
IN THIS CHAPTER

. Why This Chapter Is Important

. Designing Your Application with
Multiuser Issues in Mind

. Understanding Access’s
Locking Mechanisms

. Understanding the
Client/Server Model

. Deciding Whether to Use the
Client/Server Model

. Understanding the Roles That
Access Plays in the Application
Design Model

. Learning the Client/Server
Buzzwords

. Upsizing: What to Worry About

. Proactively Preparing for
Upsizing

. Using Transaction Processing

. Practical Examples: Getting
Your Application Ready for an
Enterprise Environment

CHAPTER 22

Developing Multiuser
and Enterprise

Applications

Why This Chapter Is Important
Many people forge right into the application development
process with little worry about the scalability of the appli-
cation. Even a simple application that begins as a single-
user application can develop into a multiuser or
enterprise-wide application. Unfortunately, the techniques
you can get away with in the single-user application can
wreak havoc in a network or client/server environment. It
is therefore necessary to think about the future when you
design any application. Although the initial development
process might be more complex, if written properly, the
application will survive any growth that it experiences.
This chapter focuses on writing applications that transition
easily from the single-user environment through the enter-
prise client/server environment.

Designing Your Application with
Multiuser Issues in Mind
When you develop applications that multiple users will
access over the network, you must make sure they effec-
tively handle sharing data and other application objects.
Many options are available for developers when they
design multiuser applications, and this chapter covers the
pros and cons of these options.

Multiuser issues revolve around locking data; they include
deciding where to store database objects, when to lock
data, and how much data to lock. In a multiuser environ-
ment, having several users simultaneously trying to modify

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 909

the same data can cause conflicts. As a developer, you need to handle these conflicts.
Otherwise, your users will experience unexplainable errors.

Multiuser Design Strategies
There are many methods for handling concurrent access to data and other application
objects by multiple users; each one offers both solutions and limitations. It’s important to
select the best solution for your particular environment.

Strategies for Installing Access
There are two strategies for installing Access:

. Run Access from a file server across a network.

. Run a separate copy of Access on each workstation.

The advantages of running Access from a file server are that it

. Allows for central administration of the Access software

. Potentially reduces the licensing requirements

. Allows Access applications to be installed on diskless workstations

. Reduces hard disk requirements

File server installations also have serious drawbacks, including the following:

. Every time the user launches an Access application, the Access EXE, DLLs, and any
other files required to run Access are all sent over the network wire to the local
machine. Obviously, this generates a significant volume of network traffic.

. Performance is generally degraded to unacceptable levels.

Because the disadvantages of running Access from a file server are so pronounced, I
strongly recommend that you install Access, or at least the runtime engine, on each user’s
machine.

Strategies for Installing Your Application
Just as there are different strategies for installing Access, there are also various strategies
for installing your application, such as the following:

. Install both the application and data on a file server.

. Install the data on the file server and the application on each workstation.

. Install the application and the data on a machine running Windows 2003 Terminal
Services.

In other words, after you have created an application, you can place the entire applica-
tion on the network, which means that all the tables, queries, forms, reports, macros, and

CHAPTER 22 Developing Multiuser and Enterprise Applications910

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 910

modules that make up the system reside on the file server. Although this method of
shared access keeps everything in the same place, you will see many advantages to
placing only the database’s data tables on the file server. The remaining objects are placed
in a database on each user’s machine, and each local application database is linked to the
tables on the network. In this way, users share data but not the rest of the application
objects.

The advantages of doing this are as follows:

. Because each user has a copy of the local database objects, load time and network
traffic are both reduced.

. You can easily back up data without having to back up the rest of the application
objects.

. When redistributing new versions of the application, you don’t need to worry about
overwriting the application’s data.

. You can design multiple applications to use the same centrally located data.

. Users can add their own objects (such as their own queries) to their local copies of
the database.

In addition to storing the queries, forms, reports, macros, and modules that make up the
application in a local database, I also recommend that you store the following objects in
each local database:

. Temporary tables

. Static tables

. Semistatic tables

Temporary tables should be stored in the database that’s on each workstation because, if
two users are performing operations that build the same temporary tables, you don’t want
one user’s process to interfere with the other user’s process. You can eliminate the poten-
tial conflict of one user’s temporary tables overwriting the other’s by storing all temporary
tables in each user’s local copy of the database.

You should also place static lookup tables, such as state tables, on each workstation.
Because the data doesn’t change, maintenance isn’t an issue. The benefit is that Access
doesn’t need to pull that data over the network each time the application needs it.

Semistatic tables—tables that are rarely updated—can also be placed on the local
machine. As with static tables, having these tables in a local database means reduced
network traffic and better performance, not only for the user needing the data, but also
for anyone sharing the same network wire.

The configuration described throughout this section is illustrated in Figure 22.1.

Designing Your Application with Multiuser Issues in Mind 911
2

2

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 911

FIGURE 22.1 An example of a configuration with database objects split, storing temporary
and static tables locally and shared tables remotely (on the file server).

