
Chapter 1

[Editor's Note: The following excerpt is from Chapter 1 of the free eBook The Developer
Shortcut Guide to SUSE Linux (Realtimepublishers) written by John Featherly and available at
http://cc.realtimepublishers.com/portal.aspx?pubid=339.]

Chapter 1: Using SUSE Linux Professional

Application development has a long and interesting history. From the switchboard plugs that
programmed the first computers to today’s Web applications, a lot has happened. Academic
discussions ebb and flow around topics such as software design, architecture, and methodologies
in a quest to determine whether programming is an engineering discipline or an art or neither.

Adding to the many facets of this discussion is the open source movement—one of the most
interesting things happening in application development today. Hardly a newcomer, open source
had its formal roots planted 30 years ago by Richard Stallman at MIT. Software has a dual nature
of being both a representation of an algorithmic idea and a creative product not unlike a musical
or theatrical recording. Open source addresses these two aspects in a clear and straightforward
manner. The algorithmic ideas are free and “open” in that their representation is the source code
and that source code is available to anyone. The creative product is “produced” by a community
of contributors that include management as well as technical contributions. This community is
almost always virtual, global, and open to any interested person.

This guide is targeted at experienced developers who are looking to get a quick start on writing
open source-based enterprise applications. These are developers writing custom corporate
applications used for unique business solutions in contrast to applications written for general use.
This guide is not necessarily targeted at developers looking to get involved and contribute to
open source projects (or possibly start an open source project).

Chapter 1 will take a look at the SUSE Linux Professional product features with special attention
to application development components. First, we’ll look at the desktop environments GNOME
and KDE, then we will explore application packages and tools. We will be looking at two major
application technologies in parallel throughout the guide: Java and .NET; this chapter introduces
the components used for Java and .NET development on Linux. Finally, we’ll take a look at
configuring an SUSE workstation for application development.

SUSE Linux Professional
SUSE has put together a great distribution with SUSE Linux Professional—an outstanding and
extensive collection of components shipped on a single bootable DVD. Both 32-bit and 64-bit
versions are included on the 8.5G DVD. Sources are included on a second 4.7G DVD. Five CD’s
are included containing the 32-bit version if you are not able to install using a DVD drive.

The two main desktop environments; GNOME and KDE are included as well as a selection of
simple window managers. More than just operating system (OS) components, the distribution
also contains office productivity applications, graphics tools, browsers, email, database systems,
and of course development tools.

1

http://cc.realtimepublishers.com/portal.aspx?pubid=339

Chapter 1

Desktop Environments
Visual icons for folders and documents that create a representation of a physical desktop on the
computer screen are the basis of the user interface (UI) for all operating systems (OSs) that use a
GUI. The term desktop environment refers to three distinct parts: the UI design, the bundle of
user support applications (such as file managers, text editors, and Web browsers), and—of
interest to new application developers—the window controls, events, and widgets programming
model. Although there are certainly variations on the UI design from one OS to the next, the
basis for all of them is the windows, icon, mouse, pointer (WIMP) paradigm.

Linux and most UNIX OSs with a graphical UI (GUI) use X Window software as the foundation
of their graphics system. X Window provides an X Server that runs where the graphics hardware
exists (usually considered a “client” machine) and serves graphics capabilities to X client
programs via the X protocol. The X client program typically runs on the local machine where the
X Server is running but that is not required. The X protocol can traverse the network and the X
client program can run on a remote machine and use display services of the local X Server. In
order to be usable, an X Window system needs a program called a window manager and a set of
user graphics elements traditionally called widgets. The Athena widget set from Project Athena
at MIT was the first available (not surprisingly, as X Window was created at Project Athena).
The other two significant widget sets are OSF/Motif and Sun Microsystems OpenLook. The two
popular Linux open source projects, GNU Network Object Model Environment (GNOME) and
Kool Desktop Environment (KDE), provide widget sets and window managers to fill the role of
Motif or OpenLook. For example, the GIMP Toolkit (GTK) is the widget set used by the
GNOME desktop. GNOME and KDE provide a complete desktop environment comprising UI
design, applications, and a programming toolkit.

