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CHAPTER 1 

CAUSES OF DATA QUALITY 

PROBLEMS

Data is impacted by numerous processes, most of which affect its quality to a 

certain degree.  I had to deal with data quality problems on a daily basis for many 

years and have seen every imaginable scenario of how data quality deteriorates.  

While each situation is different, I eventually came up with a classification shown 

in Figure 1-1.  It shows 13 categories of processes that cause the data problems, 

grouped into three high-level categories. 

Figure 1-1: Processes Affecting Data Quality 

The group on the left shows processes that bring data into the database from 

outside – either manually or through various interfaces and data integration 

techniques.  Some of these incoming data may be incorrect in the first place and 

simply migrate from one place to another.  In other cases, the errors are introduced 
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in the process of data extraction, transformation, or loading.  High volumes of the 

data traffic dramatically magnify these problems. 

The group on the right shows processes that manipulate the data inside the 

databases.  Some of these processes are routine, while others are brought upon by 

periodic system upgrades, mass data updates, database redesign, and a variety of 

ad-hoc activities.  Unfortunately, in practice most of these procedures lack time 

and resources, as well as reliable meta data necessary to understand all data quality 

implications.  It is not surprising, then, that internal data processing often leads to 

numerous data problems. 

The group on the bottom shows processes that cause accurate data to become 

inaccurate over time, without any physical changes made to it.  The data values are 

not modified, but their accuracy takes a plunge!  This usually happens when the 

real world object described by the data changes, but the data collection processes 

do not capture the change.  The old data turns obsolete and incorrect. 

In this chapter we will systematically discuss the 13 processes presented in Figure 

1-1 and explain how and why they negatively affect data quality. 

1.1 .  IN I T I A L DA T A CO N V E R S I O N

Databases rarely begin their life empty.  More often the starting point in their 

lifecycle is a data conversion from some previously exiting data source.  And by a 

cruel twist of fate, it is usually a rather violent beginning.  Data conversion usually 

takes the better half of new system implementation effort and almost never goes 

smoothly. 

When I think of data conversion, my first association is with the mass extinction of 

dinosaurs.  For 150 million years, dinosaurs ruled the earth.  Then one day – 

BANG – a meteor came crashing down.  Many animals died on impact, others 

never recovered and slowly disappeared in the ensuing darkness.  It took millions 

of years for flora and fauna to recover.  In the end, the formerly dominant 

dinosaurs were completely wiped out and replaced by the little furry creatures that 

later evolved into rats, lemurs, and the strange apes who find nothing better to do 

than write data quality books. 
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The data conversion is no different.  Millions of unsuspecting data elements 

quietly do their daily work until – BANG – data conversion comes hurling at them.  

Much data never makes it to the new database; many of the lucky ones mutate so 

much in transition that they simply die out slowly in the aftermath.  Most 

companies live with the consequences of bad data conversions for years or even 

decades.  In fact, some data problems can be traced to “grandfathers of data 

conversions,” i.e. conversion to the system from which the data were later 

converted to the system from which the data is converted to the new system… 

I still vividly remember one of my first major data conversion projects.  I was on a 

team implementing a new pension administration system.  Among other things, we 

needed to convert employee compensation data from the “legacy” HR database.  

The old data was stored in much detail – by paycheck and compensation type.  The 

new database simply needed aggregate monthly pensionable earnings.  The 

mapping was trivial – take all records with relevant compensation types (provided 

as a list of valid codes), add up amounts for each calendar month, and place the 

result into the new bucket.   

The result was disastrous.  Half of the sample records I looked at did not match the 

summary reports printed from the old system.  The big meeting was called for the 

next morning, and in the wee hours of the night, I had a presence of mind to stop 

looking for bugs in the code and poke into the source data.  The data certainly did 

not add up to what was showing on the summary reports, yet the reports were 

produced from these very data!  This mathematical puzzle kept me up till dawn.  

By then I had most of it figured out.   