Terminal Services has emerged as a viable alternative for deployment of an Access applica-
tion. It addresses both bandwidth and centralization issues. With this option, a Windows
2003 machine runs the Windows 2003 Terminal Services. Client machines then access
the server machine using the Terminal Server Client Utility. In this scenario, Access, your
application, and the data that it accesses are all installed on the Windows 2003 Server
machine. All other machines access the application via user sessions created on the
server machine. Keystrokes and mouse events are sent from the client machines to
the server machine. The resulting screen image is returned to the client machine. This
configuration addresses many of the problems inherent in the two other solutions.

The Basics of Linking to External Data
Chapter 20, “Using External Data,” covers linking to external data, including data not
stored in another Access database. Two options are available to you:

. Design the databases separately from the start.

. Include all objects in one database and then split them manually when you’re ready
to distribute your application.

Chapter 20 covers these two options in detail.

CHAPTER 22 Developing Multiuser and Enterprise Applications912

Workstation 1

Forms

Reports

Macros

Modules

Queries

Static Tables

Temp Tables

Workstation 2

Forms

Reports

Macros

Modules

Queries

Static Tables

Temp Tables

Server

Shared Tables

System.mdt

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 912

Understanding Access’s Locking Mechanisms 913
2

2

CAUTION

Be aware that when you’re distributing an application using linked tables, you must
write code to make sure the data tables can be located from each application data-
base on the network. The reason is that Access hard-codes the location of linked
tables into the application database. If each user has the same path to the file server,
this isn’t a problem. However, if the path to the file server varies, you need to write a
routine that makes sure the tables can be successfully relinked. If they can’t, the
routine prompts the user for the data’s location. Chapter 20 covers this routine.

Understanding Access’s Locking Mechanisms
Although the preceding tips for designing network applications reduce network traffic,
they in no way reduce locking conflicts. To protect shared data, Access locks either a
record or a page of data as the user edits a record. In this way, multiple users can read the
data, but only one user can make changes to it. Data can be locked through a form or
through a recordset that isn’t bound to a form.

Here are the methods of locking for an Access application:

. Record locking

. Page locking

. Table and Recordset locking

. Opening an entire database with Exclusive Access

With Record locking, the Access Database Engine locks only the record that the user is
editing. With Page locking, the Access Database Engine locks the 4K page with the record
being edited. On the other hand, in Table and Recordset locking, the Access Database
Engine locks the entire table or recordset with the record being edited. With Database
locking, the Access Database Engine locks the entire database, unless the user opening the
database has opened it for read-only access. In that case, other users can also open the
database for read-only access.

It’s important to note that the locking scheme you adhere to depends on the source
providing the data. If you’re using client/server data, you inherit the locking scheme of
the particular back end you’re using. If you’re manipulating Indexed Sequential Access
Method (ISAM) data over a network, you get the type of data locking that the particular
ISAM database supports. For example, if you’re working with a FoxPro database, you can
use Record locking or any other locking scheme that FoxPro supports.

NOTE

Multiuser development and multiuser issues are covered in extensive detail in Alison
Balter’s Mastering Access 2002 Enterprise Development.

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 913

Understanding the Client/Server Model
Now that you understand the basics of using Access in a multiuser environment, I am
going to take things a step further by discussing client/server applications. One of the hot
computing terms of the 21st century, client/server refers to distributed processing of infor-
mation. A client/server model involves the storage of data on database servers dedicated
to the tasks of processing data and storing it.

The client/server model introduces a separation of functionalities. The client, or front end,
is responsible for presenting the data and doing some processing. The server, or back end,
is responsible for storing, protecting, and performing the bulk of the data processing.

With its tools that assist in the rapid development of queries, forms, and reports, Access
provides an excellent front end for the presentation of back-end data.

For years, most information professionals have worked with traditional programming
languages to process and maintain data integrity in the application. This means that data
validation rules must be embedded in the programming code. Furthermore, these types of
applications are record-oriented; that is, all records are read into memory and processed.
This scenario has several drawbacks:

. If the underlying data structure changes, every application that uses the data struc-
ture must be changed.

. Data validation rules must be placed in every application that accesses a data table.

. Presentation, processing, and storage are handled by one program.

. Record-oriented processing results in an extraordinary amount of unnecessary
network traffic.

Deciding Whether to Use the Client/Server Model
Client/server technology was not as necessary when there was a clear delineation between
mainframe applications and personal computer applications. Today, the line of demarca-
tion has blurred. Personal computer applications are taking over many applications that
had been relegated to mainframe computers in the past. The problem is that users are still
very limited by the bandwidth of network communications. This is one place where
client/server technology can really help.

However, many developers are confused about what client/server architecture really is.
Some mistakenly believe that an Access ACCDB database file stored on a file server acts as
a database server. This is not the case. (In fact, I have participated in many debates in
which other developers have insisted that Access itself is a database server application.
Well, it’s not.) Access is a front-end application that can process data stored on a back
end. In this scenario, the Access application runs on the client machine accessing data
stored on a database server running software such as Microsoft SQL Server. Access does an
excellent job acting as the client-side, front-end software in this scenario. The confusion
lies in Access’s capability to act as a database server.