GNOME
If you selected the predefined system with GNOME during your initial system installation,
GNOME will be available as a session type at login. If you did not select GNOME at
installation, you can simply add it. There are two GNOME selections in YaST: GNOME System
and GNOME Development.

 YaST is the SUSE setup tool, which we will explore in more detail later in the chapter.

The combined list of GNOME components is contained in the GNOME YaST Package Group
System/GUI/GNOME. Normally you will install the GNOME System selection if you want to
use GNOME and the GNOME Development selection if you want to develop GNOME
applications.

Although there are many applications, the important applications for everyday use in GNOME
are the Nautilus file manager, the Evolution email and calendar application, the GIMP image
editing application (a la PhotoShop), and the Epiphany Web browser.

 Consult the GNOME Desktop User Guide at http://www.gnome.org/learn/users-guide/latest/ for an
extensive description of how to use GNOME.

2

http://www.gnome.org/learn/users-guide/latest/

Chapter 1

The current default GNOME desktop user layout has a bit of a Macintosh flavor, as Figure 1.1
shows. The default menu bar is along the top of the screen, and dynamically mounted disk drives
such as USB drives create a drive icon on the desktop.

Figure 1.1: The GNOME desktop environment.

 Check out http://primates.ximian.com/~miguel/gnome-history.html for the history of GNOME from
founder Miguel de Icaza.

KDE
KDE is a desktop environment with a strong set of applications as a core part of the project.
Figure 1.2 shows the KDE desktop, which has more of a Microsoft Windows–type layout o
menu bars, icons, and application menus. The KDE file manager, Konqueror, is also the KDE
Web browser and document viewer application. This unified application makes it easy to brow
and manage your file system and client Web applications as well as open and view many types
of files including arch

f

se

ive and package files such as .zip and .rpm files. Another significant
application set in KDE is KOffice, which offers the usual suite of office applications—word

e native
document file format, which allows general use and ease of interpretation and transformation for
KOffice documents.

processor, spreadsheet, presentation, and drawing solutions. KOffice uses XML for th

3

Chapter 1

4

 The KDE User Guide can be found at http://docs.kde.org/en/HEAD/kdebase/userguide/.

Like GNOME, KDE provides a comprehensive development environment for writing KDE
ent tools, such as applications. Of course, it is also possible to run Java and GTK developm

Eclipse and MonoDevelop, in KDE.

 For a description of the origins and evolution of KDE, refer to the history at
http://www.kde.org/history/.

Figure 1.2: The KDE desktop environment.

Chapter 1

Application Packages and Development Tools
A desktop such as those we just looked at provides a working environment for a developer.
Application packages and tools are the raw materials a developer uses to build new applications.
The two application frameworks that this guide will explore are J2EE and .NET via the Mono
open source implementation of .NET. Although Java itself is not open source, we will look at
development tools and application servers for Java that are open source. There are also
interesting open source combinations of Java and .NET such as IKVM and Grasshopper. IKVM
is a Java (VM and class libraries) implementation in .NET. Grasshopper cross compiles .NET
MSIL to Java bytecode. The Grasshopper Visual Studio plug-in lets you code C# ASP.NET
applications in Visual Studio and compile the result to run in a Java VM on Linux (in a server
container such as Tomcat).

Application Servers
There are several application servers for J2EE applications such as BEA WebLogic, Sun
Application Server, and IBM WebSphere Application Server. This guide is only concerned with
the open source application server, JBoss. JBoss began as an open source Enterprise Java Bean
(EJB) project and is now a very strong open source community with a number of projects in
addition to the JBoss Application Server.

 Visit the JBossWiki at http://www.jboss.org/wiki/Wiki.jsp for more background information.