Half a dozen compensation codes included in the aggregate amounts were missing 

from our list.  In fact they were even missing from the data dictionary!  Certain 

codes were used in some years but ignored in other years.  Records with negative 

amounts – retroactive adjustments – were aggregated into the previous month, 

which they technically belonged to, rather than the month of the paycheck.  

Apparently the old system had a ton of code that applied all these rules to calculate 

proper monthly pensionable earnings.  The new system was certainly not 

programmed to do so, and nobody remembered to indicate all this logic in the 

mapping document. 
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It took us eight weeks of extensive data profiling, analysis, and quality assessment 

to complete this portion of the project, whereas one week was budgeted for.  We 

were lucky, though, that the problem was relatively easy to expose.  In many 

conversion projects, the data is converted based on the mapping specifications that 

are ridiculously out-of-sync with reality.  The result is predictable – mass 

extinction of the data and the project teams. 

So what is it that makes data conversion so dangerous?  At the heart of the issue is 

the fact that every system is made of three layers: database, business rules, and 

user interface.  As a result what users see is not what is actually stored in the 

database.  This is especially true for older “legacy” systems.  During the data 

conversion it is the data structure that is usually the center of attention.  The data is 

mapped between old and new databases.  However, since the business rule layers 

of the source and destination systems are very different, this approach inevitably 

fails.  The converted data, while technically correct, is inaccurate for all practical 

purposes.

The second problem is the typical lack of reliable meta data about the source 

database.  Think about it, how often do we find value codes in the data that are 

missing from the mapping documents?  The answer is: All the time.  But how can 

we believe any meta data when even such a basic component is incorrect?  Yet, 

over and over again, data conversions are made to the specifications built on 

incomplete, incorrect, and obsolete meta data.   

To summarize, the quality of the data after conversion is directly proportional to 

the amount of time spent to analyze and profile the data and uncover the true data 

content.  In an ideal data conversion project, 80% of time is spent on data analysis 

and 20% on coding transformation algorithms. 

So far I have talked about the data problems introduced by the conversion process; 

however, the source data itself is never perfect.  Existing erroneous data tends to 

mutate and spread out during conversion like a virus.  Some bad records are 

dropped and not converted at all.  Others are changed by the transformation 

routines.  Such changed and aggregated errors are much more difficult to identify 

and correct after conversion.  What is even worse – the bad records impact 

conversion of many correct data elements. 
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To conclude, data conversion is the most difficult part of any system 

implementation.  The error rate in a freshly populated new database is often an 

order of magnitude above that of the old system from which the data is converted.  

As a major source of the data problems, data conversion must be treated with the 

utmost respect it deserves. 

1.2 .  SY S T E M CO N S O L I D A T I O N S

Database consolidations are the most common occurrence in the information 

technology landscape.  They take place regularly when old systems are phased out 

or combined.  And, of course, they always follow company mergers and 

acquisitions.  Database consolidations after corporate mergers are especially 

troublesome because they are usually unplanned, must be completed in an 

unreasonably tight timeframe, take place in the midst of the cultural clash of IT 

departments, and are accompanied by inevitable loss of expertise when key people 

leave midway through the project. 

An old man once rode his Pontiac three miles in the oncoming traffic before being 

stopped.  He was very surprised why everybody was going the wrong way.  That is 

exactly how I feel when involved in a data consolidation project. 

Data consolidation faces the same challenges as initial data conversion but 

magnified to a great extent.  I have already discussed why conversions cause data 
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quality problems.  The idea of consolidation adds the whole new dimension of 

complexity.  First of all, the data is often merged into an existing non-empty 

database, whose structure can be changed little or none whatsoever.  However, 

often the new data simply does not fit!  The efforts to squeeze square pegs into 

round holes are painful, even to an outside observant. 