CHAPTER 22 Developing Multiuser and Enterprise Applications914

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 914

The difference lies in the way that data is retrieved when Access is acting as the front end
to a database server versus when the data is stored in an Access ACCDB file. Suppose that
you have a table with 500,000 records. A user runs a query based on the 500,000-record
table stored in an Access database on a file server. Suppose that the user wants to see a list
of all the Californians who make more than $75,000 per year. With the data stored on the
file server in the Access ACCDB file format, all records would be sent over the network to
the workstation, and the query would be performed on the workstation (see Figure 22.2).
This results in significant network traffic.

On the other hand, assume that these 500,000 records were stored on a database server
such as Microsoft SQL Server. If the user runs the same query, only the names of the
Californians who make more than $75,000 per year would be sent over the network. In
this scenario, only the specific fields requested would be retrieved (see Figure 22.3).

What does this mean to you? When should you become concerned with client/server
technology and what it can offer you? The following sections present some guidelines as
to why you might want to upsize from an Access back end to a SQL Server back end.

Deciding Whether to Use the Client/Server Model 915
2

2

Processing

Processing

Processing

Processing

Query Query

Query Query

Data Data

Data Data

FIGURE 22.2 Access as a front end using data stored in an Access database.

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 915

FIGURE 22.3 Access as a front end using a true back end.

Dealing with a Large Volume of Data
As the volume of data in your Access database increases, you will probably notice degra-
dation in performance. Many people say that 100MB is the magical number for the
maximum size of an Access database, but many back-end database servers can handle
databases containing multiple gigabytes of data. Although a maximum size of 100MB for
an Access database is a good general guideline, it is not a hard-and-fast rule. You might
find that the need to upsize occurs when your database is significantly larger or smaller
than 100MB. The magic number for you depends on all the factors discussed in the
following sections, as well as on how many tables are included in the database. Generally,
Access performs better with large volumes of data stored in a single table rather than in
multiple tables.

Dealing with a Large Number of Concurrent Users
Just as a large volume of data can be a problem, so can a large number of concurrent users.
In fact, more than 10 users concurrently accessing an Access database can degrade perfor-
mance. As with the amount of data, this is not a magical number. I have seen applications
with fewer than 10 users where performance is awful, and I have seen applications with

CHAPTER 22 Developing Multiuser and Enterprise Applications916

Query Query

Query Query

Result Result

Processing

Result Result

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 916

significantly more than 10 users where performance is acceptable. Performance often
depends on how the application is designed, as well as what tasks the users are performing.

Demanding Faster Performance
Certain applications demand better performance than other applications. An Online
Transaction Processing (OLTP) system generally requires significantly better performance
than a Decision Support System (DSS), for example. Suppose that 100 users are simultane-
ously taking phone orders. It would not be appropriate for the users of the system to ask
their customers to wait 15 seconds between entering each item that is ordered. On the
other hand, asking users to wait 60 seconds to process a management report that users run
once each month is not a lot to ask (although many will still complain about the wait).

Most back-end database servers can use multithreaded operating systems with multiple
processors to handle large volumes of user demand; Access cannot.

Handling Increased Network Traffic
As a file server in an organization experiences increasing demands, the Access application
simply might exacerbate an already growing problem. If the application data is moved to
a database server, the overall reduced demands on the network might provide all users on
the network with better performance, regardless of whether they are using the Access
application.

Probably one of the most exaggerated situations I have seen is one in which all the work-
stations were diskless. Windows and all application software were installed on a file server.
All the users were concurrently loading Microsoft Word, Microsoft Excel, and Microsoft
PowerPoint over the network. In addition, they had large Access applications with many
database objects and large volumes of data. This was all stored on the file server as well.
Needless to say, performance was abysmal. You can’t expect an already overloaded file
server to handle sending large volumes of data over a small bandwidth. The benefits
offered by client/server technology can help alleviate this problem.

Implementing Backup and Recovery
The backup and recovery options offered with an Access ACCDB database stored on a file
server simply do not rival the options for backup and recovery on a database server. Any
database server worth its salt sports very powerful uninterruptible power supplies (UPSs).
Many have hot-swappable disk drives with disk mirroring, disk duplexing, or disk striping
with parity (RAID Level 5). With disk mirroring and duplexing, data can be written to
multiple drives at one time, providing instantaneous backups. Furthermore, some data-
base server tape backup software enables backups to be completed while users are access-
ing the system. Many offer automatic transaction logging. All these options mean less
chance of data loss or downtime. With certain applications, this type of backup and
recovery is overkill. With other applications, it is imperative. Although some of what back
ends have to offer in backup and recovery can be mimicked by using code and replica-
tion, it is nearly impossible to get the same level of protection from an Access database
stored on a file server that you can get from a database stored on a database server.

Deciding Whether to Use the Client/Server Model 917
2

2

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 917

Focusing on Security
Access offers what can be considered the best security for a desktop database. However, it
cannot compare with the security provided by most database servers. Database server
security often works in conjunction with the network operating system. This is the case,
for example, with Microsoft SQL Server 2005 and Windows Server 2003 Enterprise. The
user is given no direct rights to the physical database file; it can be accessed only via an
Open Database Connectivity (ODBC) data source or an ActiveX Data Objects (ADO)
connection. Remember that no matter how much security you place on an Access data-
base, a user can still see or even delete the entire ACCDB file from the network disk.

