
High Availability

Ten and one-half percent (10.5%) of the DB2 9 for Linux, UNIX, and
Windows Database Administration Upgrade exam (Exam 736) is designed to

evaluate your knowledge of transactions and transaction logging and to test your
ability to back up and restore a database and to successfully establish a high
availability disaster recovery (HADR) environment. The questions that make up
this portion of the exam are intended to evaluate the following:

● Your ability to use the RECOVER DATABASE command

● Your knowledge of high availability disaster recovery (HADR)

This chapter is designed to introduce you to the backup and recovery tools that are
available with DB2 and to show you how to both restore a damaged database with
the RECOVER DATABASE command and how to set up an HADR environment.

Transactions and Transaction Logging

A transaction (also known as a unit of work) is a sequence of one or more SQL
operations grouped together as a single unit, usually within an application process.
The initiation and termination of a single transaction defines points of data
consistency within a database; either the effects of all operations performed within
a transaction are applied to the database and made permanent (committed), or the
effects of all operations performed are backed out (rolled back), and the database
is returned to the state it was in before the transaction was initiated. 

C H A P T E R 6



In most cases, transactions are initiated the first time an executable SQL statement
is executed after a connection to a database has been made or immediately after a
preexisting transaction has been terminated. Once initiated, transactions can be
implicitly terminated using a feature known as “automatic commit” (in which case,
each executable SQL statement is treated as a single transaction, and any changes
made by that statement are applied to the database if the statement executes
successfully or are discarded if the statement fails), or they can be explicitly
terminated by executing the COMMIT or the ROLLBACK SQL statement. The basic
syntax for these two statements is:

COMMIT <WORK>

and

ROLLBACK <WORK>

When the COMMIT statement is used to terminate a transaction, all changes made
to the database since the transaction began are made permanent. On the other hand,
when the ROLLBACK statement is used, all changes made are backed out, and the
database is returned to the state it was in just before the transaction began. 

Transaction logging is simply a process used to keep track of changes made to a
database (by a transaction), as they occur. Each time an update or a delete operation
is performed, the page containing the record to be updated/deleted is retrieved from
storage and copied to the appropriate buffer pool, where it is then modified by the
update/delete operation. (If a new record is created by an insert operation, that
record is created directly in the appropriate buffer pool.) Once the record has been
modified (or inserted), a record reflecting the modification/insertion is written to
the log buffer, which is simply another designated storage area in memory. If an
insert operation is performed, a record containing the new row is written to the log
buffer; if a delete operation is performed, a record containing the row’s original
values is written to the log buffer; and if an update operation is performed, a record
containing the row’s original values, combined with the row’s new values, is written
to the log buffer. (If replication has not been enabled, an Exclusive OR operation is
performed using the “before” and “after” rows and the results are written to the log
buffer.)

152 Chapter 6: High Availability



Whenever buffer pool I/O page cleaners are activated, the log buffer becomes full,
or a transaction is terminated (by being committed or rolled back), all records
stored in the log buffer are immediately written to one or more log files stored on
disk. As soon as all log records associated with a particular transaction have been
externalized to one or more log files, the effects of the transaction itself are
recorded in the database (i.e., executed against the appropriate table space
containers for permanent storage). The modified data pages remain in memory,
where they can be quickly accessed if necessary—eventually, they will be
overwritten as newer pages are retrieved from storage. The transaction logging
process can be seen in Figure 6–1.

Since log records are externalized frequently and because changes made by a
particular transaction are only externalized to the database when the transaction
itself is successfully terminated, the ability to return a database to a consistent state
after a failure occurs is guaranteed—when the database is restarted, log records are

Transactions and Transaction Logging 153

Figure 6–1: The transaction logging process.



analyzed, and each record that has a corresponding COMMIT record is reapplied to
the database; every record that does not have a corresponding COMMIT record is
either ignored or backed out (which is why “before” and “after” information is
recorded for all update operations).

Database Recovery Concepts

Over time, a database can encounter any number of problems, including power
interruptions, storage media failure, and application abends. All of these can result
in database failure, and each failure scenario requires a different recovery action. 