More importantly, the data in the consolidated systems often overlap.  There are 

duplicates, there are overlaps in subject populations and data histories, and there 

are numerous data conflicts.  The traditional approach is to setup a winner-loser 

matrix indicating which source data element is picked up in case of a conflict.  For 

instance, date of birth will be taken from System A if present, from System B 

otherwise, and from System C if it is missing in both A and B.  This rarely works 

because it assumes that data on System A is always correct – a laughable 

assumption.  To mitigate the problem, the winner-loser matrix is usually 

transformed into a complex conditional hierarchy.  Now we take the date of birth 

from System A for all males born after 1956 in California, except if that date of 

birth is January 1, 1970, in which case we take it from System B, unless of course 

the record on System B is marked as edited by John Doe who was fired for playing 

games on the computer while doing data entry, in which case we pull it from 

Spreadsheet C… 

At some point the winner-loser matrix is so complex, that nobody really 

understands what is going on.  The programmers argue with business analysts 

about the exact meaning of the word “unless,” and consumption of antidepressants 

is on the rise.  It is time to scrap the approach and start over. 

I will discuss the proper methodology for data consolidation in the next chapter.  

For now we just conclude that data consolidation is one of the main causes of data 

problems and must be treated with great fear.  Walking a tightrope is child’s play 

in comparison. 
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1.3 .  MA N U A L DA T A EN T R Y

Despite high automation, much data is (and will always be!) typed into the 

databases by people through various forms and interfaces.  The most common 

source of data inaccuracy is that the person manually entering the data just makes 

a mistake.  To err, after all, is human!  People mistype; they choose a wrong entry 

from the list or enter right data value into the wrong box.  I had, at one time, 

participated in a data-cleansing project where the analysts were supposed to 

carefully check the corrections before entering them – and still 3% of the 

corrections were entered incorrectly.  This was in a project where data quality was 

the primary objective!   

Common error rate in data entry is much higher.  Over time I collected my 

personal indicative data from various databases.  My collection includes eight 

different spellings of my first name, along with a dozen of my last name, and four 

dates of birth; I was marked as male, female, and even the infamous ‘U’. 

Convoluted and inconvenient data entry forms often further complicate the data 

entry challenge.  The same applies to data entry windows and web-based 

interfaces.  Frustration in using a form will lead to exponential increase in the 

number of errors.  Users often tend to find the easiest way to complete the form, 

even if that means making deliberate mistakes. 

A common data entry problem is handling missing values.  Users may assign the 

same blank value to various types of missing values.  When “blank” is not 

allowed, users often enter meaningless value substitutes.  Default values in data 

entry forms are often left untouched.  The first entry in any list box is selected 

more often than any other entry. 

Good data entry forms and instructions somewhat mitigate data entry problems.  In 

an ideal fantasy world, data entry is as easy to the user as possible: fields are 

labeled and organized clearly, data entry repetitions are eliminated, and data is not 

required when it is not yet available or is already forgotten.  The reality of data 

entry, however, is not that rosy (and probably won’t be for years to come).  Thus 

we must accept that manual data entry will always remain a significant cause of 

data problems. 
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1.4 .  BA T C H FE E D S

Batch feeds are large regular data exchange interfaces between systems.  The ever-

increasing number of databases in the corporate universe communicates through 

complex spiderwebs of batch feeds. 

In the old days, when Roman legions wanted to sack a fortified city, they hurled 

heavy stones at its walls, day after day.  Not many walls could withstand such an 

assault.  In the modern world, the databases suffer the same unrelenting onslaught 

of batch feeds.  Each batch carries large volumes of data, and any problem in it 

causes great havoc further magnified by future feeds.  The batch feeds can be 

usually tied to the greatest number of data quality problems.  While each 

individual feed may not cause too many errors, the problems tend to accumulate 

from batch to batch.  And there is little opportunity to fix the ever-growing 

backlog.

So why do the well-tested batch feed programs falter?  The source system that 

originates the batch feed is subject to frequent structural changes, updates, and 

upgrades.  Testing the impact of these changes on the data feeds to multiple 

independent downstream databases is a difficult and often impractical step.  Lack 

of regression testing and quality assurance inevitably leads to numerous data 

problems with batch feeds any time the source system is modified – which is all of 

the time! 

