phone extension and department, and optionally, view an employee’s photo-

graph by clicking the name of the employee.

Employee Phone Dept

Harding X4568 Manager

Hoover X4324 Sales

Taft X4569 Sales

Lincoln X4329 Tech

142 ODBC Applications: Writing Good Code

Performance Tip

If your ODBC driver supports scrollable cursors, don’t code your applica-

tion to load the ODBC cursor library. Although the cursor library provides

support for static cursors, the cursor library also creates temporary log

files on the user’s local disk drive. Because of the disk I/O required to

create these temporary log files, using the ODBC cursor library slows per-

formance.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 142

Retrieving each employee’s photograph would slow performance unneces-

sarily. If the user does want to see the photograph, he can click the employee

name and the application can query the database again, specifying only the long

columns in the Select list. This method allows users to retrieve result sets with-

out paying a high performance penalty for network traffic.

Although excluding long data from the Select list is the best approach,

some applications do not formulate the Select list before sending the query to

the driver (that is, some applications use SELECT * FROM table ...). If the

Select list contains long data, the driver is forced to retrieve that long data, even

if the application never requests the long data from the result set. When possible,

use a method that does not retrieve all columns of the table. For example, con-

sider the following code:

rc = SQLExecDirect (hstmt, "SELECT * FROM employees" +

"WHERE SSID = '999-99-2222'", SQL_NTS);

rc = SQLFetch (hstmt);

When a query is executed, the driver has no way to determine which result

columns the application will use; an application may fetch any result column that

is retrieved. When the driver processes a SQLFetch or SQLExtendedFetch

request, it retrieves at least one, and often multiple, result rows from the database

across the network. A result row contains all the column values for each row.

What if one of the columns includes long data such as an employee photograph?

Performance would slow considerably.

Retrieving Data 143

Performance Tip

Because retrieving long data across the network negatively affects per-

formance, design your application to exclude long data from the Select

list.

Limiting the Select list to contain only the name column results in a faster

performing query at runtime. For example:

rc = SQLExecDirect (hstmt, "SELECT name FROM employees" +

"WHERE SSID = '999-99-2222'", SQL_NTS);

rc = SQLFetch(hstmt);

rc = SQLGetData(hstmt, 1, ...);

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 143

Limiting the Amount of Data Retrieved

If your application executes a query that retrieves five rows when it needs only

two, application performance suffers, especially if the unnecessary rows include

long data.

144 ODBC Applications: Writing Good Code

Performance Tip

One of the easiest ways to improve performance is to limit the amount of

network traffic between the driver and the database server—optimally by

writing SQL queries that instruct the driver to retrieve from the database

only the data that the application requires.

Make sure that your Select statements use a Where clause to limit the

amount of data that is retrieved. Even when using a Where clause, a Select state-

ment that does not adequately restrict its request could retrieve hundreds of

rows of data. For example, if you want data from the employees table for each

manager hired in recent years, your application could execute the following

statement, and subsequently, filter out the rows of employees who are not man-

agers:

SELECT * FROM employees

WHERE hiredate > 2000

However, suppose the employees table contains a column that stores pho-

tographs of each employee. In this case, retrieving extra rows is extremely expen-

sive to your application performance. Let the database filter the request for you

and avoid sending extra data that you don’t need across the network. The follow-

ing query uses a better approach, limiting the data retrieved and improving per-

formance:

SELECT * FROM employees

WHERE hiredate > 2003 AND job_title='Manager'

Sometimes applications need to use SQL queries that generate a large

amount of network traffic. For example, consider an application that displays

information from support case histories, which each contains a 10MB log file.

