
1
ABOUT METADATA MODELS

There once was a fellow named Corey
Whose career was not covered in glory
He had a bad day
When he just couldn’t say
Me-ta-da-ta Re-pos-i-TOR-y.

WHAT ARE METADATA?∗

During the 1990s, the concept of data warehouse∗∗ swept the information tech-
nology industry. After many years of trying, it appears finally to be possible for a
company to store all of its data in one place for purposes of reporting and analysis.
The technology for doing this is still new, and the first attempts have had mixed
results, but the effort has been quite serious.

One of the problems that arose from this effort was the realization that if a
senior executive is going to ask a giant database a question it is necessary to know
just what is in the database and what types of questions to ask. In addition to the
data themselves, therefore, it is necessary to keep data about the data. The term
coined for “data about data” during the 1990s was metadata.

Since then, numerous books and magazine articles have been published on this
subject, but most have focused on why metadata are important and on technologies
and techniques for managing them. What these publications have left out is a clear

∗Ok, it’s true. I studied Latin in high school and have always held that data is the plural form of
the word datum. I realize that I may be swimming against the current, but, hey! It’s my book!
∗∗Key words and phrases, shown in bold italic font, are defined in the glossary at the back of the
book.

1

2 ABOUT METADATA MODELS

description of exactly what the stuff is. After a decade, there is still no simple, clear
description of metadata in a form that is both comprehensive enough to cover our
industry and comprehensible enough that it can be used by people. This book is
an attempt to produce such a description.

As with all buzzwords, once invented the term metadata has taken on a life of
its own. It is variously described as:

• Any data about the organization’s data resource [Brackett 2000, p. 149].
• All physical data and knowledge from inside and outside an organization,

including information about the physical data, technical and business pro-
cesses, rules and constraints of the data, and structures of the data used by
a corporation [Marco 2000, p. 5].

• The detailed description of instance data. The format and characteristics of
populated instance data: instances and values, dependent on the role of the
metadata recipient [Tannenbaum 2002, p. 93].

Several significant points come out of these definitions. First, as Mr. Marco
pointed out there is a difference between business metadata and technical meta-
data. The business user of metadata is interested in definitions and structures of
the language as terms for the types of information to be retrieved. The technician
is concerned with the physical technologies used to store and manage data. Both
of these points of view are important, and both must be addressed.

Second, the subject is concerned with more than just data. It is, as Mr. Brackett
said, “any data about an organization’s data resource.” Once you have started
looking at the structure of an organization’s data, you have to also account for its
activities, people and organizations, locations, timing and events, and motivation.

Third, as Ms. Tannenbaum pointed out, the “meta” aspect of the question is
a matter of point of view. There is metadata relative to the data collected by the
business. There is also meta-metadata, which is used to understand and manage
the metadata.∗

∗While delivering a lecture on cosmology one day, Sir Arthur Eddington gave a brief overview of
the early theories of the universe. Among others, he mentioned the American Indian belief that the
world rested on the back of a giant turtle, adding that it was not a particularly useful model as it failed
to explain what the turtle itself was resting on. Following the lecture, Eddington was approached by

WHAT ARE METADATA? 3

This Book
(Meta-

metadata)

Objects:
“Entity Class”
“Attribute”

Table:
“CHECKING_
ACCOUNT”
Columns:
“Account_number”
“Monthly_charge”

Program module:
ATM Controller
Language:
Java

ATM Controller:
Java code

Julia Roberts Wall Street branch Checking account
#09743569

ATM Withdrawal

Entity class:
“Customer”
Attributes:
“Name”
“Birthdate”

Customer Name:
“Julia Roberts”
Customer
Birthdate:
“10/28/67”

Branch Address:
“111 Wall Street”
Branch Manager:
“Sam Sneed”

CHECKING_
ACCOUNT.
Account_number:
= “09743569”
CHECKING_
ACCOUNT.
Montly_charge:
“$4.50”

Entity class:
“Branch”
“Employee”
Attributes:
“Employee.Address”
“Employee.Name”
Role:
“Each branch must
be managed by
exactly one
Employee”

Objects:
“Entity Class”
“Attribute”
“Role”

Objects:
“Table”
“Column”

Objects:
“Program
module”
“Language”

Data about
a database
(a data
model)

Elements of
metadata
(metadata
model)

Data about
real-world
things
(a database)

Real-
world
things

Data
Management

(Metadata)

IT Operations
(Instance

Data)

Fig. 1–1: Data and metadata.

This last point is illustrated in Figure 1–1. Here, the bottom row shows exam-
ples of things in the world that are often described in information systems. “Julia
Roberts” is a real human being. The “Wall Street branch” of a bank is a physical
place were business is performed. Checking account “09743569” is a particular
account held in that bank by a particular customer (Julia Roberts, for example).
The customer of that account may then perform an actual “ATM Withdrawal” at
a specific time.

The next row up shows, in the first three columns, the data that might describe
those three things: (1) A Customer has the name “Julia Roberts” and the “Birth-
date” of “10/28/67”. (2) A Branch has the address “111 Wall Street” and a manager,
“Sam Sneed”. (3) The checking account has an account number “09743569”
and a monthly charge, “$4.50”. In the fourth column, the first row from the

an elderly lady. “You are very clever, young man, very clever,” she forcefully declared, “but there
is something you do not understand about Indian cosmology: it’s turtles all the way down!”

4 ABOUT METADATA MODELS

bottom shows that a particular program, called here “Java code”, is responsible
for a “Withdrawal Transaction”. These are the things that would concern a per-
son managing data for a banking business. Note that each of the terms was
described as to what it was: customer name, branch manager, account number, and
so forth.

The third row from the bottom collects those descriptors and labels them in
turn. This is to create what we in the data administration world call the metadata.
There are two components to these labels. First are the names of the things
of significance being described by the business data, such as the entity classes
“Customer” and “Branch”. Second, each of these is in turn described by attributes,
such as “Name”, “Address”, and “Birthdate”. We also discover, in the case of
the bank branch, that there is really an additional entity class, “Manager”, and
that it is related to “Branch”. (“Each Branch must be managed by exactly one
Employee.”)

In the checking account column, we see that a checking account is actually
the subject of a table in a database. The table is called “CHECKING_ACCOUNT”
and has columns “Account_number” and “Monthly_charge”. The ATM program
described in the second row simply as “Java code” is actually a program module
with the name “ATM Controller” written in the language “Java”. As we can see,
the metadata row itself encompasses several different types of objects (“Entity
class”, “Attribute”, “Table”, “Column”, “Program module”, and “Language”).
The assignment of this book, represented by the top row, is to show how these
objects relate to one another.