Consider a simple example of a payroll feed to the employee benefit 

administration system.  Paycheck data is extracted, aggregated by pay type, and 

loaded into monthly buckets.  Every few months a new pay code is added into the 

payroll system to expand its functionality.  In theory, every downstream system 

may be impacted, and thus each downstream batch feed must be re-evaluated.  In 

practice, this task often slips through the cracks, especially since many systems, 

such as benefit administration databases, are managed by other departments or 

even outside vendors.  The records with the new code arrive at the doorsteps of the 

destination database and are promptly dropped from consideration.  In the typical 

scenario, the problem is caught after a few feeds.  By then, thousands of bad 

records were created. 

The other problem with batch feeds is that they quickly spread bad data from 

database to database.  Any errors that somehow find their way into the source 
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system will usually flow immediately through the batch feeds like viruses and can 

blend well enough with the rest of the batch data to come unnoticed and cause the 

greatest damage. 

The batch feeds are especially dangerous because newly arrived records do not sit 

quietly.  The incoming transactions usually trigger immediate processing in the 

target database.  Even during loading, existing data might be changed to reflect 

new transactions.  Thus more data is immediately corrupted.  Additional 

processing can be triggered, creating more and more errors in an avalanche of bad 

data.  For example, erroneous employee termination records arriving to a benefit 

administration system will initiate a sequence of benefit calculations. The results 

will be forwarded to the benefit payment system, which will create more wrong 

data and initiate more wrong activities.  The cost of a single bad record can run in 

to thousands of dollars.  It is hard to even visualize the destructive power of a 

batch feed full of erroneous data. 

1.5 .  RE A L -T I M E I N T E R F A C E S

More and more data is exchanged between the systems through real-time (or near 

real-time) interfaces.  As soon as the data enters one database, it triggers 

procedures necessary to send transactions to other downstream databases.  The 

advantage is immediate propagation of data to all relevant databases.  Data is less 

likely to be out-of-sync.  You can close your eyes and imagine the millions of little 

data pieces flying from database to database across vast distances with lightning 

speed, making our lives easier.  You see the triumph of the information age!  I see 

Wile E. Coyote in his endless pursuit of the Road Runner.  Going! Going! Gosh! 

The basic problem is that data is propagated too fast.  There is little time to verify 

that the data is accurate.  At best, the validity of individual attributes is usually 

checked.  Even if a data problem can be identified, there is often nobody at the 

other end of the line to react.  The transaction must be either accepted or rejected 

(whatever the consequences).  If data is rejected, it may be lost forever! 

Further, the data comes in small packets, each taken completely out of context.  A 

packet of data in itself may look innocent, but the data in it may be totally 

erroneous.  I once received an email from a Disney World resort thanking me for 
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staying there.  The text was grammatically perfect and would have made me feel 

great, except I did not go to Disney that year. 

The point is that “faster” and “better” rarely go hand-in-hand.  More often quality 

is the price paid for faster delivery.  Real-time data propagation is no exception – it 

is a liability from the data quality perspective.  This does not make it any less 

valuable.  Real-time interfaces save millions of dollars and significantly improve 

efficiency of the information systems.  But data quality suffers in the process, and 

this has to be recognized.  When an old batch feed is replaced by a new real-time 

interface, the potential cost of data quality deterioration must be evaluated and 

weighed against the benefit of faster data propagation. 

1.6 .  DA T A PR O C E S S I N G

Data processing is at the heart of all operational systems.  It comes in many shapes 

and forms – from regular transactions triggered by users to end-of-the-year 

massive calculations and adjustments.  In theory, these are repetitive processes that 

should work “like a clock.”  In practice there is nothing steady in the world of 

computer software.  Both programs and underlying data change and evolve, with 

the result that one morning the proverbial sun rises in the West, or worse yet, does 

not rise at all. 

The first part of the problem is the change in the programs responsible for regular 

data processing.  Minor changes and tweaks are as regular as normal use.  These 

are often not adequately tested based on the common misconception that small 

changes cannot have much impact.  Of course a tiny bug in the code applied to a 

million records can create a million errors faster than you can read this sentence. 