The concept of backing up a database is the same as that of backing up any other
set of data files: you make a copy of the data and store it on a different medium
where it can be accessed in the event the original becomes damaged or destroyed.
The simplest way to back up a database is to shut it down to ensure that no further
transactions are processed and then back it up using the Backup utility provided
with DB2. Once a backup image has been created, you can use it to rebuild the
database later if for some reason it becomes damaged or corrupted. 

The process of rebuilding a database is known as recovery, and three types of
recovery are available with DB2:

● Crash recovery

● Version recovery

● Roll-forward recovery

Crash Recovery

Crash recovery is performed by using information stored in the transaction log
files to complete any committed transactions that were in memory (but had not yet
been externalized to storage) when the transaction failure occurred, roll back any
incomplete transactions found, and purge any uncommitted transactions from
memory. Once a database is returned to a consistent and usable state, it has
attained what is known as a “point of consistency.” Crash recovery is illustrated in
Figure 6–2.

Chapter 6: High Availability154



A crash recovery operation is initiated by executing the RESTART DATABASE

command.

Version Recovery

Version recovery is the process used to return a database to the state it was in at the
time a particular backup image was made. Version recovery is performed by
replacing the current version of a database with a previous version, using a copy
that was made with a backup operation—the entire database is rebuilt using a
backup image that was created earlier. Unfortunately, when a version recovery is
performed, all changes made to the database since the backup image used was
created are lost. Version recovery is illustrated in Figure 6–3.

Database Recovery Concepts 155

Figure 6–2: Crash recovery.



A version recovery operation is initiated by executing the RESTORE DATABASE

command; database backup images needed for version recovery operations are
generated by executing the BACKUP DATABASE command.

Roll-Forward Recovery

Roll-forward recovery takes version recovery one step farther by rebuilding a
database or one or more individual table spaces using a backup image and
replaying information stored in transaction log files to return the database/table
spaces to the state they were in at an exact point in time. In order to perform a roll-
forward recovery operation, you must have archival logging enabled, you must
have either a full backup image of the database or a complete set of table space
backup images available, and you must have access to all archived log files that
have been created since the backup image(s) were made. Roll-forward recovery is
illustrated in Figure 6–4.

Chapter 6: High Availability156

Figure 6–3: Version recovery.



A roll-forward recovery operation is initiated by executing the ROLLFORWARD

DATABASE command.

A Word About the Recovery History File

When a new DB2 database is created, a special file known as the recovery history
file is built as part of the database creation process. This file is used to log
historical information about specific actions that are performed against the
database with which the file is associated. Specifically, records are written to the
recovery history file whenever any of the following actions are performed:

● A backup image of any type is created.

● A version recovery operation is performed either on the database or on one
of its table spaces.

Database Recovery Concepts 157

Figure 6–4: Roll-forward recovery.



● A table is loaded, using the Load utility.

● A roll-forward recovery operation is performed either on the database or on
one of its table spaces.

● A table space is altered.

● A table space is quiesced.

● Data in a table is reorganized, using the REORG utility.

● Statistics for a table are updated, using the RUNSTATS utility.

● A table is deleted (dropped).

In addition to identifying the event that was performed, each entry in the recovery
history file identifies the date and time the event took place, how the event took
place, and the table spaces and tables that were affected and, if the action was a
backup operation, the location where the backup image produced was stored, along
with information on how to access this image. And because the recovery history
file contains image location information for each backup image available, it can
act as a tracking and verification mechanism during version recovery operations.

The DB2 Recover Utility

While the RESTORE DATABASE command can be used to return a database to the
state it was in at the time a backup image was made, and the ROLLFORWARD

DATABASE command can be used to replay information recorded in a database’s
transaction log files to return a database to the state it was in at a specific point in
time, if you have a current recovery history file, you can perform both operations
in a single step using the Recover utility. 