Metadata don’t just describe data. They describe how the organization under-
stands not only its data, but also its activities, people and organizations, geography,
timing, and motivation. Yes, metadata describe the entity classes and attributes
of an entity-relationship model, and the tables and columns by which these
are implemented in a computer system. They also provide, however, structure
for describing the activities of the organization and the computerized processes
that implement these activities. They describe who has access to data, and why.
They describe the types of events and responses that are the nature of an orga-
nization’s activities. They describe where the data and processes are, and they
describe the motivation and business rules that drive the entire thing. So, from
all of this comes the following definition of metadata.

Metadata are the data that describe the structure and workings of an organization’s
use of information, and which describe the systems it uses to manage that information.

IN SEARCH OF METADATA 5

One anomaly has revealed itself in the line between business data and metadata.
The information about what constitutes a legal value for a product category or an
account type in the business model is often captured in separate reference tables.
To reflect these validation structures, a typical data model often has many “type”
entity classes (account type, status, day of the week, and so on) describing legal
values for attributes. These are part of the business data model.

But because they are in fact constraints on the values of other attributes in the
same data model, they are also included in the category of metadata. Where a table
designer would be required to specify the domain of a column, the data modeler
(who is instructing the designer) must now provide the values that constitute that
domain. Here you have business data acting as metadata.

Be aware, of course, that even this line between business data and metadata
is not as clear-cut as it seems. product type, for example, is about reference
data that constrain many attributes in a business model. Even so, specification of
the list of product types is very much the domain of the business, not the data
administrator. This plays both the roles of business data and metadata. Probably
more in the metadata manager’s domain would be product category. There
should be relatively fewer of these, and the list should be relatively stable.

IN SEARCH OF METADATA

Metadata repository is a pretentious term for nothing other than a computerized
database containing metadata to support the development, maintenance, and oper-
ations of a major portion of an enterprise’s systems. Among other things, such a
repository can be the foundation for a data warehouse.

The idea has been interpreted in many different ways over the past thirty years
or so. The first metadata repositories were the data dictionaries and copy libraries
that accompanied programs in the 1970s and 1980s. A data dictionary was simply
a listing of the fields contained in a record of a particular type in the files of a
traditional mainframe data processing application. Sometimes this was accompa-
nied by definitions of the meanings of each file and field. A copy library is a file
containing data definition sections to be used for more than one program (typi-
cally a COBOL program, but other languages used copy libraries as well). Specific
programs would then make use of the copy library to get their data specifications.
This was rarely accompanied by a definition of each term in the program code.

6 ABOUT METADATA MODELS

The IBM user group GUIDE addressed the issue of how to organize data dic-
tionary and copy library data with white papers on a “Repository Data Model”
in 1987 and 1989 [GUIDE 1987, 1989]. Since the 1980s, computer-aided systems
engineering (CASE) tools have always captured descriptions of the structures they
create and manage in an organization, and some CASE tool vendors have made
available models of their own underlying data structures. (Typically these are
models of data and activities as captured in data and function models and the doc-
umentation behind them) Even now, the business information gathered during
requirements analysis is typically the first component of metadata captured in
any development project.

Along the same lines, “encyclopedias” have been developed to support other
types of tools such as extraction, transfer, and load (ETL) facilities. During the
1980s and early 1990s, IBM expended enormous effort toward developing a uni-
versal metadata management tool called Repository Manager MVS (RM/MVS).
This tool was the centerpiece of the AD/Cycle tool activity that IBM developed
as a part of the CASE movement. IBM worked with a number of CASE partners
and other organizations in an attempt to build a universal, end-to-end metadata
management schema for all of application development from planning through
operations.

Various software vendors have attempted to improve communications between
CASE tools, which has required them to model the internal structure of metadata.
This structure is usually proprietary, however, and these vendors have not been
motivated to publish their versions. In recent years, with the advent of the data
warehouse movement, the literature about metadata repositories has proliferated.
There is a plethora of books and magazine articles describing the importance
of metadata and their significance to corporations operating in the twenty-first
century.

Ms. Tannenbaum’s and Messrs. Brackett’s and Marco’s original books (alluded
to previously in this chapter) contain the definitions cited previously, and are
currently the best available on the subject of metadata and their significance to
modern commerce. But while they describe the importance and implications of
metadata their descriptions of what should be in a metadata repository don’t
present a complete model.

Ms. Tannenbaum does present a list categorizing what should be included
[Tannenbaum 2002], but she does not attempt to model these. In his 2000 book
Mr. Marco presents a simple model, but even he concedes that this is only a
starting point. His latest book [Marco and Jennings 2004] is a better version of

THE ARCHITECTURE FRAMEWORK 7

a practical metamodel for a data warehouse design, but as such it misses much that
could be included: it does not go far enough to address the underlying structure
of our industry as a whole.

Several companies in the 1990s offered metadata repository products, each
consisting of an empty database and tools for manipulating the metadata such
a database could contain. These products, however, only described some of the
required information—largely just table and column structures, along with the
ability to keep track of the history of updates.

The Meta Data Coalition (MDC) attempted to develop a more comprehensive
model of metadata, and in 1999 published its model, the Object Information
Model. It was extremely convoluted and abstract, however, and very difficult
to understand. The MDC has since been absorbed into the Object Management
Group (OMG), and the combined organization has now published the Common
Warehouse Metamodel (CWM) and the Meta Object Facility (MOF). These are
described by John Poole and his colleagues in Common Warehouse Metamodel
[Poole et al. 2002]. A more detailed description can be found on the OMG’s web
site at http://www.omg.org/cwm/.

The CWM is intended to be a model of business metadata, whereas the MOF
is intended to be a meta-metadata model of metadata themselves. Although
much better than the MDC model, both models suffer from being developed
in an object-oriented design environment and focusing on elements that are
appropriate to defining an object-oriented design, not to displaying the concepts
themselves to the public. Both have many abstractions that serve their design
purposes but confuse the presentation of the core concepts. These models are
not really accessible to those who just want to see how to represent concepts
such as business rules, entity classes and relationships, or functional hierar-
chies. So where does all this leave us? What should we include in a metadata
repository?