Offering protection from this potential problem, and others, on a database server is easy.
Furthermore, many back-end application database server products offer field-level security
not offered within an Access ACCDB file. Finally, many back ends offer integrated security
with one logon for both the network and the database.

Sharing Data Among Multiple Front-End Tools
The Access ACCDB file format is proprietary. Very few other products can read data stored
in the Access database format. With a back-end database server that supports ODBC,
front-end applications can be written in a variety of front-end application software, all
concurrently using the same back-end data.

Understanding What It All Means
You must evaluate the specific environment in which your application will run:

. How many users are there?

. How much data exists?

. What is the network traffic already like?

. What type of performance is required?

. How disastrous is downtime?

. How sensitive is the data?

. What other applications will use the data?

After you answer these and other questions, you can begin to decide whether the benefits
of the client/server architecture outweigh the costs involved.

The good news is that it is not an all-or-none decision. Various options are available for
client/server applications using Access as a front end. Furthermore, if you design your
application with upsizing in mind, moving to client/server technology will not require
you to throw out what you have done and start again. In fact, Microsoft provides an
upsizing wizard that makes upsizing to a SQL Server database a relatively painless process.
How painless depends on numerous factors, including how complex your queries are,
whether your queries include Visual Basic for Applications (VBA) functions, and other
factors that are covered later in this chapter, and in detail in Alison Balter’s Mastering
Access 2002 Enterprise Development.

CHAPTER 22 Developing Multiuser and Enterprise Applications918

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 918

Understanding the Roles That Access Plays in the
Application Design Model
This section takes a look at the many different roles that Access can take in an application
design.

The Front End and Back End as Access ACCDB Files
Earlier in this book, you learned about using Access as both the front end and the back
end. The Access database is not acting as a true back end because it is not doing process-
ing. Figure 22.4 shows the architecture in this scenario. The Access application resides on
the workstation. Access uses the Access Database Engine to communicate with data stored
in an Access ACCDB database file stored on the file server.

Understanding the Roles That Access Plays in the Application Design Model 919
2

2

Access

Jet

Access Database

FIGURE 22.4 Access as a front end using an ACCDB file for data storage.

The Front End as an ACCDB File Using Links to Communicate
to a Back End
In the second scenario, you can link the back-end tables to the front-end application
database (.ACCDB). The process of linking to back-end tables is almost identical to that of
linking to tables in other Access databases or to external tables stored in FoxPro, or other
database formats. You can also treat the linked tables like any other linked tables. Access
uses ODBC to communicate with the back-end tables (see Figure 22.5). Your application
sends an Access SQL statement to the Access Database Engine, which translates the state-
ment into ODBC SQL. The Access Database Engine sends this ODBC SQL statement to the
ODBC Manager, which locates the correct ODBC driver and passes it the ODBC SQL state-
ment. Supplied by the back-end vendor, the driver translates the statement into the back
end’s specific dialect. The ODBC Manager sends this now back-end–specific query to the
SQL server and to the appropriate database. Although this may seem cumbersome, a prop-
erly designed Access front end accessing data stored in a SQL Server database is quite effi-
cient. I have proven this over and over again with enterprise-wide applications written in
Microsoft Access.

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 919

FIGURE 22.5 Access as a front end using links to back-end tables.

The Front End Using SQL Pass-Through to Communicate
to a Back End
If a particular query is running inefficiently, you may want to bypass ODBC and go
directly against SQL server. Here are a few reasons why a SQL pass-through query may be
the best option available in specific situations:

. Access SQL might not support some operation that the native query language of the
back end supports.

. Either the Access Database Engine or the ODBC driver produces a SQL statement
that is not optimized for the back end.

. You want a process performed in its entirety on the back end.

As an alternative, you can execute a pass-through query written in the syntax specific to
the back-end database server. Although the query does pass through the Access Database
Engine, the Access Database Engine does not perform any translation on the query.
Neither does ODBC. The ODBC Manager sends the query to the ODBC driver, which
passes the query to the back end without performing any translation. In other words,
exactly what was sent from Access is what is received by the SQL database. Figure 22.6
illustrates this scenario. Notice that the Access Database Engine, the ODBC Manager, and
the ODBC driver are not eliminated entirely. They are still there, but they have much less
impact on the process than they do with attached tables.

CHAPTER 22 Developing Multiuser and Enterprise Applications920

Access

Jet

ODBC Manager

ODBC Driver

SQL Server

SQL Database

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 920

FIGURE 22.6 Access sending a pass-through query to a back-end database.

Pass-through queries are not a panacea, although they are very useful. The results of a
pass-through query are not updateable, for example. Furthermore, because pass-through
queries are written in the back end’s specific SQL dialect, you must rewrite them if you
swap out your back end. For these reasons and others, you will generally use pass-through
with other solutions.