JBoss
The open source Java application server JBoss is in its fourth major release. JBoss has a clean
modular architecture built on a microkernel core using Java Management Extensions (JMX). The
microkernel core and services layer create a strong service-oriented architecture. An aspect layer
over the services layer enables object access to the services. The aspect layer also gives a
developer the capability to use attribute tags when programming applications. The current
version of JBoss is 4.0.2 which is J2EE 1.4 certified. JBoss 4 requires a Java VM 1.4 or higher.
The SUSE Linux Professional 9.3 distribution includes JBoss 3.2.5-6 in the
Productivity/Networking/Web/Servers YaST package group. There is a YaST dependency on a
Sun Java Development Kit (JDK) package.

 Chapter 2 will look in detail at installing and configuring JBoss; this chapter will explore how to
develop a Java enterprise application to run in JBoss.

Mono XSP
The .NET application server we will look at is the Mono “container” XSP and the corresponding
Apache module, mod_mono, to hook Mono into an Apache server. Mono XSP is a server
container that provides a .NET environment using Mono to host ASP.NET applications and gain
access on a TCP port. It is a basic implementation that will likely grow to include many and will
become a full-fledged application server. Figure 1.3 is a sample page with links to sample
ASP.NET demos.

5

http://www.jboss.org/wiki/Wiki.jsp

Chapter 1

6

Figure 1.3: The Mono XSP interface.

IDEs
A considerable evolution from edit-compile-link (e-c-l) programming, IDEs combine e-c-l into a
common environment with other tools such as UI designers and schema editors. As with
application servers, there are several IDEs available—although they’re not all open source—such
as BEA Workbench and netBeans. We will focus on the open source plug-in platform Eclipse for
Java and MonoDevelop for .NET. In addition to a strong and vibrant community behind Eclipse,
the JBoss Eclipse plug-in project is a key reason for the focus on Eclipse in this guide.

Chapter 1

Eclipse
Eclipse is an open platform for tool integration that is written in Java. The three main Eclipse
projects are the Eclipse Platform, the Eclipse Java development tools (JDTs), and the Eclipse
plug-in development environment (PDE). To install Eclipse from the SUSE Linux Professional
distribution, pick the Eclipse packages provided in the following list from the YaST Java
Selections group (YaST Package Groups Development/Tools/IDE):

• eclipse—base package

• eclipse-platform—common files

• eclipse-gtk2—GTK2 support

• eclipse-jdt—JDT

• eclipse-pde—PDE

• eclipse-scripts—startup scripts

• eclipse-source—source

• libswt3-gtk—GTK2 version of SWT library

YaST will pick up dependencies for packages such as ant and junit if you don’t already have
them installed. If you need a newer version of Eclipse (version 3.0.2 is the latest released version
at the time of this writing) you can download an Eclipse SDK package from
http://www.eclipse.org/downloads/index.php. The flavor to pick for SUSE Linux is “Linux
(x86/GTK2).” Stable beta releases are also available, for example, version 3.1RC1 at the Eclipse
Web site. The SDK downloads are not integrated into your system when you install them. They
unpack into a private self-contained directory that provides the program and a full set of plug-ins
for all the supporting tools. This setup makes it easy to acquire and test multiple versions of the
Eclipse platform simultaneously. SUSE has not made many changes to the directories and files
that YaST uses for system-wide installation of Eclipse. You might be tempted to move a private
Eclipse installation directory to /usr/share/eclipse, but doing so is not recommended. If you do,
you will compromise version and dependency tracking done by YaST and will likely miss files
in /usr/bin and /usr/lib.

After installation, you will have Eclipse on the GNOME and KDE application menu. You can
also start Eclipse from a command line simply by typing

eclipse &

at your command line prompt. Figure 1.4 shows the Eclipse welcome window.

7

http://www.eclipse.org/downloads/index.php

Chapter 1

8

Figure 1.4: The Eclipse welcome window.

The built-in tutorials are a good way to become familiar with Eclipse and the JDT. Simply select
the tutorial icon (the chalkboard icon) on the welcome window. Figure 1.5 shows the tutorial
selection window.

Chapter 1

9

Figure 1.5: Eclipse tutorials.

It is also easy to learn Eclipse by creating a project and exploring the UI. The window layout,
menus, and toolbars are quite intuitive. Figure 1.6 shows a Java project open in Eclipse.