THE ARCHITECTURE FRAMEWORK∗

Because the model presented here is intended to represent the information man-
agement industry as a whole, an Architecture Framework is needed to organize

∗This section is based on a similar description of the Architecture Framework in your author’s book
Requirements Analysis: From Business Views to Architecture [Hay 2003].

8 ABOUT METADATA MODELS

the body of knowledge concerned. The Architecture Framework used here is based
on John Zachman’s 1987 and 1992 Enterprise Architecture Framework [Zachman
1987; Sowa and Zachman 1992].

The Zachman Framework consists of a matrix in which the rows represent
perspectives different people have on an information technology project and the
columns represent what they are seeing from each perspective. The latter includes
data, activities, motivation, and so forth. (The Architecture Framework used here
is concerned with the same matrix, but differs slightly in its definition of rows
from Mr. Zachman’s version. Even so, the principal concepts are the same. This is
further explored below.)

It turns out that everything we want to know about an information system is
contained in one or more of the cells in this matrix, and the set of cells represents
a very useful basis for organizing this book. Each part of the model presented
here describes the content of one or more of these cells. After this introductory
chapter, one chapter will address each column.

The Architecture Framework is diagrammed in Figure 1–2. The rows in the
framework represent the perspectives of different actors in the system develop-
ment process, and the columns represent the things viewed from each perspective.
Although the concepts are the same, some of the names of rows are different from
those used by Mr. Zachman in his original paper.

The Rows

Each row in the Framework represents the perspective of one of the categories
of players in the systems development process, whereas each column represents
a different aspect of the process. The perspectives are:

• Scope (Planner’s View): This defines the enterprise’s direction and business
purpose. This is necessary in order to establish the context for any system
development effort. It includes definitions of the boundaries of system or other
projects.

• Model of the business (Business Owner’s View): This defines—in business
terms—the nature of the business, including its structure, processes, orga-
nization, and so forth. There are usually multiple business owners’ views of a
given enterprise, and these may overlap or even contradict each other. These
business owners’ views may be classified into two groups.

THE ARCHITECTURE FRAMEWORK 9

Data
(What)

List of things
important to

the enterprise

List of
functions the

enterprise
performs

List of
enterprise
locations

Organization
approaches

Language,
divergent

data model

Business
process
model

Logistics
network

Organization
chart

State/
transition
diagram

Business
strategies,

tactics,
policies, rules

Convergent
e/r model

Essential
data flow
diagram

Locations
of roles

The
viable system,

use cases

Entity
Life

History

Business
rule

model

Database
design

System design,
program
structure

Hardware,
software

distribution

User
interface,
security
design

Event
processing

Business
rule

design

Physical
storage
design

Detailed
program
design

Network
architecture,

protocols

Screens,
security coding

Timing
definitions

Rules
specification

program
logic

Databases Program
inventory,

logs

Communications
facilities

Trained
people

Business
events

Enforced
rules

Objectives/
Scope

(Planner’s
View)

Enterprise
Model

(Business
Owner’s

View)

Model of
Fundamental

Concepts

(Architect’s
View)

Technology
Model

(Designer’s
View)

Detailed
Representation

(Builder’s
View)

Functioning
System

Activities
(How)

Locations
(Where)

(Working System)

People
(Who)

Time
(When)

Motivation
(Why)

Business
master

schedule

Business
vision

and mission

Fig. 1–2: The Architecture Framework.

10 ABOUT METADATA MODELS

◦ Views of the tangible current nature of the business: Most people in a busi-
ness are concerned with the specific organization, computer systems, forms,
and procedures required to carry out a business the way it exists now.
This view of the world constitutes what the American National Standards
Institute in 1975 called the “external schema” [ANSI 1975].

◦ A single view of the underlying nature of the business: Individual things
seen by each business owner are usually examples of more general and
fundamental things. This view is relatively abstract, although it is not yet
structured to use as the basis for designing computer systems. This is the
beginning of the “conceptual” schema (model) of the business [ANSI 1975].

The essence of this row is its capture of the semantics of the organization.
That is, this row is about the vocabulary of the business as seen by business
owners.

• Model of the fundamental concepts (Architect’s View): This perspective sees
the underlying structures of Row Two rendered in a more disciplined fashion,
completing the conceptual model of the business. This is still without reference
to any particular technology.

For example, business owners’ views of business rules encompass all con-
straints that might be imposed on a business, whereas the Architect’s View is
only of constraints that affect the updating of data or the processes of doing
such updating. A Business Owner’s View of data can include many-to-many
relationships, relationships among three or more entity classes (n-ary rela-
tionships), and multi-valued attributes.∗ The architect’s perspective eliminates
all of these.

Mr. Zachman originally called this the “Information Designer’s View”
because of its role in making the structures suitable for automation. The word
designer, however, has the connotation of applying technology to the solution
of a problem, even though this row really simply represents the final stage in
describing the enterprise as rigorously as possible. It is the architect of a build-
ing project who describes its structure with emphasis on design as opposed
to the technology. For this reason, it seems more appropriate to call this the
“Architect’s View.”

∗Multi-valued attributes are those that can take on more than one value for a row, such as using
Address as an attribute when it can have more than one value for a person.

THE ARCHITECTURE FRAMEWORK 11

• Technology model (Designer’s View): This describes how technology may
be used to address the information-processing needs identified in the rows
described above. Here, object-oriented databases are chosen over relational
ones (or vice versa), types of programming languages are selected (third- or
fourth-generation, object-oriented, and so on), program structures are defined,
user interfaces are specified, and so forth.

The previous three views are views of the business. This is the first view
that is of information technology.

The ANSI view of data called this the “logical” schema [ANSI 1975], but
in later years this has taken on the name “physical model.” Indeed, even
Mr. Zachman calls this perspective “the Builder’s View.” This is unfortunate,
in that it is the next row that seems more appropriately the domain of the
“builder” and all things “physical.” This fourth row is about the design of new
artifacts, not their construction.

• Detailed representations (Builder’s View): The builder sees the details of a
particular language, database storage specifications, networks, and so forth.
This is what ANSI called the “physical” schema [ANSI 1975].

Mr. Zachman called this the “subcontractor’s view”.
• Functioning system (Inventory View): Finally, a new view is presented to

the organization in the form of a new system. This is the view of actual com-
puter systems installed in particular places, along with their databases. A single
system design from Row Four may be implemented in numerous functioning
systems.