Does the user really need to see the entire contents of the log file? If not, perfor-

mance would improve if the application displayed only the first 1MB of the log

file.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 144

Suppose you have a GUI-based application, and each screen can display no

more than 20 rows of data. It’s easy to construct a query that may retrieve a mil-

lion rows, such as SELECT * FROM employees, but it’s hard to imagine a scenario

where a query that retrieves a million rows would be useful. When designing

applications, it’s good practice to call the SQLSetStmtAttr function with the

SQL_ATTR_MAX_ROWS option as a fail-safe to limit the number of rows that a

query can retrieve. For example, if an application calls SQLSetStmt(SQL_

ATTR_MAX_ROWS, 10000, 0), no query will retrieve more than 10,000 rows.

In addition, calling the SQLSetStmtAttr function with the SQL_ATTR_

MAX_LENGTH option limits the bytes of data that can be retrieved for a column

value with the following data types:

• Binary

• Varbinary

• Longvarbinary

• Char

• Varchar

• Longvarchar

For example, consider an application that allows users to select from a repos-

itory of technical articles. Rather than retrieve and display the entire article, the

application can call SQLSetStmtAttr(SQL_ATTR_MAX_LENGTH, 153600, 0) to

retrieve only the first 150KB of text to the application—enough to give users a

reasonable preview of the article.

Using Bound Columns

Data can be retrieved from the database using either the SQLBindCol function or

the SQLGetData function. When SQLBindCol is called, it associates, or binds,

a variable to a column in the result set. Nothing is sent to the database.

Retrieving Data 145

Performance Tip

When you cannot avoid retrieving data that generates a large amount of

network traffic, your application can still control the amount of data

being sent from the database to the driver by limiting the number of

rows sent across the network and reducing the size of each row sent

across the network.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 145

SQLBindCol tells the driver to remember the addresses of the variables, which the

driver will use to store the data when it is actually retrieved. When SQLFetch is

executed, the driver places the data into the addresses of the variables specified by

SQLBindCol. In contrast, SQLGetData returns data directly into variables. It’s

commonly called to retrieve long data, which often exceeds the length of a single

buffer and must be retrieved in parts.

146 ODBC Applications: Writing Good Code

Performance Tip

Retrieving data using the SQLBindCol function instead of using the

SQLGetData function reduces the number of ODBC calls, and ultimately

the number of network round trips, improving performance.

The following code uses the SQLGetData function to retrieve data:

rc = SQLExecDirect (hstmt, "SELECT <20 columns>" +

"FROM employees" +

"WHERE HireDate >= ?", SQL_NTS);

do {

rc = SQLFetch (hstmt);

// call SQLGetData 20 times

} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

If the query retrieves 90 result rows, 1,891 ODBC calls are made (20 calls to

SQLGetData × 90 result rows + 91 calls to SQLFetch).

The following code uses the SQLBindCol function instead of SQLGetData:

rc = SQLExecDirect (hstmt, "SELECT <20 columns>" +

"FROM employees" +

"WHERE HireDate >= ?", SQL_NTS);

// call SQLBindCol 20 times

do {

rc = SQLFetch (hstmt);

} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 146

The number of ODBC calls is reduced from 1,891 to 111 (20 calls to

SQLBindCol + 91 calls to SQLFetch). In addition to reducing the number of calls

required, many drivers optimize how SQLBindCol is used by binding result infor-

mation directly from the database into the user’s buffer. That is, instead of the

driver retrieving information into a container and then copying that information

to the user’s buffer, the driver requests that the information from the database be

placed directly into the user’s buffer.

Using SQLExtendedFetch Instead of SQLFetch

Most ODBC drivers now support SQLExtendedFetch for forward-only cursors.

Yet, most ODBC applications continue to use SQLFetch to fetch data.

Retrieving Data 147

Performance Tip

Using the SQLExtendedFetch function instead of SQLFetch to fetch data

reduces the number of ODBC calls, and ultimately the number of net-

work round trips, and simplifies coding. Using SQLExtendedFetch results

in better performance and more maintainable code.