The Front End Executing Procedures Stored on a Back End
A stored procedure is compiled SQL code stored on a back end. You will generally execute it
using ADO or Data Access Objects (DAO) code. You can also execute a stored procedure
using a pass-through query. Regardless of what you call it, the code within the stored
procedure is written in the SQL native to the back end on which it is stored, and the
stored procedure is executed in its entirety on the back end. Stored procedures can return
results or can simply execute on the back end without returning data.

The Front End as a Microsoft Access Data Project Communicating
Directly to a Back End
ADP files were introduced in earlier versions of Access. Although for a while they were
considered the technology to use, it turned out that ADP files were the database technol-
ogy du jour. In fact, there is no upgrade path for an ADP file in Access 2007; therefore,
using ADP files, you cannot take advantage of the features added to Access 2007.

Understanding the Roles That Access Plays in the Application Design Model 921
2

2

Access

Jet

ODBC Manager

ODBC Driver

SQL Server

SQL Database

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 921

Learning the Client/Server Buzzwords
People who talk about client/server technology use many terms that are unfamiliar to the
average database developer. To get a full appreciation of client/server technology and
what it offers, you must have at least a general understanding of the terminology. Table
22.1 lists the most commonly used terms.

TABLE 22.1 Client/Server Terms

Term Definition

Column A field.
DDL A data definition language used to define and describe the

database structure.
Foreign key A value in one table that must be looked up in another table

for validation.
Access Database Engine The native database engine used by Microsoft Access.
ODBC (Open Database A standard proposed by Microsoft that provides access to
Connectivity) a variety of back-end databases through a common interface.

In essence, ODBC is a translator.
OLEDB A standard for connecting to relational and nonrelational data

sources.
DAO (Data Access A method of manipulating data. It has been replaced by ADO
Objects) in many databases because it was optimized for accessing

Jet databases.
ADO (ActiveX Data A COM-based object model that allows you to easily
Objects) manipulate OLE DB data sources. It is the data access

methodology that replaces DAO.
Primary key A set of fields that uniquely identify a row.
Row A record.
Schema A blueprint of the entire database. It includes table defini-

tions, relationships, security, and other important information
about the database.

SQL (Structured A type of data manipulation language commonly used to
Query Language) talk to tables residing on a server.
Stored procedures Compiled SQL statements, such as queries, stored on the

database server. They can be called by an application.
Transaction A set of actions that must be performed on a database. If any

one action fails, all the actions are discarded.
Triggers Pieces of code that execute in response to an action occur-

ring on a table (insert, edit, or delete).

Many books are devoted solely to client/server technology; Alison Balter’s Mastering Access
2002 Enterprise Development focuses entirely on client/server and Web development using
Access 2002. Most magazines targeted at developers contain numerous articles on client/
server technology. Access/VB/SQL Advisor always offers excellent articles on client/server
development. Many of the articles are specifically about client/server connectivity using
Access as a front end. Visual Studio Magazine often contains useful articles as well. Another

CHAPTER 22 Developing Multiuser and Enterprise Applications922

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 922

excellent source of information is the Microsoft Developer Network CD. Offered by
Microsoft as a subscription, it includes numerous articles and white papers on
client/server technology, ODBC, and use of Access as a front end to a database server.

Upsizing: What to Worry About
Suppose that your database is using Microsoft Access as both the front end and back end.
Although an Access database on a file server might have been sufficient for a while, the
need for better performance, enhanced security, or one of the other benefits that a back-
end database provides compels your company (or your client’s company) to upsize to a
client/server architecture. The Access tables already have been created and even contain
volumes of data. In this scenario, it might make sense to upsize.

Because all the tables have been designed as Access tables, you must upsize them to the
back-end database server. Upsizing involves moving tables from a local Access database
(or from any PC database) to a back-end database server that usually runs on UNIX,
Windows 2000, and Windows 2003 Server.

Another reason why you might decide to upsize tables from Access to a back-end server
is that many developers prefer to design their tables from within the Access environment.
Access offers a more user-friendly environment for table creation than most server
applications.

Because of the many caveats involved when moving tables from Access to a back end,
many people opt to design the tables directly on the back end. If you do design your
tables in Access, you can export them to the back end and then link them to your local
database, or you can use the Upsizing Wizard to greatly facilitate this process. Regardless
of the method that you choose, as you export your tables to the database server, you need
to be aware of the issues covered in the following sections.

NOTE

If you are updating to a SQL Server database, most of the concerns regarding upsizing
are handled by the Upsizing Wizards included as part of Microsoft Access 2000 and
above.

Indexes
When you are exporting a table to a server, no indexes are created. All indexes need to be
re-created on the back-end database server. If your database server is running Microsoft
SQL Server, you can use the Access 2007 Upsizing Wizard. This wizard will create indexes
for server tables in the place where the indexes exist in your Access tables.

AutoNumber Fields
AutoNumber fields are exported as Long integers. Because some database servers do not
support autonumbering, you have to create an insert trigger on the server that provides
the next key value. You also can achieve autonumbering by using form-level events, but

Upsizing: What to Worry About 923
2

2

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 923

this approach is not desirable. The numbering will not be enforced if other applications
access the data. If you are upsizing to Microsoft SQL Server, the Upsizing Wizard for
Access 2007 converts all AutoNumber fields to Identity fields.