The Columns

Each column in the Architecture Framework represents an area of interest for each
perspective. The columns describe the dimensions of the systems development
effort. These are:

• Data: Each of the rows in this column addresses understanding and dealing
with the things of significance to an enterprise, about which information is
to be held. In Row One, this is about the most significant objects treated by
the enterprise. In Row Two, it is about the language used—terms, facts, and
definitions—and in Row Three it is about specifically defined entity classes
and their relationships to each other. Row Four concerns the representation of

12 ABOUT METADATA MODELS

data by computer software and database management systems. This may be in
terms of tables and columns, object classes, or the artifacts of any other system
development approach. In Row Five, this is about the way data are physically
stored on the computer with a particular data management technology. This
row is described in terms of table spaces, disk drive cylinders, and so forth.
Row Six is about the physical inventory of databases.

• Activities: The rows in the second column are concerned with what the enter-
prise does to support itself. In Row One, these are the overall functions of
the business. In Row Two, these are the physical processes used to carry out
those functions. In Row Three, they are the essential activities underlying the
Row Two processes. Row Four concerns the workings of programs, and the
Row Five perspective is of the specifics of programming languages. Row Six is
about the physical inventory of program code.

• Locations: This column is concerned with the geographical distribution of the
enterprise’s operations and how its elements communicate with one another.
In Row One, it is concerned with the parts of the world where the enter-
prise operates. In Row Two, it is concerned specifically with the enterprise’s
various offices and how they are related to each other. In Row Three, it is con-
cerned with the roles played in each location, and how they communicate with
those in other locations. Row Four is about the design of computer networks
and communications, whereas Row Five is about the protocols and particular
components of a communications network. Row Six is about the physical com-
ponents and locations of each node in the networks, and the communications
facilities that link them.

• People: This column describes who is involved in the business and in the intro-
duction and management of technology. Row One addresses the enterprise’s
attitudes and philosophy concerning the management of human resources.
Row Two is concerned specifically with people’s responsibilities for the Row
Two artifacts of language, processes, and the like. Row Three addresses steward-
ship for definitions and architecture. Row Four is concerned with the design of
man/machine interfaces, including issues of security and access, whereas Row
Five (in conjunction with the activities column) is concerned with the pro-
gramming of those interfaces. Row Six is about the trained people interacting
with systems in a secure and effective environment.

• Time: This column describes the effects of time on the enterprise. This includes
annual planning at Row One, business events at Row Two, and data-related

METAMODELS AND THE FRAMEWORK 13

events at Row Three. Row Four translates the data-related events into system
triggers. Row Five is concerned with the implementation of those triggers.
Row Six is about keeping track of actual events.

• Motivation: As Mr. Zachman originally described this column, it concerned
the translation of business goals and strategies into specific ends and means.
This has since been expanded to include the entire set of constraints (business
rules) that apply to an enterprise’s efforts, because it is these constraints that
often determine why people do what they do. Row One is concerned with the
enterprise’s vision and mission. Row Two addresses its goals, objectives, strat-
egy, and tactics, as they are translated into business policies and business rules.
Row Three addresses the specific articulation of system constraints in terms of
their effects on data. Row Four is about the design of the programs that will
implement those effects (along with constraints applied to activities), and Row
Five is about the construction of those programs. Row Six is the collection of
programs (including database management systems) that implement the rules.

METAMODELS AND THE FRAMEWORK

Each framework cell, then, contains a description of some aspect of an enterprise
from a particular point of view. Typically, this description is rendered in the form
of one or more models, although most of the Row One artifacts are simply lists.
Descriptions of these descriptions (models or lists) are metadata. The model that
is the subject of this book, then, is a model of these descriptions.

This book is organized by column, but the underlying model is organized by
row. That is, each perspective yields a model that encompasses all framework cells
(row/column intersections) in that row. In presenting a cell, concepts of the model
will be introduced as “belonging” to that cell in that column, but it will almost
always be shown in the context of concepts from cells in other columns in the
same row.

Because of the overlap between columns, it will be a little tricky presenting
them in sequence. In some cases, concepts will have to be introduced before
introducing the column they apply to. Patience is required.

For the most part, there is not the same degree of overlap between rows.
Most of the concepts are the domain of one perspective only. There are excep-
tions, however. First, the Data Column in Row Two is concerned with the idea of

14 ABOUT METADATA MODELS

business concept. In Row Three, entity class and attribute are shown as sub-
types (examples) of business concept. There are a few other cases of inter-row
overlap as well. More commonly though, in each column there are examples of
entity classes simply linking concepts from different rows (such as attribute col-

umn mapping between the attributes described in Row Three and the columns of
Row Four).

The model presented in this book is itself an artifact of the data column, where
the “enterprise” involved is the set of people involved with the development,
maintenance, and operation of information systems. It is a cross between an
external Business Owner’s View and the conceptual Architect’s View. It is first an
architect’s conceptual model, in that it follows all of the data modeling disciplines
of normalization and it is represented entirely in terms of binary relationships.∗
Among other things, this entails resolving many-to-many relationships. It is
also a coherent, unified view—a single model of the entire range of metadata
management elements.

The model also resembles a Business Owner’s View, however, in that it is
entirely in the language of the metadata manager and the system developer. It uses
abstractions from these terms only rarely, and where abstraction is necessary the
rationale (and result) is explained. This model provides a vocabulary for discussing
metadata, and the terms of this vocabulary are defined both in the text and in the
glossary at the back of the book.

This book’s model sets out to describe metadata for all columns for Rows Two
through Four of the Architecture Framework. That is, it presents diagrams of the
portion of each column that reflects, in succession, the Business Owner’s View,
the Architect’s View, and the Designer’s View. In addition, it will cover Row
Six (the Functioning System) of the Data, Activities, Location, and Motivation
columns. To establish context, occasionally references will be made to models of
other rows.

All of this should demonstrate that the cells of the framework are not tidy.
In some cases the differences between rows are nothing other than the content of
the models. In others, the metamodel of a column makes use of elements from
other perspectives on the same column. In still other examples, a diagram may
describe elements from more than one column. Specifically, the model is organized
as outlined in the following sections.

∗Binary relationships, in this context, are relationships between only two entity classes.

METAMODELS AND THE FRAMEWORK 15

Data

Data consists of the following:

• Row Two is concerned with the language of the business. It deals with concepts,
facts, words, and symbols. This part of the model is derived from the seminal
work by the Business Rules Team, in conjunction with the Object Management
Group [BRT 2005].