Chapter 1

10

Figure 1.6: A Java project in Eclipse.

Eclipse JDT also makes it easy to develop Java web applications with servlets and JSPs. A
version of the container server Tomcat is integrated in Eclipse to test and debug web
applications. There are a number of application frameworks for Java web applications with
Eclipse integration or support. For example the Spring Framework,
http://www.springframework.org project has a Spring plug-in for Eclipse. Check
http://www.eclipse.org/org/index.html for background information on Eclipse.

MonoDevelop
MonoDevelop is a young project (current version is 0.7 at this writing). It is an Integrated
Development Environment (IDE) for writing .NET applications in the Mono environment on
Linux (Mono also runs on Windows). Although still somewhat bare bones, it is certainly possible
to enter code into the editor and compile. MonoDevelop has several project solution templates
for C#, VB.NET, Java, and Boo (a .NET CLI scripting language). Figure 1.7 shows the
MonoDevelop solution template selection.

http://www.springframework.org/
http://www.eclipse.org/org/index.html

Chapter 1

11

Figure 1.7: MonoDevelop solution templates.

The lack of designers for ASP.NET, Windows Forms, and GTK is a major shortcoming of
MonoDevelop. However, if you develop .NET applications using Microsoft Visual Studio, it is
certainly possible to bring the result to Mono and run it on Linux.

Libraries and Development Kits
There are many libraries in the Linux and Java open source universe. Apache Jakarta is a good
example of a collection of libraries often in multiple forms such as Java class libraries and
C/C++ API libraries. Mono provides an implementation of the ECMA .NET class libraries.

Chapter 1

Java Libraries
The fundamental Java libraries of course are the class libraries provided by Sun in the Java
Runtime Environment (JRE). Although not open source, the Sun JRE is widely implemented on
many types of hardware and OSs. There is an open source project to develop an open version of
the Java class libraries called GNU Classpath. It is currently in beta. The IKVM project is
implementing a Java system that runs on .NET. IKVM is using GNU Classpath for the class
libraries. Using Mono for the .NET runtime, IKVM provides a completely open implementation
of Java.

Beyond the fundamental Java class libraries, the Apache Jakarta Commons project provides a
significant set of Java application components. Table 1.1 provides the Jakarta Commons
component libraries.

Component Library Definition
Attributes Provides a runtime API to metadata attributes such as doclet tags,

inspired by the Nanning and XRAI projects as well as JSR 175 and C#
attributes

BeanUtils Provides easy-to-use wrappers around the Java reflection and
introspection APIs

Betwixt Provides services for mapping JavaBeans to XML documents and vice
versa

Chain Provides a chain of responsibility pattern implementation for organizing
complex processing flows

CLI Provides a simple API for working with command line arguments, options,
option groups, mandatory options, and so forth

Codec Contains general encoding/decoding algorithms; includes phonetic
encoders, Hex, Base64, and a URL encoder

Collections Provides a suite of classes that extend or augment the Java Collections
Framework

Configuration Offers tools to assist in the reading of configuration/preferences files in
various formats

Daemon Is an alternative invocation mechanism for UNIX-daemon-like java code

DBCP Provides database connection pooling services

DbUtils Is a Java Database Connectivity (JDBC) helper library that factors out
mundane resource cleanup code for common database tasks

Digester Is an XML-to-Java-object mapping utility commonly used for parsing XML
configuration files

Discovery Provides tools for locating resources (including classes) by mapping
service/reference names to resource names using a variety of schemes

EL Provides an interpreter for the Expression Language, which is defined by
the JavaServer Pages specification version 2.0

Email Provides a simple library for sending email from Java

FileUpload Makes it easy to add robust, high-performance, file upload capability to
servlets and Web applications

12

Chapter 1

13

Component Library Definition
HttpClient Provides a framework for working with the client-side of the HTTP

protocol

IO Is a collection of input/output utilities

Jelly Is an XML-based scripting and processing engine that borrows many
good ideas from JSP custom tags, Velocity, Cocoon, and the scripting
engine inside XDoclet; can be used from the command line, inside Ant, or
inside a servlet