Introduced in DB2 9, the Recover utility performs the necessary restore and roll-
forward operations to recover a database to a specific point in time, based on
information found in the recovery history file. The Recovery utility is invoked by
executing the RECOVER DATABASE command. The basic syntax for this command is:

RECOVER [DATABASE | DB] [DatabaseAlias]
<TO [PointInTime] <USING [UTC | LOCAL] TIME>>
<ON ALL DBPARTITIONNUMS>
<USER [UserName] <USING [Password]>> 

Chapter 6: High Availability158



<USING HISTORY FILE ([HistoryFile])> 
<OVERFLOW LOG PATH ([LogDirectory] ,...)>
<RESTART>

or

RECOVER [DATABASE | DB] [DatabaseAlias]
<TO END OF LOGS

<ON ALL DBPARTITIONNUMS |
ON DBPARTITIONNUM<S> ([PartitionNum],...)>>

<USER [UserName] <USING [Password]>> 
<USING HISTORY FILE ([HistoryFile])> 
<OVERFLOW LOG PATH ([LogDirectory] ,...)>
<RESTART>

where:

DatabaseAlias Identifies the alias assigned to the database associated with the
backup image that is to be used to perform a version recovery
operation.

PointInTime Identifies a specific point in time, identified by a timestamp value
in the form yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour,
minutes, seconds, microseconds), to which the database is to be
rolled forward. (Only transactions that took place before and up to
the date and time specified will be reapplied to the database.)

PartitionNum Identifies, by number, one or more database partitions (identified
in the db2nodes.cfg file) that transactions are to be rolled forward
on. In a partitioned database environment, the Recover utility must
be invoked from the catalog partition of the database.

UserName Identifies the name assigned to a specific user under whom the
recovery operation is to be performed.

Password Identifies the password that corresponds to the name of the user
under whom the recovery operation is to be performed.

HistoryFile Identifies the name assigned to the recovery history log file that is
to be used by the Recovery utility.

The DB2 Recover Utility 159



LogDirectory Identifies the directory that contains offline archived log files that
are to be used to perform the roll-forward portion of the recovery
operation.

Thus, if you wanted to perform a full recovery operation on a database named
SAMPLE (which already exists) using information stored in the recovery history file,
you could do so by executing a RECOVER DATABASE command that looks something
like this:

RECOVER DATABASE sample
TO END OF LOGS

On the other hand, if you wanted to restore a database named SAMPLE and roll it
forward to an extremely old point in time that is no longer contained in the current
recovery history file, you could do so by executing a RECOVER DATABASE

command that looks something like this (assuming you have a copy of an older
recovery history file available): 

RECOVER DATABASE sample
TO 2005-01-31-04.00.00
USING HISTORY FILE (/home/user/old2005files/db2rhist.asc)

It is important to note that if the Recover utility successfully restores a database,
but for some reason fails while attempting to roll it forward, the Recover utility
will attempt to continue the previous recover operation, without redoing the restore
phase. If you want to force the Recover utility to redo the restore phase, you need
to execute the RECOVER DATABASE command with the RESTART option specified.
There is no way to explicitly restart a recovery operation from a point of failure.

High Availability Disaster Recovery (HADR)

High availability disaster recovery (HADR) is a DB2 database replication feature
that provides a high availability solution for both partial and complete site failures.
HADR protects against data loss by replicating data changes from a source
database, called the primary, to a target database, called the standby. In an HADR
environment, applications can only access the current primary database—
synchronization with the standby database occurs by rolling forward transaction
log data that is generated on the primary database and shipped to the standby

Chapter 6: High Availability160



database. And with HADR, you can choose the level of protection you want from
potential loss of data by specifying one of three synchronization modes:
synchronous, near synchronous, or asynchronous.

HADR is designed to minimize the impact to a database system when a partial or a
complete site failure occurs. A partial site failure can be caused by a hardware,
network, or software (DB2 or operating system) malfunction. Without HADR, a
partial site failure requires restarting the server and the instance where one or more
DB2 databases reside. The length of time it takes to restart the server and the
instance is unpredictable; if the transaction load was heavy at the time of the
partial site failure, it can take several minutes before a database is returned to a
consistent state and made available for use. With HADR, the standby database can
take over in seconds. Furthermore, you can redirect the clients that were using the
original primary database to the standby database (which is now the new primary
database) by using automatic client reroute or retry logic in the applications that
interact with the database. After the failed original primary server is repaired, it
can rejoin the HADR pair as a standby database if both copies of the database can
be made consistent. And once the original primary database is reintegrated into the
HADR pair as the standby database, you can switch the roles so that the original
primary database once again functions as the primary database. (This is known as
failback operation.) 