• Row Three is about the entity-relationship model (the “conceptual” data
model). That is, it is concerned with entity classes, attributes, and relation-
ships that describe the things of significance to a business in rigorous terms.
These are in fact sub-types of the concepts described in Row Two.

• Row Four describes the structure of data as used for a particular technol-
ogy. In the first three rows, the nature of the business is being described,
whereas in Row Four models are of design artifacts—relational database
tables, object-oriented design classes, and so forth. The tables or classes in
this row are fundamentally different from the entity classes that appear in
Row Three.

The technology chosen affects the metamodel on this row. The model of
relational database design is different from the model of object-oriented classes.
Note that the modeling notation UML was originally intended as a way to
model object-oriented designs in Row Four. That some of the symbols in a
UML class diagram can also be used to create a Row Three entity-relationship
diagram does not change the fact that the meaning of a Row Three model is
fundamentally different from that of a Row Four model.

• Row Six describes the actual instances of tables and columns that constitute a
real database.

Activities

Activities consist of the following:

• Row Two describes both the functions (in a function hierarchy) of a business
(without regard to timing or mechanism) and the particular business processes
(with mechanisms, participants, and timing) that carry out those functions.

• Row Three models essential system processes with sequence and timing, but
without mechanisms. Most significantly, the essential data flow diagram

16 ABOUT METADATA MODELS

models the way data are passed from one process to another and the
transformations performed by each process.

• Row Four describes computer processing according to the technique being
employed. Here you will see references to program modules, their structures,
and the data they use and produce.

• Row Six is about the inventory of actual program modules and the log of
their runs.

Locations

Locations consist of the following:

• All rows: This model makes use of the business model for geography, but links
the relevant concepts there to concepts in the metamodel for each row of the
framework. In the world of metadata we are concerned with where activities
take place, where data are captured and catalogued, and so forth, just as in the
business model we are concerned with where people live, facilities are located,
and production takes place. Distinctions between rows have to do with the
types of things in each location.

People and Organizations

People and organizations consist of the following:

• All rows: Similarly, the model for people and organizations at a meta level
makes extensive use of business-level concepts. In the repository, we want to
record who is responsible for an entity class or program module, just as in the
business we want to know who is responsible for a product or contract. Again,
the only distinctions across levels are about what each person or organization
is responsible for.

Timing

Timing consists of the following:

• Rows Two and Three are both concerned with the state-transition diagram—
showing the states an entity class (or business concept) can go through and

THE NOTATION: OBJECT AND ENTITY CLASSES 17

the events that trigger those state changes. In Row Three we add references to
an entity life history, and revisit the essential data flow diagram.

• Row Four has its own model, describing the triggers for program elements.

Motivation

Motivation includes the following:

• Rows One and Two are the model of motivation in the running of a business.
Row One describes the enterprise’s vision and mission, while Row Two is con-
cerned with goals, objectives, strategies, tactics, business policies, and business
rules. Note that the business objectives may include business requirements for
new systems.

• Row Three is the model of constraints on data, including domains. Business
rules are translated into constraints on the values of attributes, the existence of
relationships, and the existence of entity class occurrences. These constraints
may in turn serve as the basis for system requirements.

• Row Four is the model of how program modules implement the system
requirements defined for Row Three. This includes referential integrity and
uniqueness constraints usually managed by a database management system,
as well as other constraints that must be implemented by stored procedures
and other programs.

• Row Six is about the enforcement of data quality procedures in real
databases.

THE NOTATION: OBJECT AND ENTITY CLASSES

The model of a metadata repository is a graphic representation of the structure
of a body of data. As such, it may be represented by any of the techniques
available for describing data structure. These include various forms of entity-
relationship modeling, information engineering, UML, and so forth. Before
getting into the details of the metamodel, it is worth exploring the issue of nota-
tion. Because the metadata being presented are in fact data, let’s delve into the
Data column of the Architecture Framework to explore the concepts behind a data
model.

18 ABOUT METADATA MODELS

Class Model (UML)

UML is becoming a popular notation for representing models of data.∗ In a UML
class diagram, we can represent an object class as the definition of a business
object—a thing of significance to an organization about which it wishes to cap-
ture information. The UML class diagram in Figure 1–3 shows an example of a
model we might prepare to describe the sales business. The boxes (“Customer”,
“SalesOrder”, “LineItem”, and “ProductType”) represent object classes; that is,
things of significance to the business about which it wishes to hold information.

Within each object class box are listed attributes, describing the information
to be captured about each object class. For example, “Customer” is described
by “Name”, “Shipping address”, and “Billing address”. For each occurrence of
Customer, each attribute must have at least one value, but may have no more than
one, as indicated by “[1..1]”. Each of these is of data type “string”, meaning that
its value will be a piece of text. Note that both “Description” and “Unit cost”
for the object class ProductType are shown with the designator “[0..1]”, which
means that an occurrence of ProductType can have no value for either of those
two attributes, if appropriate.

Note that usually the object classes are related to each other in pairs, as indicated
by the lines between them. A line connecting two boxes means that an occurrence
of one object class is associated in some way to occurrences of another object
class. The relationship names are intended to be read in each direction as, for
example, “Each Customer may be the buyer in one or more SalesOrders”, and
“Each SalesOrder must be from one and only one Customer”.

In this book, for clarity, a convention has been applied to relationship names
that is not usually followed by practitioners of UML. Each role name is designed to
be part of a structured sentence that exactly conveys the optionality and cardinality
constraints.

Each

<object class name 1>

must be (if the first character next to the second entity class is “1”)
(or)

∗There are at least six different types of models in UML. The “class” diagram, representing data
structure, is but one of them.

L
in

eI
te

m
S

al
es

O
rd

er

pa
rt

 o
f

0.
.*

0.
.*

1.
.1

1.
.1

co
m

po
se

d of

fo
r

so
ld

 v
ia

O
rd

er
 N

um
be

r
[1

..1
] i

nt
eg

er
O

rd
er

 D
at

e
[1

..1
] d

at
e

O
rd

er
 T

ak
er

 [0
..1

] s
tr

in
g

P
ro

d
u

ct
Ty

p
e

P
ro

du
ct

 N
um

be
r

[1
..1

] s
tr

in
g

P
ro

du
ct

 N
am

e
[1

..1
] s

tr
in

g
D

es
cr

ip
tio

n
[0

..1
] s

tr
in

g
U

ni
t C

os
t [

0.
.1

] r
ea

l n
um

be
r

O
rd

er
 N

um
be

r
[1

..1
]

in
te

ge
r

O
rd

er
 D

at
e

[1
..1

] d
at

e
O

rd
er

 T
ak

er
 [0

..1
] s

tr
in

g

C
u

st
o

m
er

fr
om

0.
.*

1.
.1

th
e

bu
ye

r in

N
am

e
[1

..1
] s

tr
in

g
S

hi
pp

in
g

A
dd

re
ss

 [1
..1

] s
tr

in
g

B
ill

in
g

A
dd

re
ss

 [1
..1

] s
tr

in
g

Fi
g.