Jexl Is an expression language that extends the Expression Language of the
JSTL by bringing in some of the lessons learned by the Velocity
community

JXPath Provides utilities for manipulating Java classes that conform to the
JavaBeans naming conventions using the XPath syntax; also supports
maps, DOM, and other object models

Lang Provides a very common set of utility classes that provide extra
functionality for classes in java.lang

Latka Is an HTTP functional testing suite for automated QA, acceptance, and
regression testing

Launcher Is designed to be a cross-platform Java application launcher and
eliminates the need for a batch or shell script to launch a Java class; the
original Java classes come from the Jakarta Tomcat 4.0 project

Logging Is a wrapper around a variety of logging API implementations

Math Is a library of lightweight, self-contained mathematics and statistics
components that address the most common practical problems not
immediately available in the Java programming language

Modeler Provides mechanisms to create Model MBeans compatible with the Java
Management Extensions (JMX) specification

Net Is a collection of network utilities that is based on the NetComponents
codebase, including FTP clients

Pool Provides a generic object pooling interface, a toolkit for creating modular
object pools, and several general purpose pool implementations

Primitives Provides smaller, faster, and easier-to-work-with types supporting Java
primitive types; currently, Primitives is focused on collections of primitives

Resources Provides a lightweight framework for defining and looking up
internationalized message strings keyed by a java.util.Locale and a
message key

Transaction Provides implementations for multi-level locks, transactional collections,
transactional file access, and some other utility classes commonly used in
transactional Java programming

Validator Provides a simple, extendable framework to define validators (validation
methods) and validation rules in an xml file; offers support for
internationalization of validation rules and error messages

VFS Is a Virtual File System component for treating files, FTP, SMB, ZIP, and
such like as a single logical file system

Table 1.1: Jakarta Commons component libraries.

Chapter 1

Another significant body of Java class libraries is available for XML processing. These are
libraries such as Xalan (XSLT processor), Xerces (XML parser), and XMLBeans. In addition to
Java, some have C++ versions. SUSE Linux Professional has an extensive collection of Java
library packages. Browse the list in the YaST Package Group Development/Libraries/Java.

.NET Libraries
The base .NET class libraries are defined by the .NET Common Language Infrastructure (CLI)
standard. The CLI standard is ECMA-335. It—together with the C# language specification
ECMA-334—define .NET Framework that has been implemented by Microsoft and Mono.
Application-oriented component libraries for .NET are not as prevalent as they are for Java.
There is a substantial list, however, at http://www.gotdotnet.com. I also expect to see a growing
number at http://www.gotmono.net.

It is important to understand the Mono release versions, the features they contain, and the
roadmap for future releases. Mono version 1.0 was released in June of 2004. The following list
highlights the features supported:

• A cross-platform ECMA CLI runtime engine

• A cross-platform Java runtime engine

• C# 1.0 compiler

• Development toolchain

• Class libraries implementing the .NET 1.1 profile

• The GTK# 1.0 GUI programming toolkit

• Mono extension libraries

• Third-party convenience libraries bundled with the release

• GNU Classpath for the CLI

• Visual Basic runtime.

The current Mono release version is 1.1.7-1 at the time of this writing. The 1.1 release stream is
intermediate to the next major release which will be Mono 1.2. The Mono 1.2 release is expected
in late 2005. The significant new features in Mono 1.2 will be:

• Generic types support: C# compiler, execution system and core class libraries (C# 2.0)

• System.Windows.Forms 1.1 support

• Mono Debugger

• GTK# 2.0 (includes support for GTK 2.6)

• Numerous scalability and performance enhancements

Notice that Windows.Forms is not in Mono 1.0 and is just now showing up in the 1.1
intermediate release stream. Mono 1.2 is also expected to have technology previews of some of
the (not yet released by Microsoft) .NET 2.0 features that will be released with Visual Studio
2005. Full implementation of .NET 2.0 is planned for Mono 2.0, which is expected in the second
half of 2006.