Default Values
Default values are not automatically moved to the server, even if the server supports
them. You can set up default values directly on the server, but these values do not auto-
matically appear when new records are added to the table unless the record is saved
without data being added to the field containing the default value. As with autonumber-
ing, you can implement default values at the form level, with the same drawbacks. If you
use the Upsizing Wizard for Access 2007 to move the data to Microsoft SQL Server, the
wizard exports default values to your server database.

Validation Rules
Validation rules are not exported to the server. They must be re-created using triggers on
the server. No Access-defined error messages are displayed when a server validation rule is
violated. Your application should be coded to provide the appropriate error messages. You
also can perform validation rules at the form level, but they are not enforced if the data is
accessed by other means. If you use the Upsizing Wizard for Access 2007 to move the data
to Microsoft SQL Server, validation rules are exported to the server database where possible.

Relationships
Relationships need to be enforced using server-based triggers. Access’s default error
messages do not appear when referential integrity is violated. You need to respond to, and
code for, these error messages in your application. You can enforce relationships at the
form level, but as with other form-level validations, this method of validation does not
adequately protect your data. If you use the Upsizing Wizard for Access 2007 to move the
data to Microsoft SQL Server, the wizard sets up all relationships and referential integrity
that you have set up in your Access database within the server database.

Security
Security features that you have set up in Access do not carry forward to the server. You
need to reestablish table security on the server. After you set up security on the server,
Access is unaware that the security exists until the Access application attempts to violate
the server’s security. Then the server returns error codes to the application. You must
handle these errors by using code and displaying the appropriate error message to users.

Table and Field Names
Servers often have much more stringent rules than Access does regarding the naming of
fields. When you export a table, all characters that are not alphanumeric are converted to
underscores. Most back ends do not allow spaces in field names. Furthermore, some back

CHAPTER 22 Developing Multiuser and Enterprise Applications924

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 924

ends limit the length of object names to 30 characters or fewer. If you already have
created queries, forms, reports, macros, and modules that use spaces and very long field
and table names, these database objects might become unusable when you move your
tables to a back-end database server.

Reserved Words
Most back ends have many reserved words. Reserved words are words used by the back
end in its own operations. It is important to be aware of the reserved words of your
specific back end. It is quite shocking when you upsize a table and find that field names
you have been using are reserved words on your database server. If this is the case, you
need to rename all the fields in which a conflict occurs. Once again, this means modify-
ing all the queries, forms, reports, macros, and modules that reference the original field
names.

Case Sensitivity
Many back-end databases are case sensitive. If this is the case with your back end, you
might find that your queries and application code don’t process as expected. Queries or
code that refer to the field or table name by using the wrong case are not recognized by
the back-end database and do not process correctly.

Properties
Most properties cannot be modified on remote tables. Any properties that can be modi-
fied are lost upon export, so you need to set them up again when you export the table.

Visual Basic Code
Certain properties and methods that work on Access tables might not work on remote
tables. You therefore might need to make some coding changes after you export your
tables.

Proactively Preparing for Upsizing
If you set up your tables and code modules with upsizing in mind, you can eliminate
many of the pitfalls discussed previously. Despite any of the problems that upsizing can
bring, the scalability of Access is one of its stronger points. Sometimes resources are not
available to implement client/server technology in the early stages of an application. If
you think through the design of the project with the possibility of upsizing in mind, you
will be pleased at how relatively easy it is to move to client/server technology when the
time is right. With the Access 2007 Upsizing Wizard, which is designed to take an Access
application and upsize it to Microsoft SQL Server 2000 or Microsoft SQL Server 2005, the
process is relatively simple. The upsizing tools for Access 2007 perform a lot of the work
involved in upsizing a database, with just the click of a few buttons.

Proactively Preparing for Upsizing 925
2

2

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 925

NOTE

Client/server development and client/server issues are covered in extensive detail in
Alison Balter’s Mastering Access 2002 Enterprise Development.

NOTE

The upsizing wizards available for Access 2000, Access 2002, and Access 2003 are
almost identical to the Access 2007 Upsizing Wizard. They therefore afford you the
same ease when upsizing from Access to SQL Server.

CAUTION

Although the upsizing tools for Access are excellent, they do have their drawbacks. For
example, they do not always map the Access field type to the desired SQL Server field
type. For this reason, you can opt not to use the wizards. If, despite their shortcom-
ings, you decide to use the upsizing wizards, make sure that you carefully review both
the upsizing report and the structure of each table after the wizard upsizes it.

Using Transaction Processing
Transaction processing refers to the grouping of a series of changes into a single batch.
The entire batch of changes is either accepted or rejected as a group. One of the most
common implementations of transaction processing is a bank automated teller machine
(ATM) transaction. Imagine that you go to the ATM to deposit your paycheck. In the
middle of processing, a power outage occurs. Unfortunately, the bank recorded the
incoming funds prior to the outage, but the funds had not yet been credited to your
account when the power outage occurred. You would not be very pleased with the
outcome of this situation. Transaction processing would prevent this scenario from occur-
ring. With transaction processing, the whole process succeeds or fails as a unit.