On the flip side, the programs responsible for regular processing often lag behind 

changes in the data caused by new collection procedures.  The new data may be 

fine when it enters the database, but it may be different enough to cause regular 

processing to produce erroneous results. 

A more subtle problem is when processing is accidentally done at the wrong time.  

Then the correct program may yield wrong results because the data is not in the 

state it is supposed to be.  A simple example is running the program that calculates 
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weekly compensation before the numbers from the hours tracking system were 

entered.

In theory, documenting the complete picture of what is going on in the database 

and how various processes are interrelated would allow us to completely mitigate 

the problem.  Indeed, someone could then analyze the data quality implications of 

any changes in code, processes, data structure, or data collection procedures and 

thus eliminate unexpected data errors.  In practice, this is an insurmountable task.  

For that reason, regular data processing inside the database will always be a cause 

of data problems. 

1.7 .  DA T A CL E A N S I N G

The data quality topic has caught on in recent years, and more and more 

companies are attempting to cleanse the data. In the old days, cleansing was done 

manually and was rather safe. The new methodologies have arrived that use 

automated data cleansing rules to make corrections en masse.  These methods are 

of great value and I, myself, am an ardent promoter of the rule-driven approach to 

automated data cleansing.  Unfortunately, the risks and complexities of automated 

data cleansing are rarely well understood. 

The reader might ask in surprise, “How come that data cleansing that strives to 

correct data errors may instead create new ones?”  Those who, like me, in their 

college years mixed whites and colors in the laundry machine will know how 

hopelessly “dirty” the white shirts become after such cleansing.  And so, despite 

the noble goal of higher data quality, data cleansing often creates more data 

problems than it corrects.  This situation is further complicated by the 

complacency that commonly sets in after the cleansing project is “completed.”  
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Data cleansing is dangerous mainly because data quality problems are usually 

complex and interrelated.  Fixing one problem may create many others in the same 

or other related data elements.  For instance, employment history is tightly linked 

with position history, pay rate history, and many other employment data attributes.  

Making corrections to any one of these data categories will make the data 

inconsistent with all other categories. 

I also must mention that automated data cleansing algorithms are implemented by 

computer programs, which will inevitably have bugs.  Bugs in these algorithms are 

very dangerous because they often impact thousands of records. 

Another problem is that data quality specifications often do not reflect actual data 

requirements.  As a result, data may be brought in compliance with some 

theoretical model but remain incorrect for actual use.  For example, in one of my 

early projects the client – a large corporation with a history of acquisitions – 

requested to cleanse employment history on their HR system.  One of the major 

problems was missing or incorrect original hire date for many employees, used to 

calculate amount of retirement pension benefits.  I had access to several “legacy” 

data sources and was able to devise a series of algorithms to correct the problem 

for over 15,000 employees.  Unfortunately, many of the employees were not 
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originally hired by my client but came through numerous acquisitions.  The 

pension calculations performed by the HR system were not supposed to use the 

period of employment with the acquired companies prior to the acquisition.  

Therefore, what the system really expected in the original hire date field for the 

employees from acquired units was the acquisition date.  However, the data quality 

specifications I was given did not reflect that.  As a result, many corrections were 

wrong.  Since I had a complete audit trail of all data changes, it was not too 

difficult to fix the problem.  Many data cleansing projects do not have the happy 

ending, and newly created errors linger for years. 

To summarize, data cleansing is a double-edged sword that can hurt more than 

help if not used carefully.  I will discuss the proper methodology for data cleansing 

in the next chapter. 

1.8 .  DA T A PU R G I N G

Old data is routinely purged from systems to make way for more data.  This is 

normal when a retention limit is satisfied and old data no longer necessary.  

However, data purging is highly risky for data quality. 