A complete site failure can occur when a disaster, such as a fire, causes the entire
site to be destroyed. Because HADR uses TCP/IP to communicate between a
primary and a standby database, the databases can reside it two different locations.
For example, your primary database might be located at your head office in one
city, whereas your standby database is located at your sales office in another city. If
a disaster occurs at the primary site, data availability is maintained by having the
remote standby database take over as the primary database. 

Requirements for HADR Environments

To achieve optimal performance with HADR, the system hosting the standby
database should consist of the same hardware and software as the system where the
primary database resides. If the system hosting the standby database has fewer
resources than the system hosting the primary database, the standby database may
not be able to keep up with the transaction load generated by the primary database.

High Availability Disaster Recovery (HADR) 161



This can cause the standby database to fall behind or the performance of the
primary database to suffer. But more importantly, if a failover situation occurs, the
new primary database may not have the resources needed to adequately service the
client applications. And because buffer pool operations performed on the primary
database are replayed on the standby database, it is important that the primary and
standby database servers have the same amount of memory.

IBM recommends that you use identical host computers for the HADR primary and
standby databases. (If possible, they should be manufactured by the same vendor and
have the same architecture.) Furthermore, the operating system on the primary and
standby database servers should be the same version, including patch level. You can
violate this rule for a short time during a rolling upgrade, but use extreme caution
when doing so. A TCP/IP interface must also be available between the HADR host
machines, and a high-speed, high-capacity network should be used to connect the two.

The DB2 software installed on both the primary and the standby database server
must have the same bit size (32 or 64), and the version of DB2 used for the
primary and standby databases must be identical; for example, both must be either
version 8 or version 9. During rolling upgrades, the modification level (for
example, the fix pack level) of the database system for the standby database can be
later than that of the primary database for a short while. However, you should not
keep this configuration for an extended period of time. The primary and standby
databases will not connect to each other if the modification level of the database
system for the primary database is later than that of the standby database.
Therefore, fix packs must always be applied to the standby database system first. 

Both the primary and the standby database must be a single-partition database, and
they both must have the same database name; however, they do not have to be
stored on the same database path. The amount of storage space allocated for
transaction log files should also be the same on both the primary and the standby
database server; the use of raw devices for transaction logging is not supported.
(Archival logging is performed only by the current primary database.)

Table space properties such as table space name, table space type (DMS, SMS, or
Automatic Storage), table space page size, table space size, container path, container
size, and container type (raw device, file, or directory) must be identical on the
primary and standby databases. When you issue a table space statement such as

Chapter 6: High Availability162



CREATE TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE on the primary
database, it is replayed on the standby database. Therefore, you must ensure that the
table space containers involved with such statements exist on both systems before you
issue the table space statement on the primary database. (If you create a table space on
the primary database, and log replay fails on the standby database because the
containers are not available, the primary database does not receive an error message
stating that the log replay failed.) Automatic storage databases are fully supported,
including replication of ALTER DATABASE statements. Similar to table space containers,
the storage paths specified must exist on both the primary and the standby server.

Once an HADR environment has been established, the following restrictions apply:

● Reads on the standby database are not supported; clients cannot connect to
the standby database. 

● Self Tuning Memory Manager (STMM) can be run only on the current
primary database. 

● Backup operations cannot be performed on the standby database. 

● Redirected restore is not supported. That is, HADR does not support
redirecting table space containers. However, database directory and log
directory changes are supported.

● Load operations with the COPY NO option specified are not supported.

Setting Up an HADR Environment

The process of setting up an HADR environment is fairly straightforward. After
ensuring that the systems to be used as primary and secondary server are identical
and that a TCP/IP connection exists between them, you simply perform the
following tasks, in the order shown: 

1. Determine the host name, host IP address, and the service name or port
number for both the primary and the secondary database server.