A group of operations is considered a transaction if it meets the following criteria:

. It is atomic—The group of operations should finish as a unit or not at all.

. It is consistent— The group of operations, when completed as a unit, retains the
consistency of the application.

. It is isolated—The group of operations is independent of anything else going on in
the system.

. It is durable—After the group of operations is committed, the changes persist, even
if the system crashes.

If your application contains a group of operations that are atomic and isolated, and if, to
maintain the consistency of your application, all changes must persist even if the system
crashes, you should place the group of operations in a transaction loop. With Access
2007, the primary benefit of transaction processing is data integrity.

CHAPTER 22 Developing Multiuser and Enterprise Applications926

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 926

Understanding the Benefits of Transaction Processing

NOTE

This code, and all the code in this chapter, is located in the CHAP22EX.ACCDB database
in the basTransactions module on the sample code CD-ROM.

NOTE

Any discussion of Access 2007 covered in this section also applies to Access 2000,
Access 2002, and Access 2003.

Access 2007 does its own behind-the-scenes transaction processing. The Access Database
Engine does this implicit transaction processing solely to improve the performance of
your application. As a processing loop executes, Access buffers and then periodically
writes the data to disk. In a multiuser environment, the Access Database Engine (implic-
itly) commits transactions every 50 milliseconds by default. This period of time is opti-
mized for concurrency rather than performance. If you feel that it is necessary to sacrifice
concurrency for performance, you can modify a few Windows Registry settings to achieve
the specific outcome you want. The next section covers these settings.

Although implicit transaction processing, along with the modifiable Windows Registry
settings, generally gives you better performance than explicit transaction processing, it is
not a cut-and-dried situation. Many factors affect the performance benefits gained by
both implicit and explicit transaction processing:

. Amount of free memory

. Number of columns and rows being updated

. Size of the rows being updated

. Network traffic

If you plan to implement explicit transaction processing solely to improve performance,
you should make sure that you benchmark performance using both implicit and explicit
transactions. It is critical that your application-testing environment be as similar as possi-
ble to the production environment in which the application will run.

Modifying the Default Behavior of Transaction Processing
Before you learn how to implement transaction processing, take a look at what you can
do to modify the default behavior of the transaction processing built in to Access 2007.
Three Registry settings affect implicit transactions in Access 2007: ImplicitCommitSync,
ExclusiveAsyncDelay, and SharedAsyncDelay. These keys are located in the \HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Jet 4.0 Registry folder.

Using Transaction Processing 927
2

2

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 927

TIP

You can access the Windows Registry using the RegEdit utility. To use RegEdit, select
the Run option from the Start menu and then type RegEdit. In Windows Vista, you
must locate the RegEdit utility and then double-click it to run the utility.

The ImplicitCommitSync setting determines whether the system waits for a commit to
finish before proceeding with application processing. The default is No. This means that
the system will proceed without waiting for the commit to finish. You generally won’t
want to change this setting; using No dramatically improves performance. The danger of
accepting the value of No is that you will increase the amount of time during which the
data is vulnerable. Before the data is flushed to disk, the user might turn off the machine,
compromising the integrity of the data.

The ExclusiveAsyncDelay setting specifies the maximum number of milliseconds that
elapse before the Access Database Engine commits an implicit transaction when a data-
base is opened for exclusive use. The default value for this setting is 2000 milliseconds.
This setting does not in any way affect databases that are open for shared use.

The SharedAsyncDelay setting is similar to the ExclusiveAsyncDelay setting. It deter-
mines the maximum number of milliseconds that elapse before the Access Database
Engine commits an implicit transaction when a database is opened for shared use. The
default value for this setting is 50. The higher this value, the greater the performance
benefits reaped from implicit transactions, but also the higher the chances that concur-
rency problems will result. These concurrency issues are discussed in detail in Alison
Balter’s Mastering Access 2002 Enterprise Development.

In addition to the settings that affect implicit transaction processing in Access 2007, an
additional Registry setting affects explicit transaction processing. The UserCommitSync
setting controls whether explicit transactions are completed synchronously or asynchro-
nously. With the default setting of Yes, control doesn’t return from a CommitTrans
statement until the transactions are actually written to disk, resulting in synchronous
transactions. When this value is changed to No, a series of changes is queued, and control
returns before the changes are complete.

You can modify the values of these Registry settings and other Access Database Engine
settings by using Regedit.exe (the Registry Editor) for Windows Vista, and Windows
2003. Changes to this section of the Registry affect all applications that use the Access
Database Engine. If you want to affect only your application, you can export the
Microsoft Jet portion of the Registry tree and import it into your application’s Registry
tree. You then can customize the Registry settings for your application. To force your
application to load the appropriate Registry tree, you must set the INIPath property of
the DBEngine object.