Again, consider the same example we used in the section, “Using Bound

Columns,” page 145, but using SQLExtendedFetch instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);

// use arrays of 100 elements

rc = SQLExecDirect (hstmt, "SELECT <20 columns>" +

"FROM employees" +

"WHERE HireDate >= ?", SQL_NTS);

// call SQLBindCol 1 time specifying row-wise binding

do {

rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0,

&RowsFetched, RowStatus);

} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made by the application has been reduced from

1,891 to 4 (1 SQLSetStmtOption + 1 SQLExecDirect + 1 SQLBindCol + 1

SQLExtendedFetch). Besides reducing the ODBC call load, some ODBC drivers

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 147

can retrieve data from the server in arrays, further improving the performance by

reducing network traffic.

For ODBC drivers that do not support SQLExtendedFetch, your application

can enable forward-only cursors using the ODBC cursor library by calling

SQLSetConnectAttr. Using the cursor library won’t improve performance, but it

also won’t decrease application response time when using forward-only cursors

because no logging is required. For scrollable cursors, it’s a different story (see

“Using the Cursor Library,” page 141). In addition, using the cursor library when

SQLExtendedFetch is not supported natively by the driver simplifies code

because the application can always depend on SQLExtendedFetch being avail-

able. The application doesn’t require two algorithms (one using

SQLExtendedFetch and one using SQLFetch).

Determining the Number of Rows in a Result Set

ODBC defines two types of cursors:

• Forward-only

• Scrollable (static, keyset-driven, dynamic, and mixed)

Scrollable cursors let you go both forward and backward through a result set.

However, because of limited support for server-side scrollable cursors in many

database systems, ODBC drivers often emulate scrollable cursors, storing rows

from a scrollable result set in a cache on the machine where the driver resides

(client or application server).

Unless you are certain that the database natively supports using a scrollable

result set, do not call the SQLExtendedFetch function to find out how many rows

the result set contains. For drivers that emulate scrollable cursors, calling

SQLExtendedFetch causes the driver to retrieve all results across the network to

reach the last row. This emulated model of scrollable cursors provides flexibility

for the developer but comes with a performance penalty until the client cache of

rows is fully populated. Instead of calling SQLExtendedFetch to determine the

number of rows, count the rows by iterating through the result set or obtain the

number of rows by submitting a Select statement with the Count function. For

example:

SELECT COUNT(*) FROM employees

Unfortunately, there’s no easy way to tell if a database driver uses native

server-side scrollable cursors or emulates this functionality. For Oracle or

148 ODBC Applications: Writing Good Code

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 148

MySQL, you know the driver emulates scrollable cursors, but for other databases,

it’s more complicated. See “Using Scrollable Cursors,” page 36, for details about

which common databases support server-side scrollable cursors and how data-

base drivers emulate scrollable cursors.

Updating Data 149

Performance Tip

In general, do not write code that relies on the number of result rows

from a query because drivers often must retrieve all rows in a result set

to determine how many rows the query will return.

Choosing the Right Data Type

When designing your database schema, it’s obvious that you need to think about

the impact of storage requirements on the database server. Less obvious, but just

as important, you need to think about the network traffic required to move data

in its native format to and from the ODBC driver. Retrieving and sending certain

data types across the network can increase or decrease network traffic.

Performance Tip

For multiuser, multivolume applications, billions, or even trillions, of net-

work packets can move between the driver and the database server over

the course of a day. Choosing data types that are processed efficiently

can incrementally provide a measurable gain in performance.

See “Choosing the Right Data Type,” page 34, for information about which

data types are processed faster than others.

Updating Data

Use the guidelines in this section to manage your updates more efficiently.

Using SQLSpecialColumns to Optimize Updates and Deletes

Many databases have hidden columns, named pseudo-columns, that represent a

unique key associated with every row in a table. Typically, pseudo-columns in a

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 149

SQL statement provide the fastest way to access a row because they usually point

to the exact location of the physical record.

150 ODBC Applications: Writing Good Code

Performance Tip

Use SQLSpecialColumns to identify the most optimal columns, typically

pseudo-columns, to use in the Where clause for updating data.