If a server has multiple network interfaces, ensure that the HADR host
name or IP address maps to the intended interface. You will need to allocate
separate HADR ports for each protected database—these cannot be the

High Availability Disaster Recovery (HADR) 163



same as the ports that have been allocated to the instance. The host name
can map to only one IP address.

2. Create the standby database by restoring a backup image or initializing a
split mirror copy of the database that is to serve as the primary database.

It is recommended that you do not issue the ROLLFORWARD DATABASE

command on the standby database after the restore operation or split mirror
initialization. The results of performing a roll-forward recovery operation
might differ slightly from replaying the logs on the standby database using
HADR. If the primary and standby databases are not identical when HADR
is started, an error will occur.

When setting up the standby database using the RESTORE DATABASE

command, it is recommended that the REPLACE HISTORY FILE option be
used; use of the following options should be avoided: TABLESPACE, INTO,
REDIRECT, and WITHOUT ROLLING FORWARD.

3. Set the HADR configuration parameters on both the primary and the
standby databases.

After the standby database has been created, but before HADR is started,
the HADR configuration parameters shown in Table 7.2 need to be set. 

Chapter 6: High Availability164



High Availability Disaster Recovery (HADR) 165

Table 7.2 HADR-Specific Database Configuration Parameters

Parameter Value Range / Default Description

hadr_db_role N/A Read-only. Indicates the current role of the database,

if it is part of a high availability disaster recovery

(HADR) environment. Valid values are STANDARD,

PRIMARY, or STANDBY.

hadr_local_host Any valid character string

Default: NULL

Specifies the local host for high availability disaster

recovery (HADR) TCP communication. Either a host

name or an IP address can be used.

hadr_local_svc Any valid character string

Default: NULL

Specifies the TCP service name or port number for

which the local high availability disaster recovery

(HADR) process accepts connections.

hadr_remote_

host

Any valid character string

Default: NULL

Specifies the TCP/IP host name or IP address of the

remote high availability disaster recovery (HADR)

node.

hadr_remote_

inst

Any valid character string

Default: NULL

Specifies the instance name of the remote server.

Administration tools, such as the Control Center, use

this parameter to contact the remote server. High

availability disaster recovery (HADR) also checks

whether a remote database requesting a connection

belongs to the declared remote instance.

hadr_remote_

svc

Any valid character string

Default: NULL

Specifies the TCP service name or port number that

will be used by the remote high availability disaster

recovery (HADR) node.

hadr_syncmode SYNC, NEARSYNC, ASYNC

Default: NEARSYNC

Specifies the synchronization mode to use for high

availability disaster recovery (HADR). This determines

how primary log writes are synchronized with the

standby database when the systems are in peer

state. Valid values for this configuration parameter

are SYNC (this mode provides the greatest protection

against transaction loss, but at a higher cost of

transaction response time), NEARSYNC (this mode

provides somewhat less protection against

transaction loss, in exchange for a shorter transaction

response time than that of SYNC mode), and ASYNC

(this mode has the highest probability of transaction

loss in the event of primary failure, in exchange for

the shortest transaction response time among the

three modes).

hadr_timeout 1–4,294,967,295 

Default: 120

Specifies the time (in seconds) that the high

availability disaster recovery (HADR) process waits

before considering a communication attempt to have

failed.



4. Connect to the standby instance and start HADR on the standby database.

HADR is started by executing the START HADR command. The basic syntax
for this command is:

START HADR ON [DATABASE | DB] [DatabaseAlias]

<USER [UserName] <USING [Password]>> 

AS [PRIMARY <BY FORCE> | SECONDARY]

where:

DatabaseAlias Identifies the alias assigned to the database for which
HADR is to be started.

UserName Identifies the name assigned to a specific user under
whom HADR is to be started.

Password Identifies the password that corresponds to the name of
the user under whom HADR is to be started.

Thus, if you wanted to start HADR on a database named SAMPLE and
indicate that it is to act as a standby database, you could do so by
executing a START HADR command that looks something like this:

START HADR ON DATABASE sample AS STANDBY

5. Connect to the primary instance and start HADR on the primary
database.In this case, you would execute a START HADR command that
looks something like this:

START HADR ON DATABASE sample AS PRIMARY

You can also set up an HADR environment using the Set Up HADR
Databases Wizard, which can be activated by selecting the High Availability
Disaster Recovery action from the Databases menu found in the Control
Center. Figure 6–5 shows how the first page of the Set Up HADR
Databases Wizard might look immediately after it is activated.