1–
3:

A
U

M
L

cl
as

s
di

ag
ra

m
.

20 ABOUT METADATA MODELS

may be (if the first character next to the second entity class is “0”)

<role name>

one or more (if the second character next to the second entity class
is “*”)

(or)
one and only one (if the second character next to the second entity

class is “1”)

<object class name 2>

For example, each role may be read as follows: “Each Customer may be the buyer
in one or more SalesOrders”, and “Each SalesOrder must be from one and only
one Customer”.∗

With that introduction, let’s begin modeling the language we will use to create
the model of the language we will use. Figure 1–4 shows the beginning of an
object model of object modeling.∗∗ In this model, ObjectClass is itself an example
of an object class, as is Attribute.

An attribute is the definition of a piece of information about an object
class. In a UML diagram, attributes are shown inside each of the object class
boxes as text. Because ObjectClass is itself an object class in this model, it has

Attribute ObjectClass

about

0..*

1..1

described
by

Name [1..1]:string
Data Type [0..1]:string
Maximum Length [0..1]:number
Average Length [0..1]:number
Decimal [0..1]:number
Optionality [1..1]:string

Name [1..1]:string

Fig. 1–4: Object Classes.

∗Note that this book adopts the convention that the relationship names and multiplicity indicators
(“[1..1]”, “[0..*]”, and so on) are to be read in a clockwise direction.
∗∗Recursion (see Recursion).

THE NOTATION: OBJECT AND ENTITY CLASSES 21

attributes—well, one, at least (its “Name”). This is shown in Figure 1–4, along
with the type of data the attribute can contain—in this case, “string”. In addition,
the “[1..1]” next to “Name” means that it is mandatory and that it can have no
more than one value.∗ That is, for every occurrence of ObjectClass there must be
exactly one value for “Name”.

Because it is a thing we are interested in, “Attribute” is also an example of
an object class on the diagram. Attribute also has attributes, which include its
“Name”, as well as its “Data Type”, “Maximum Length”, “Average Length”,
“number of Decimal places”, and “Optionality”. Again, “Name” is mandatory, as
is “Optionality”, but other attributes may have either zero or one value for each—
they are optional. This is shown by the “[1..1]” next to the mandatory attributes
and “[0..∗]” next to the optional ones. Because we are building a conceptual busi-
ness model in a relational environment, in practice each attribute is constrained
to have no more than one value, indicated by the “[..1]” part of the annotation.
UML does permit relaxing that constraint and allowing multiple values for each
instance of an attribute, but your author does not.

If the model in Figure 1–4 were converted into a relational database design, you
would have a table called ObjectClasses, and the occurrences would be shown (as
in Table 1–1) with the names “ObjectClass” and “Attribute”. You would also have
a table called Attributes (as is also shown in Table 1–1). Columns of the table
Attributes are “Name” (from the table ObjectClasses), “Name”, “Data Type”,
“Maximum Length”, and so forth.

Table 1–1: Object classes and attributes.

Object Classes Attributes

Name Object Class (Name) Name Data Type Max. Length …

ObjectClass ObjectClass Name String 15
Attribute Attribute Name String 15

Attribute Data Type String 10
Attribute Maximum Length Number 3
Attribute . . .

∗Because these are very common, the notations “0..*” and “1..1” are often abbreviated to “*” and
“1”, respectively.

22 ABOUT METADATA MODELS

Role ObjectClass
connected to

connected
to

connected
from

0..*

1..1
1..1

1..1
connected via

a super-type of

a sub-type of

about

0..*

1..1

described
by

Name [1..1]:string
Cardinality [1..1]:string
Optionality [1..1]:boolean

Name [1..1]:string

Attribute

Name [1..1]:string
Data Type [0..1]:string
Maximum Length [0..1]:number
Average Length [0..1]:number
Decimal [0..1]:number
Optionality [1..1]:number

0..1

0..2..*

Fig. 1–5: Roles.

Object classes may be associated with each other. As we saw previously, an
association is represented graphically in UML by means of an annotated line
between the object classes.

Each half of the association (going in one direction) is a role. “Role” is then
another object class in our metamodel, as shown in Figure 1–5. One attribute
of Role is “Cardinality”, which is the maximum number of occurrences of an
associated class that may be related to an occurrence of the class playing the role.
Another attribute is “Optionality”, a binary variable determining whether or not
an occurrence of the role must be present in the first place. Each role, of course,
must have a “Name”.

Optionality in the model drawing is represented by the first half of the symbols
next to the box representing the object class playing the role. As we saw before,
the character “1” in the initial position means that each occurrence of the opposite
object class must be associated with at least one occurrence of the adjacent object
class. Thus, the role is mandatory. (The Optionality attribute for the Role takes
the value “False”). The character “0” means that each occurrence of the opposite
object class may be associated with no occurrence of the adjacent object class.

THE NOTATION: OBJECT AND ENTITY CLASSES 23

That is, the role is optional. (The Optionality attribute for the Role takes the
value “True”). Using the metamodel itself as an example, “each Role must be
connected to one and only one ObjectClass”, but “each ObjectClass may or may
not be connected via a Role”.

Cardinality in the model drawing is represented by the second half of the sym-
bols next to each object class box. The character “1” in the second position means
that each occurrence of the opposite object class may be associated with no more
than one occurrence of the adjacent object. (That is, the Cardinality attribute of
the Role takes the value “1”). The character “*” means that each occurrence of
the opposite object class may be associated with one or more occurrence of the
adjacent object class. (The Cardinality attribute of the Role takes the value “*”, or
a particular number.) For example, in Figure 1–5 “each Role must be connected to
one and only one ObjectClass”, but “each ObjectClass may be connected via one
or more Roles”.

In the model, then (as we saw previously), each attribute must be associated
with exactly one “[1..1]” occurrence of ObjectClass. Each ObjectClass may be
associated with zero, one, or more “[0..*]” occurrences of Attribute. Similarly,
each ObjectClass may be connected via one or more Roles, each of which must
be connected to another Role, which in turn must be connected to the same or
another ObjectClass.