Some applications, such as an application that forms a Where clause consisting

of a subset of the column values retrieved in the result set, cannot be designed to

take advantage of positioned updates and deletes. Some applications may formulate

the Where clause by using searchable result columns or by calling SQLStatistics to

find columns that may be part of a unique index. These methods usually work but

can result in fairly complex queries. For example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name," +

"ssn, address, city, state, zip" +

"FROM employees", SQL_NTS);

// fetch data using complex query

...

rc = SQLExecDirect (hstmt, "UPDATE employees SET address = ?" +

"WHERE first_name = ? AND last_name = ?" +

"AND ssn = ? AND address = ? AND city = ? AND" +

"state = ? AND zip = ?", SQL_NTS);

Many databases support pseudo-columns that are not explicitly defined in the

table definition but are hidden columns of every table (for example, ROWID for

Oracle). Because pseudo-columns are not part of the explicit table definition,

they’re not retrieved when SQLColumns is called. To determine if pseudo-columns

exist, your application must call SQLSpecialColumns. For example:

...

rc = SQLSpecialColumns (hstmt, SQL_BEST_ROWID, ...);

...

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 150

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name," +

"ssn, address, city, state, zip," +

"ROWID FROM employees", SQL_NTS);

// fetch data and probably "hide" ROWID from the user

...

rc = SQLExecDirect (hstmt, "UPDATE employees SET address = ?" +

"WHERE ROWID = ?", SQL_NTS);

// fastest access to the data!

If your data source doesn’t contain pseudo-columns, the result set of

SQLSpecialColumns consists of the columns of the most optimal unique index

on the specified table (if a unique index exists). Therefore, your application

doesn’t need to call SQLStatistics to find the smallest unique index.

Using Catalog Functions

Catalog functions retrieve information about a result set, such as the number and

type of columns. Because catalog functions are slow compared to other ODBC

functions, using them frequently can impair performance. Use the guidelines in

this section to optimize performance when selecting and using catalog functions.

Minimizing the Use of Catalog Functions

Compared to other ODBC functions, catalog functions that generate result sets

are slow. To retrieve all result column information mandated by the ODBC spec-

ification, an ODBC driver often must perform multiple or complex queries to

retrieve the result set for a single call to a catalog function.

Using Catalog Functions 151

Performance Tip

Although it’s almost impossible to write an ODBC application without

using a catalog function, you can improve performance by minimizing

their use.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 151

In addition to avoid executing catalog functions multiple times, you should

cache information retrieved from result sets generated by catalog functions. For

example, call SQLGetTypeInfo once, and cache the elements of the result set that

your application depends on. It’s unlikely that any application will use all ele-

ments of the result set generated by a catalog function, so the cache of informa-

tion shouldn’t be difficult to maintain.

Avoiding Search Patterns

Catalog functions support arguments that can limit the amount of data

retrieved. Using null values or search patterns, such as %A%, for these arguments

often generates time-consuming queries. In addition, network traffic can

increase because of unnecessary results.

152 ODBC Applications: Writing Good Code

Performance Tip

Always supply as many non-null arguments as possible to result sets that

generate catalog functions.

In the following example, an application uses the SQLTables function to

determine whether the table named WSTable exists and provides null values for

most of the arguments:

rc = SQLTables(hstmt, null, 0, null, 0, "WSTable",

SQL_NTS, null, 0);

The driver interprets the request as follows: Retrieve all tables, views, system

tables, synonyms, temporary tables, and aliases named WSTable that exist in any

database schema in the database catalog.

In contrast, the following request provides non-null values for all argu-

ments, allowing the driver to process the request more efficiently:

rc = SQLTables(hstmt, "cat1", SQL_NTS, "johng", SQL_NTS,

"WSTable", SQL_NTS, "Table", SQL_NTS);

The driver interprets the request as follows: Retrieve all tables in catalog

"cat1" that are named "WSTable" and owned by "johng." No synonyms,

views, system tables, aliases, or temporary tables are retrieved.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 152

Sometimes little is known about the object that you are requesting informa-

tion for. Any information that the application can provide the driver when call-

ing catalog functions can result in improved performance and reliability.