Chapter 6: High Availability166



Once an HADR environment has been established, the following operations will be
replicated automatically in the standby database whenever they are performed on
the primary database: 

● Execution of Data Definition Language (DDL) statements (CREATE, ALTER,
DROP)

● Execution of Data Manipulation Language (DML) statements (INSERT,
UPDATE, DELETE)

● Buffer pool operations 

● Table space operations (as well as storage-related operations performed on
automatic storage databases)

● Online reorganization 

High Availability Disaster Recovery (HADR) 167

Figure 6–5: The first page of the Set Up HADR Databases Wizard.



● Offline reorganization 

● Changes to metadata for stored procedures and user-defined functions
(UDFs)

HADR does not replicate stored procedure and UDF object and library files. If this
type of replication is needed, you must physically create the files on identical paths
on both the primary and standby databases. (If the standby database cannot find
the referenced object or library file, the stored procedure or UDF invocation will
fail on the standby database.)

Non-logged operations, such as changes to database configuration parameters and
to the recovery history file, are not replicated to the standby database. 

Automatic Client Reroute and HADR

Automatic client reroute is a DB2 feature that allows client applications to
recover from a loss of communication with the server so that the application can
continue its work with minimal interruption. (If automatic client reroute is not
enabled, client applications will receive an error message indicating that a
connect attempt has failed due to a timeout and no further attempts will be made
to establish a connection with the server.) However, rerouting is possible only
when an alternate database location has been specified at the server and the
TCP/IP protocol is used.

The automatic client reroute feature can be used with HADR to make client
applications connect to the new primary database immediately after a takeover
operation. In fact, if you set up HADR using the Set Up High Availability Disaster
Recovery (HADR) Databases Wizard, automatic client reroute is enabled by
default. If you set up HADR manually, you can enable the automatic client reroute
feature by executing the UPDATE ALTERNATE SERVER FOR DATABASE command;
automatic client reroute does not use the values stored in the hadr_remote_host
and hadr_remote_svc database configuration parameters.

Chapter 6: High Availability168



For example, suppose you have cataloged a database named SALES on a client
workstation as being located at host named SVR1. Database SALES is the primary
database in an HADR environment and its corresponding standby database, also
named SALES, resides on host named SVR2 and listens on port number 456. To
enable automatic client reroute, you simply specify an alternate server for the
SALES database stored on host SVR1 by executing the following command: 

UPDATE ALTERNATE SERVER FOR DATABASE sales 
USING HOSTNAME svr2 PORT 456

Once this command is executed, the client must connect to host SVR1 to obtain the
alternate server information. Then, if a communication error occurs between the
client and the SALES database at host SVR1, the client will first attempt to reconnect
to the SALES database on host SVR1. If this fails, the client will then attempt to
establish a connection with the standby SALES database located on host SVR2.

High Availability Disaster Recovery (HADR) 169



Practice Questions

Question 1

Which of the following is NOT a valid statement about the RECOVER DATABASE

command?

❍ A. The RECOVER DATABASE command performs the necessary restore and

roll-forward operations to recover a database.

❍ B. The RECOVER DATABASE command only rolls a database forward to the

end of logs; it cannot roll forward to a specific point in time.

❍ C. The RECOVER DATABASE command can only be used successfully if the

recovery history file for the database is available.

❍ D. The RECOVER DATABASE command cannot continue a previously

unsuccessful recover operation from the point of failure; if a failure occurs,

the recovery operation must be performed again.

Question 2

Which of the following statements is NOT true regarding the use of the RECOVER

DATABASE command in a partitioned database environment?

❍ A. If the recovery operation is to a specific point in time, it affects all partitions

found in the db2nodes.cfg file.

❍ B. If the recovery operation is to the end of logs, it only affects the partitions

that are specified with the RECOVER DATABASE command.

❍ C. The RECOVER DATABASE command can be invoked from any database

partition provided it is prefixed with db2_all.