A much simpler approach is to set properties of the ADO Connection object; you can
specify new settings at runtime for all the previously mentioned Registry entries as well
as for additional entries. A further advantage of this approach is that it will modify
(temporarily) Registry entries for any machine under which your application runs. Any

CHAPTER 22 Developing Multiuser and Enterprise Applications928

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 928

values you change at runtime temporarily override the Registry values that are set,
enabling you to easily control and maintain specific settings for each application. This
code illustrates how you modify the ExclusiveAsyncDelay and SharedAsyncDelay settings
using properties of the Connection object:

Sub ChangeOptions()

Dim cnn As ADODB.Connection

Set cnn = CurrentProject.Connection

cnn.Properties(“JET OLEDB:Exclusive Async Delay”) = 1000

cnn.Properties(“JET OLEDB:Shared Async Delay”) = 50

End Sub

Implementing Explicit Transaction Processing
Now that you are aware of the settings that affect transaction processing, you are ready to
learn how to implement transaction processing. Three methods of the Connection object
(covered in Chapter 15, “What Are ActiveX Data Objects, and Why Are They
Important?”) control transaction processing:

. BeginTrans

. CommitTrans

. RollbackTrans

The BeginTrans method of the Connection object begins the transaction loop. The
moment BeginTrans is encountered, Access begins writing all changes to a log file in
memory. Unless you issue the CommitTrans method of the Connection object, the Access
Database Engine never actually writes the changes to the database file. After the
CommitTrans method is issued, the Access Database Engine permanently writes the
updates to the database object. If a RollbackTrans method of the Connection object is
encountered, the log-in memory is released. Listing 22.2 shows an example of how trans-
action processing works under Access 2007. Compare this to Listing 22.1.

LISTING 22.2 Transaction Processing in Access 2007 Using BeginTrans, Logging,
CommitTrans, and RollbackTrans

Sub IncreaseQuantityTrans()

On Error GoTo IncreaseQuantityTrans_Err

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

Dim boolInTrans As Boolean

boolInTrans = False

Set rst = New ADODB.Recordset

Set cnn = CurrentProject.Connection

Using Transaction Processing 929
2

2

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 929

rst.ActiveConnection = cnn

rst.CursorType = adOpenKeyset

rst.LockType = adLockOptimistic

rst.Open “Select OrderId, Quantity From tblOrderDetails”

‘Begin the Transaction Loop

cnn.BeginTrans

boolInTrans = True

‘Loop through recordset increasing Quantity field by 1

Do Until rst.EOF

rst!Quantity = rst!Quantity + 1

rst.UPDATE

rst.MoveNext

Loop

‘Commit the Transaction; Everything went as Planned

cnn.CommitTrans

boolInTrans = False

IncreaseQuantityTrans_Exit:

Set cnn = Nothing

Set rst = Nothing

Exit Sub

IncreaseQuantityTrans_Err:

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

‘Rollback the Transaction; An Error Occurred

If boolInTrans Then

cnn.RollbackTrans

End If

Resume IncreaseQuantityTrans_Exit

End Sub

This code uses a transaction loop to ensure that everything completes as planned or not at
all. Notice that the loop that moves through the recordset, increasing the Quantity field in
each record by 1, is placed in a transaction loop. If all processing in the loop completes
successfully, the CommitTrans method executes. If the error-handling code is encountered,
the RollbackTrans method executes, ensuring that none of the changes are written to disk.
The boolInTrans variable is used to determine whether the code is within the transaction
loop. This ensures that the error handler performs the rollback only if an error occurs
within the transaction loop. If the CommitTrans method or the RollbackTrans method is
issued without an open transaction, an error occurs.

CHAPTER 22 Developing Multiuser and Enterprise Applications930

LISTING 22.2 Continued

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 930

931
2

2

Practical Examples: Getting Your Application
Ready for an Enterprise Environment
Splitting the application code and data is the first step toward making your application
enterprise ready. Consider placing the application data on the network and the applica-
tion code on each workstation. If you think that the number of users, required security, or
volume of data stored in the application warrants client/server technology, consider using
one or more of the client/server techniques covered in this chapter. Finally, think about
whether any application processes warrant transaction processing. If you feel that
client/server technology or transaction processing is a necessary ingredient to your appli-
cation, learn more about these techniques from a source such as Alison Balter’s Mastering
Access 2002 Enterprise Development.

Summary
Many people think that the transition of a simple Access application to a multiuser or
client/server environment is a simple one. I strongly disagree. There are several things to
think about when moving an application from a single-user environment to a multiuser
environment, and even more things to think about when moving to a client/server envi-
ronment. The more you think about these potential evolutions when you first design and
build your application, the fewer problems you’ll have if your application data has to be
upsized.

This chapter exposed you to multiuser techniques. It explained client/server technology
and when you need it. It also described the various roles that Access plays in the applica-
tion design model. Finally, you learned about a technique that is important within an
enterprise application: transaction processing.

The chapter is intended to be an introduction to these important topics. All the topics
in this chapter are covered in detail in Alison Balter’s Mastering Access 2002 Enterprise
Development (which applies to Access 2007 as well).

Summary

26_0672329328_ch22.qxd 5/3/07 3:28 PM Page 931

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