When data is purged, there is always a risk that some relevant data is purged by 

accident.  The purging program may simply fail.  More likely, the data structure 

may have changed since the last purging due to a system upgrade, data conversion, 

or any of the other discussed above processes.  So now the purging may 

accidentally impact the wrong data.  More data than intended can be purged.  Or 

alternatively less data than intended might be purged, which is equally bad since it 

leaves incomplete records in the database. 

Another factor that complicates things is the presence of erroneous data in the 

database.  The erroneous data may accidentally fit the purging criteria and get 

removed when it should be left alone, or vice versa.  For example, if the HR 

system is setup to purge data for all employees that were terminated over five 

years ago, then it will wipe out records for some employees with incorrectly 

entered termination dates. 

Since purging often equals destruction, it has to be exercised with great care.  The 

fact that it worked reasonably well last year does not guarantee that it will work 
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again this year.  Data is too volatile a compound to be fooled around with.  This 

requires more sophisticated design of the purging programs than is often used for 

such a trivial technical task.  After all, it seems quite easy to just wipe out a few 

millions of records.  So we live with the data quality consequences of data purging 

in almost every database. 

1.9 .  CH A N G E S NO T CA P T U R E D

Data can become obsolete (and thus incorrect) simply because the object it 

describes has changed.  If a caterpillar has turned into a butterfly but is still listed 

as a caterpillar on the finch’s menu, the bird is in her right to complain about poor 

data quality.  

This situation is very commonplace in human affairs, too, and inevitably leads to 

gradual data decay.  The data is only accurate if it truly represents real world 

objects.  However, this assumes perfect data collection processes.  In reality, 

object changes regularly go unnoticed to computers.  People move, get married, 

and even die without filling out all necessary forms to record these events in each 

system where their data is stored.  This is actually why, in practice, data about 



Chapter  1  –  Causes  of  data  qual i ty  problems 

19

same person may be totally different across systems, causing pain during 

consolidation.

In this age of numerous interfaces across systems, we rely largely on the fact that a 

change made in one place will migrate to all other places.  This obviously does not 

always happen.  As a result, changes are not propagated to all concerned databases 

and data decays.  For instance, interfaces often ignore retroactive data corrections.  

Alternatively, IT personnel may make changes using a backdoor update query, 

which, of course, does not trigger any transactions to the downstream systems. 

Whether the cause is a faulty data collection procedure or a defective data 

interface, the situation of data getting out of sync with reality is rather common.  

This is an example of data decay inevitably leading to deterioration of the data 

quality. 

1.10 .  SY S T E M UP G R A D E S

Most commercial systems get upgraded every few years.  Homegrown software is 

often upgraded several times a year.  While upgrades are not nearly as invasive 

and painful as system conversions and consolidations, they still often somehow 

introduce data problems.  How can a well tested, better version negatively impact 

data quality? 

The culprit here is the assumption that the data complies with what is theoretically 

expected of it.  In practice, actual data is often far different from what is described 

in data models and dictionaries.  Data fields are used for wrong purposes, and 

some data is missing while other was massaged into a form acceptable to the prior 

version.  Yet more data just exists harmlessly as an artifact of past generations but 

should not be touched. 

Upgrades expose all these problems.  More often than not, they are designed for 

and tested against what data is expected to be, not what it really is.  Once the 

upgrades are implemented, everything goes haywire.  People lose their hair trying 

to figure out why the system worked in the past, and the new version did 

beautifully in the testing environment, yet all of the sudden it breaks on every step. 

System upgrades usually impact data quality through the described above process 

of data decay.  However, they often require real restructuring and mass updates of 
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the existing data.  Such changes coupled with lack of reliable meta data lead to 

huge quantities of data errors. 

1.11 .  NE W DA T A US E S

Remember that data quality is defined as “fitness to the purpose of use.”  The data 

may be good enough for one purpose but inadequate for another.  Therefore, new 

data uses often bring about changes in perceived level of data quality even though 

underlying data is the same.  For instance, HR systems may not care too much to 

differentiate medical and personal leave of absence – a medical leave coded as a 

personal leave is not an error for most HR purposes.  But start using it to determine 

eligibility for employee benefits, and such minute details become important.  Now 

a medical leave entered as a personal leave is plain wrong. 