The same symbols apply to attributes. As we saw previously, the “[1..1]” next
to “Name” means that Name must have exactly one value for any occurrence of
Attribute. The “[0..1]” next to “Data Type” means that an occurrence of Attribute
may exist without a value for Data Type, but it can have no more than one value.
Thus, Optionality is an attribute of Attribute, but Cardinality is not.∗

A sub-type is an object class that contains some of the occurrences of a super-
type object class. That is, the occurrences of a super-type may be categorized into
two or more sub-types. For example, the object class “Person” might have as
sub-types “MalePerson” and “FemalePerson”. Figure 1–5, then, shows that each
object class may be a super-type of two or more other object classes (zero, two,

∗Because data modeling usually takes place in a relational environment, multi-valued attributes are
not permitted. That is, an attribute may not have a cardinality of anything but 1, so there is no need
for an explicit attribute “Cardinality” (the second part is always “..1”). UML does allow it, however,
so the model could be made more complete by adding the attribute.

24 ABOUT METADATA MODELS

or more). Each object class, in turn, may be a sub-type of one and only one other
object class (zero or one).∗

Entity-Relationship Model

So much for object classes and associations. Suppose you are one of those old-
fashioned people who still models with entity classes and relationships. What does
that model look like? Figure 1–6 shows an object model of entity-relationship
modeling.

Attribute

0..*

connected
to

1

1

0..1

0..2..*

connected
from

about 1..1

described
by

connected
to

0..*

1..1

connected
via

a super-type of

a sub-type of

Name [1]:string
Data Type [0..1]:string
Maximum Length [0..1]:number
Average Length [0..1]:number
Decimal [0..1]:number

RelationshipEnd

Name [1]:string
Cardinality [1]:string
Optionality [1]:boolean

EntityType

Name [1]:string

Fig. 1–6: The Entity-Relationship Model version.

∗Yes, some would assert that an object class may be a sub-type of more than one other object
class, but it is my contention that this adds unnecessary complexity and that it can be avoided by
approaching the model from a different direction. It is therefore not used in this model. I of course
cannot prevent you from making this relationship “many-to-many,” should you want to. Be sure
to add an intersect object class.

THE NOTATION: OBJECT AND ENTITY CLASSES 25

Specifically:

• Each EntityType may be described by one or more Attributes. (Each attribute
must be about one and only one EntityType.)

• Each EntityType may be connected via one or more RelationshipEnds, where
each RelationshipEnd must be connected to one and only one other Relation-
shipEnd. This second RelationshipEnd, then, must be connected to another
EntityType.

• Each EntityType may be a super-type of two or more other EntityTypes (Each
EntityType may be a sub-type of one and only one other EntityType).

Funny thing about the metamodel of entities and relationships: with a couple
of names changed, Figure 1–6 (a metamodel of entity types and relationship
ends) looks just like Figure 1–5’s metamodel of objects and roles. This is not a
coincidence. They in fact represent the same things.

An object class model (at least as far as we have determined so far) is in fact an
entity-relationship model. Both an entity type and an object class represent the
definition of a kind of thing of significance to the business about which it wishes
to hold information. The two models are sufficiently alike, for that matter, such
that a UML repository model itself can be represented as an entity-relationship
diagram.

Note, however, that UML class notation has other features not appropriate
to a conceptual architect’s model. It departs from entity-relationship modeling
when it describes not business objects but system objects. It also has numer-
ous symbols (not appropriate to entity-relationship modeling) that describe
object-oriented design considerations. These include symbols for composition,
association navigation, and so forth.

Figure 1–7 shows the entity-relationship diagram (ERD) that is a version of
our model. It makes use of a notation from the Structured Systems Analysis
and Design (SSADM) method [Eva 1994], sponsored by the British Government.
This notation is used widely in Europe and is the entity-relationship notation used
by the Oracle Corporation in its Designer CASE tool.

The entity class names have been changed in an attempt to bring the language
of the object-oriented and entity-relationship worlds together. This has been done
without loss of meaning. A “type” of entity can as easily be called a “class” of
entity, and each end of a relationship does indeed describe one “relationship role”.

26 ABOUT METADATA MODELS

played by

connected
to

connected
from

player of

about

described by

a sub-type
of

a super-
type of (2+)

RELATIONSHIP ROLE
Name
* Cardinality indicator
* Default optionality indicator

ATTRIBUTE
Name
° Default value
* Format
° Maximum length
° Average length
° Decimal
° Formula text
° Cardinality indicator
* Default optionality indicator

ENTITY
CLASS
Name

Fig. 1–7: Entity-relationship diagram of entity and object classes.

UML and entity-relationship notations are of course different. There are three
main differences between the two approaches.

First and most obviously, the typography and the graphics (syntax) are dif-
ferent. The entity-relationship notation shown here has been chosen to improve
the readability of the diagrams for nontechnical viewers. This is important if the
models are to be presented to the user community for validation. For example,
the world at large expects to see spaces between words in names.

Instead of the first character “0” in the relationship notation, you see a dashed
line half adjacent to the first entity class. This means that the relationship is
optional (“may be” in the previous association sentences). Instead of the first
character “1”, you see a solid line half adjacent to the first entity class. This rep-
resents a mandatory relationship (“must be” in the previous sentence examples).

THE NOTATION: OBJECT AND ENTITY CLASSES 27

Instead of the second character “*” you see a “crow’s-foot” symbol for “one
or more”. Absence of a crow’s-foot represents the second UML character “1” and
stands for “one and only one”. Entity class names are in all capitals, and spaces
are inserted between words.

These differences have no affect whatsoever on the content (semantics) of
the model. Consequently, the syntax for reading relationships in an entity-
relationship diagram is now as follows.

Each

<entity class 1>

must be (if the line next to the first entity class is solid)
(or)
may be (if the line next to the first entity class is dashed)

<role>

one or more (if a “crow’s-foot” appears next to the second entity
class)

(or)
one and only one (if a “crow’s-foot” does not appear next to the

second entity class)

<entity class 2>

So, using the metamodel as an example, each entity class may be described
by one or more attributes and each attribute must be about one and only one
entity class. Also, the model says that each entity class may be connected via one
or more relationship roles and that each relationship role must be connected
to one and only one entity class. As before, each relationship role must be
connected to exactly one other relationship role that must itself be connected
to one and only one entity class.