Using a Dummy Query to Determine Table Characteristics

Sometimes you need information about columns in the database table, such as

column names, column data types, and column precision and scale. For example,

an application that allows users to choose which columns to select may need to

request the names of each column in the database table.

Using Catalog Functions 153

Performance Tip

To determine characteristics about a database table, avoid using the

SQLColumns function. Instead, use a dummy query inside a prepared

statement that executes the SQLDescribeCol function. Only use the

SQLColumns function when you cannot obtain the requested information

from result set metadata (for example, using the table column default

values).

The following examples show the benefit of using the SQLDescribeCol

function over the SQLColumns function.

Example A: SQLColumns Function

A potentially complex query is prepared and executed, the result

description information is formulated, the driver retrieves the result

rows, and the application fetches the result. This method results in

increased CPU use and network communication.

rc = SQLColumns (... "UnknownTable" ...);

// This call to SQLColumns will generate a query to the

// system catalogs... possibly a join which must be

// prepared, executed, and produce a result set.

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 153

154 ODBC Applications: Writing Good Code

rc = SQLBindCol (...);

rc = SQLExtendedFetch (...);

// user must retrieve N rows from the server

// N = # result columns of UnknownTable

// result column information has now been obtained

Example B: SQLDescribeCol Function

A simple query that retrieves result set information is prepared, but the

query is not executed and result rows are not retrieved by the driver.

Only information about the result set is retrieved (the same information

retrieved by SQLColumns in Example A).

// prepare dummy query

rc = SQLPrepare (... "SELECT * FROM UnknownTable" +

"WHERE 1 = 0" ...);

// query is never executed on the server - only prepared

rc = SQLNumResultCols (...);

for (irow = 1; irow <= NumColumns; irow++) {

rc = SQLDescribeCol (...)

// + optional calls to SQLColAttributes

}

// result column information has now been obtained

// Note we also know the column ordering within the table!

// This information cannot be

// assumed from the SQLColumns example.

What if the database server, such as a Microsoft SQL Server server does

not support prepared statements by default? The performance of

Example A wouldn’t change, but the performance of Example B would

decrease slightly because the dummy query is evaluated in addition to

being prepared. Because the Where clause of the query always evaluates

to FALSE, the query generates no result rows and executes the state-

ment without retrieving result rows. So, even with a slight decrease in

performance, Example B still outperforms Example A.

05_0137143931_ch05.qxd 2/18/09 1:52 PM Page 154

Summary

The performance of ODBC applications can suffer if they fail to reduce network

traffic, limit disk I/O, simplify queries, and optimize the interaction between the

application and driver. Reducing network communication probably is the most

important technique for improving performance. For example, when you need

to update large amounts of data, using arrays of parameters rather than execut-

ing an Insert statement multiple times reduces the number of network round

trips required to complete the operation.

Typically, creating a connection is the most performance-expensive task

your application performs. Connection pooling can help you manage your con-

nections efficiently, particularly if your application has numerous users.

Regardless of whether your application uses connection pooling, make sure that

your application closes connections immediately after the user is finished with

them.

Making smart choices about how to handle transactions can also improve

performance. For example, using manual commits instead of auto-commit mode

provides better control over when work is committed. Similarly, if you don’t need

the protection of distributed transactions, using local transactions can improve

performance.

Inefficient SQL queries slow the performance of ODBC applications. Some

SQL queries don’t filter data, causing the driver to retrieve unnecessary data.

Your application pays a huge penalty in performance when that unnecessary data

is long data, such as data stored as a Blob or Clob. Even well-formed SQL queries

can be more or less effective depending on how they are executed. For example,

using SQLExtendedFetch instead of SQLFetch and using SQLBindCol instead of

SQLGetData reduces ODBC calls and improves performance.

Summary 155

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 155

05_0137143931_ch05.qxd 2/17/09 2:04 PM Page 156

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