14

http://www.gotdotnet.com/
http://www.gotmono.net/

Chapter 1

C/C++ Libraries
Even larger and definitely older than the Java community, the C/C++ community has the largest
selection of class libraries (C++) and subroutine libraries (C). The de facto standard Linux
C/C++ compiler is GNU Compiler Collection (GCC). In fact, GCC was a key enabler in the birth
and growth of Linux. GCC and an extensive collection of libraries are contained in the SUSE
Linux distribution. Libraries from Glib and GTK2 through Xerces-c are listed in the YaST
Package Group Development/Libraries/C and C++.

Development Kits
The Sun JDK is the primary and most widely used development kit for Java. As we have seen,
there are possible permutations and combinations of virtual machines (VMs), class libraries and
compilers. In addition to open source Java development kits, some companies—such as IBM,
BEA, and Microsoft—have produced proprietary Java implementations. The only two .NET
development kits are the Microsoft .NET Framework SDK and the Mono project package. Both
include a C# compiler as well as runtime and class libraries. The Sun JDK and Mono kit are
available in the SUSE Linux Professional distribution. We will discuss installation and versions
of the Sun JDK in more detail later in this chapter.

Programming Languages
The list of programming languages, assembled, compiled, and interpreted is huge. From
FORTRAN and Algol to Java and C#, chances are there is some form available on Linux and
more than likely multiple forms. The GNU compiler collection provides the bootstrap capability
to build Linux kernel and drivers and support packages from source. This guide will use Java in
the J2EE examples and C# in the .NET examples.

Building and Configuring a Development Workstation
SUSE Linux Professional includes 32-bit and 64-bit versions, so most Intel or AMD desktop or
laptop is supported. Graphics and audio hardware are also widely supported, so chances are your
video and sound cards are supported out of the box, as will network adapters. The only hardware
that I have found that needed special driver setup is the MultiPort wireless LAN (WLAN)
adapter for Compaq laptops.

Installation
You can install by using the boxed DVD/CD or via a network installation through FTP, HTTP,
or file share. You might want to install SUSE Linux on a workstation that already has Windows
installed, as doing so will preserve the Windows setup and add a boot selection so that either
Windows or Linux can be booted from the same drive. When SUSE Linux runs, the Windows
NTFS partition is mounted read-only so that you have easy access to any of your Windows files.
Full details on the installation methods are in the SUSE Linux Professional documentation.

YaST
During installation, you must decide what to install and how to configure the workstation.
Installation uses the same tool, YaST, that is used on a running system to select packages (see
Figure 1.8).

15

Chapter 1

16

Figure 1.8: The main YaST screen.

YaST does a lot more than just package selection, but that is its main function during installation.
The two important organization hierarchies are Package Groups and Selections. The Package
Groups organize packages into groups of related components from which you make individual
selections. Selections are larger groupings that allow you to select the entire group as a whole.
Predefined system configurations are available at install time for minimal system, minimal
graphics system, or default system with GNOME or KDE. I recommend you pick a default
system during installation and add development tools and other packages after installation. See
the SUSE Linux Professional Administration Guide for complete details about installation.

Package Groups
Packages for development tools, compilers libraries, and so on are the next thing to install after
setting up a default system. SUSE Linux Professional ships with a wide selection of development
related packages using the RPM Package Manager (RPM) system. There is a lot of version
dependency and conflict detail to keep track of between packages, all of which is handled by
YaST. SUSE has adapted all the included packages to fit into the SUSE system model in terms
of file locations, environment variables, and PATH directories. Not all Linux/UNIX systems are
the same when it comes to executables and library locations in /sbin or /usr/sbin or /bin or /opt
(or a number of other places). You might need to install packages that are not available from
SUSE in SUSE-specific layout, in which case you must be aware of which details may need
adjusting in terms of file locations, links, and environment variables.

Chapter 1

The place to find most of the development-related packages is, not surprisingly, in the
Development branch of the YaST package groups list (see Figure 1.9).

Figure 1.9: Selecting YaST Package Groups.