❍ D. The RECOVER DATABASE command can only be used successfully if the

recovery history file for the database is available.

Chapter 6: High Availability170



Question 3

Given two servers named SVR1 and SVR2 with a database named SALES on SRV1, in what

order should the following steps be performed to set up an HADR environment using SRV2

as a standby server?

a) Backup the SALES database on SVR1.

b) Determine the host name, host IP address, and the service name or port

number for SVR1 and SVR2. 

c) Start HADR on SVR2.

d) Set the HADR configuration parameters on SVR1 and SVR2.

e) Restore the SALES database on SVR2.

f) Start HADR on SVR1.

❍ A. b, a, e, d, f, c

❍ B. b, d, f, c, a, e

❍ C. b, a, e, d, c, f

❍ D. f, c, b, d, a, e

Question 4

Which of the following is NOT an operation that is replicated in an HADR environment?

❍ A. Database configuration changes

❍ B. Execution of Data Definition Language (DDL) statements

❍ C. Online table reorganizations

❍ D. Execution of Data Manipulation Language (DML) statements

Question 5

Which of the following is NOT supported in an HADR environment?

❍ A. Automatic client reroute

❍ B. Automatic storage databases

❍ C. Write operations to the standby database

❍ D. Single partitioned databases

Practice Questions 171



Question 6

Which of the following is NOT a requirement for an HADR environment?

❍ A. The operating system on the primary server and the standby server must be

the same (including fix pack level).

❍ B. The database path on the primary server and the standby server must be

the same.

❍ C. The DB2 software version and bit size (32 or 64) used on the primary server

and the standby server must be the same.

❍ D. Table spaces and table space containers on the primary server and the

standby server must be identical.

Chapter 6: High Availability172



Answers

Question 1

The correct answer is B. The Recover utility performs the necessary restore and roll-forward
operations to recover a database to a specific point in time, based on information found in
the recovery history file. (The Recovery utility is invoked by executing the RECOVER

DATABASE command.) If the Recover utility successfully restores a database, but for some
reason fails while attempting to roll it forward, the entire recovery operation must be
performed again. There is no way to restart a recovery operation from a point of failure.

Question 2

The correct answer is C. In a partitioned database environment, the Recover utility must be
invoked from the catalog partition of the database.

Question 3

The correct answer is C. After ensuring the systems to be used as primary and secondary
server are identical and that a TCP/IP connection exists between them, you can establish an
HADR environment by performing the following tasks, in the order shown: 

1. Determine the host name, host IP address, and the service name or port number for
both the primary and the secondary database server.

2. Create the standby database by restoring a backup image or initializing a split
mirror copy of the database that is to serve as the primary database.

3. Set the HADR configuration parameters on both the primary and the standby
databases.

4. Connect to the standby instance and start HADR on the standby database.

5. Connect to the primary instance and start HADR on the primary database.

Answers 173



Question 4

The correct answer is A. Once an HADR environment has been established, the following
operations will be replicated automatically in the standby database whenever they are
performed on the primary database: 

● Execution of Data Definition Language (DDL) statements (CREATE, ALTER,
DROP)

● Execution of Data Manipulation Language (DML) statements (INSERT, UPDATE,
DELETE)

● Buffer pool operations 

● Table space operations 

● Online reorganization 

● Offline reorganization 

● Changes to metadata for stored procedures and user-defined functions (UDFs)

HADR does not replicate stored procedure and UDF object and library files. If this type of
replication is needed, you must physically create the files on identical paths on both the
primary and standby databases. (If the standby database cannot find the referenced object or
library file, the stored procedure or UDF invocation will fail on the standby database.)

Non-logged operations, such as changes to database configuration parameters and to the
recovery history file, are not replicated to the standby database. 

Question 5

The correct answer is C. In an HADR environment, applications can only access the current
primary database—synchronization with the standby database occurs by rolling forward
transaction log data that is generated on the primary database and shipped to the standby
database.

Question 6

The correct answer is B. Both the primary and the standby database must be a single-
partition database and they both must have the same database name; however, they do not
have to be stored on the same database path.

Chapter 6: High Availability174