A second difference between the entity-relationship notation and UML is in
the information represented about each attribute. Because these models are for
exposition only, and not the basis for design, it is not necessary to describe
the data type for each attribute on the picture. To do so unnecessarily clutters

28 ABOUT METADATA MODELS

the diagram.∗ (Of course, that information should be captured in the repository
that supports the drawings.)

It is useful, however, to be able to see if values for an attribute are required, and
thus next to each attribute name is still an “optionality” symbol. If the symbol
is an asterisk (*) or an octothorpe (#), every occurrence of the entity class must
have a value for the attribute (equivalent to 1.. in UML). If the symbol is an
open circle (o), an occurrence of the entity class may or may not have a value
for the attribute in question (equivalent to 0.. in UML). Again, because this is a
normalized conceptual model—and in no case can an attribute have more than
one value—there is no reason for ERD notation to show that the second half of
the UML cardinality notation (“..1” and “..*”).

The entity-relationship model is more expressive than the UML model in the
area of identifiers. In object-oriented design, every object class is assumed to have
an object identifier (OID) to identify occurrences of a class. Therefore, there is
no requirement to explicitly designate attributes or roles as identifying. In the
relational word supported by entity-relationship models, however, the identifier
of an entity instance is very important, in that it is expected to consist explicitly
of visible attributes or relationships.

Figure 1–7 shows an octothorpe (#) next to “Name” in each of the entity
classes. This means that in each case the attribute is at least partially responsible
for identifying instances of the entity class. For example, it is assumed here that
every entity class will be given one unique name. In the case of relationship

role, however, it is possible that more than one relationship role occurrence may
have the same name. In this case, a mark is also made across the relationship to
entity class to indicate that it is necessary to specify the entity class involved, (as
well as its Name) to uniquely identify each occurrence of the relationship role.

The one place where the entity-relationship model is not quite as expressive
as a UML class diagram is in describing complex cardinality. The UML version
can assert that “each entity class may be a super-type of two or more entity

classes.” The standard entity-relationship notation can say only that an entity

class may be a super-type of one or more other entities. It cannot constrain the
statement to two or more. For purposes of this model, however, our notation has
been modified to show just that.

∗It is noteworthy that different tools for producing UML class models show different types of
information about each attribute.

LEVEL OF ABSTRACTION 29

Which notation to use has been the basis for extensive debates in the informa-
tion technology industry over the years. Different notations have been developed
to serve different purposes and different audiences. Where the UML class
diagram is a notation for communicating with object-oriented developers, entity-
relationship diagramming was specifically designed to support the discussion of
concepts with business people untutored in data modeling. For this reason it is
somewhat more accessible to the casual reader. Because the purpose of this book
is to explain concepts, rather than to provide a schematic for building a system,
this is the notation used here.

The UML class diagram, then, is not a grand new conceptualization of the
system development process. The notation is simply another way of creating
conceptual entity-relationship models. What is new is its ability to represent
object-oriented designs.∗ In coming chapters, the various types of models available
under the umbrella of UML, as well as the additional notations of the class model,
are addressed in this metamodel.

LEVEL OF ABSTRACTION

It is possible to model anything at varying degrees of abstraction. Anytime one
tries to create a data model, the question arises as to how abstract to make it.
Make it too abstract and it makes no sense to the people who want to understand
it. Make it not abstract enough, and it is vulnerable to changes in the business.
Achieving exactly the right balance is as much art as science.

Ultimately, the model of all metadata could be a variation on the one shown
in Figure 1–8. Here, all things of interest in the model are represented simply as
thing. Each thing must be an example of one and only one thing type, where a
thing type is the definition of a class of things.

Each thing may be related to another thing, as shown by the relationship that
each thing may be on one side of one or more thing relationships, each of which
is to another thing. Similarly, each thing type may be on one side of one or more
thing type relationships, each of which is to another thing type.

∗For a more comprehensive comparison of many different notations for doing entity-relationship
models, see Appendix B of David C. Hay’s Requirements Analysis: From Business Views to
Architecture [Hay 2003].

30 ABOUT METADATA MODELS

Each thing type may be the object of one or more attribute assignments of
a attribute. That is, knowledge of the type of thing something is tells you what
characteristics should be collected for it. The actual value of an attribute for a
thing is shown in Figure 1–8 as attribute value, which not surprisingly must be
of an attribute and for a thing.

ATTRIBUTE
ASSIGNMENT

THING

ATTRIBUTE VALUE

ATTRIBUTETHING TYPE
RELATIONSHIP

THING
RELATIONSHIP

THING TYPE

from

on one
side of

on the other
side of

to

to of

evaluated
with

subject
to

from

embodied
in

on one
side of

an example
of

described by

for

on the other
side of

the
object

of

to

of

Fig. 1–8: The ultimate metamodel.

LEVEL OF ABSTRACTION 31

This model can actually describe anything we might want to include in our
repository. In this case, it could represent entity classes, classes, program units,
people, concepts, and the like.

The concrete models we know, then, could each be considered views of this more
abstract model. For example, an entity class could be defined as “a thing that is
an example of the thing type ‘entity class’.” Another view could define attribute

as “a thing which is an example of the thing type ‘attribute’.” A thing type rela-

tionship would be defined from thing type “entity class” to thing type “attribute”
with the name “described by”. Another thing type relationship would be defined
from thing type “attribute” to thing type “entity class” with the name “about”.

Actually, the model in Figure 1–8 could made even more abstract by show-
ing it as consisting only of thing and thing relationship. After all, the
association of thing to thing type is itself simply an association between two
higher-level things.

In effect, all entity classes contained in this book are but views of the entity
classes in Figure 1–8.∗ It is perfectly reasonable, then, for a metadata repository to
have a physical structure based on the abstract model of Figure 1–8. This allows
the tool managing the repository to have the maximum flexibility in addressing
future requirements. As a description of our metadata business, however, it does
not tell us very much about what is really going on. When people go to a repository
for information, they will want to use a vocabulary considerably richer than this.
They will be seeking information about the definition of a business term, when a
program has been run, or how data are constrained.

It is important, therefore, to present users of the repository with a set of views
in a vocabulary more appropriate to their needs. For this reason, in this book we
must produce a model that is not quite as abstract as that presented in Figure 1–8.
In preparing this book, your author has worked hard to reach the right level of
abstraction. It is for you, the reader, to determine whether he has been successful.

∗But you don’t have to know that in order for them to make sense.