The new uses may also put greater premium on data accuracy even without 

changing the definition of quality.  Thus, a 15% error rate in customer addresses 

may be perfectly fine for telemarketing purposes, but try to survive with that many 

inaccurate addresses for billing! 

Besides accuracy, other aspects of data quality may differ for various uses.  Value 

granularity, or data retention policy, may be inadequate for the new use.  For 

example, employee compensation data retained for three years is adequate for 

payroll administration but cannot be used to analyze compensation trends. 

1.12 .  LO S S  O F  EX P E R T I S E

On almost every data quality project I worked, there is Dick or Jane or Nancy 

whose data expertise is unparalleled.  Dick was with the department for the last 35 

years and is the only person who really understands why for some employees date 

of hire is stored in the date of birth field, while for others it must be adjusted by 

exactly 17 days.  Jane still remembers times when she did calculations by hand and 

entered the results into the system that was shut down in 1985, even though she 

still sometimes accesses the old data when in doubt.  When Nancy decided to 

retire, she was offered hourly work from home at double her salary.  Those are true 

stories.
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Much data in databases has a long history.  It might have come from old “legacy” 

systems or have been changed several times in the past.  The usage of data fields 

and value codes changes over time.  The same value in the same field will mean 

totally different thing in different records.  Knowledge of these facts allows 

experts to use the data properly.  Without this knowledge, the data may be used 

literally and with sad consequences. 

The same is true about data quality.  Data users in the trenches usually know good 

data from bad and can still use it efficiently.  They know where to look and what 

to check.  Without these experts, incorrect data quality assumptions are often made 

and poor data quality becomes exposed. 

Unfortunately much of the data knowledge exists in people’s minds rather than 

meta data documents.  As these people move on, retire, or simply forget things, the 

data is no longer used properly.  How do we solve this problem? Besides erecting 

monuments honoring Dick, Jane, and Nancy, what we need is obviously a well-

designed and maintained meta data repository and data quality meta data 

warehouses.  This is a great dream to have, and maybe with luck, some day, our 

names will be etched on the monuments too.  In the meantime, we must deal with 

the consequences of lost expertise in the form of data decay. 

1.13 .  PR O C E S S AU T O M A T I O N

With the progress of information technology, more and more tasks are automated.  

It starts from replacement of data entry forms with system interfaces and extends 

to every layer of our life.  Computer programs process and ship orders, calculate 

insurance premiums, and even send spam – all with no need for human 

intervention.  Where in the past a pair (or several pairs) of human eyes with the 

full power of trained intellect protected the unsuspecting customers, now we are 

fully exposed to a computer’s ability to do things wrong and not even feel sorry. 

A human would automatically validate the data before using it.  Computer 

programs take the data literally and cannot make a proper judgment about the 

likelihood of it been correct.  Some validation screens may be implemented in the 

automated processes, but these will often fail to see all data peculiarities, or are 

turned off in the interest of performance.  As a result, automation causes data 

decay!   



Chapter  1  –  Causes  of  data  qual i ty  problems 

22

Another aspect of technology development is greater data exposure to broader 

group of users.  For instance, over the last 15 years it has become possible to 

publish HR data for employee access via voice response systems and later intranet.  

Employees can check their eligibility for benefits, various educational programs, 

and query other information.  All of the sudden erroneous HR data became 

exposed, causing floods of employee complaints.  The data did not change, but its 

perceived quality deteriorated. 

SU M M A RY

We have discussed various processes that affect data quality.  In some cases, bad 

data comes from outside of the database through data conversions, manual entry, 

or various data integration interfaces.  In other cases, data deteriorate as a result of 

internal system processing.  Yet in many situations, data quality may decline 

without any changes made to the data itself – the process we referred to as data 

decay.  Each of these problems must be addressed if we are to assume the data 

quality management responsibility.  The next chapter will discuss how it can be 

done through a comprehensive data quality program. 