You will likely, at minimum, want to install GCC and basic tools such as make and bison. We
will be using IDE packages such as Eclipse and MonoDevelop in Chapters 2 and 3 when we look
at developing applications. You saw earlier in this chapter how they can be installed using YaST.

Let’s take a look at what is involved in installing a package that is not available in YaST. For
example, suppose you needed to install the 5.0 version of the Sun JDK. As Figure 1.10 shows,
YaST has the 1.4 JDK (listed as Java 2 SDK, Standard Edition in YaST) and the 1.5 JRE (Java
Runtime Environment, 1.5 is the JRE version in J2SE 5.0) but the current JDK which is 1.5.0_03
is not in YaST.

 There is possible confusion in that YaST has an entry for JDK 1.5.0_01 but erroneously lists the
description as Java Runtime Environment (JRE). Although you could install JDK 1.5.0_01 via YaST,
the following example shows what is involved in the system setup of a JDK not available in YaST.

17

Chapter 1

Figure 1.10: Java packages in YaST.

To access this version, you would start by downloading the 1.5.0_03 JDK from Sun at
http://java.sun.com/j2se/1.5.0/download.jsp. There are two Linux packages available, an RPM
package and a “user” private setup. The user setup is intended for people that want a setup local
or private to their login rather than a system-wide setup. Download the RPM package that has a
.bin extension, and execute it to create the jdk-1_5_0_03-linux-i586.rpm RPM package file. If
you are not logged in as root (you normally shouldn’t be), create a root shell using su, and run
rpm –iv on the package. For a more detailed reference of using RPM from the command line, see
the SUSE Linux Professional Administration Guide.

 SUSE includes a viewer tool, KRPMView, that you can use to view the contents of an RPM file.
Simply click on the package icon in a file manager window to access the viewer. It includes a button
to install the RPM package that is open in the viewer using YaST.

Once the package is installed, notice that the base or home directory for the JDK is /usr/java/jdk-
1_5_0_03. This is not at all integrated with where SUSE puts JDK and JRE installations. There
are no changes to environment variables such as JAVA_HOME to use the new JDK. The Java-
related environment variables are set using the shell profile script in /etc/profile.d/alljava.sh (or
.csh for C shells). As you can see from Listing 1.1, the environment variables JAVA_HOME and
JAVA_BINDIR are set using this script.

18

http://java.sun.com/j2se/1.5.0/download.jsp

Chapter 1

/etc/profile.d/alljava.sh

send feedback to http://www.suse.de/feedback

This script sets some environment variables for default java.
Affected variables: PATH, JAVA_BINDIR, JAVA_HOME, JRE_HOME,
JDK_HOME, SDK_HOME

if [-x /usr/lib/jvm/java/bin/java] || [-x /usr/lib/jvm/java/bin/jre
] ; then
 export JAVA_BINDIR=/usr/lib/jvm/java/bin
 export JAVA_ROOT=/usr/lib/jvm/java
 export JAVA_HOME=/usr/lib/jvm/java
 if [-x /usr/lib/jvm/java/jre/bin/java] ; then
 export JRE_HOME=/usr/lib/jvm/java/jre
 else
 export JRE_HOME=/usr/lib/jvm/java
 fi
 unset JDK_HOME
 unset SDK_HOME
 if [-x /usr/lib/jvm/java/bin/javac] ; then
 # it is development kit
 if [-x /usr/lib/jvm/java/bin/jre] ; then
 export JDK_HOME=/usr/lib/jvm/java
 else
 export JDK_HOME=/usr/lib/jvm/java
 export SDK_HOME=/usr/lib/jvm/java
 fi
 fi
else
 if [-x /usr/lib/jvm/jre/bin/java] ; then
 # it is IBMJava2-JRE or SunJava2-JRE
 export PATH=$PATH:/usr/lib/jvm/jre/bin
 export JAVA_BINDIR=/usr/lib/jvm/jre/bin
 export JAVA_ROOT=/usr/lib/jvm/jre
 export JAVA_HOME=/usr/lib/jvm/jre
 export JRE_HOME=/usr/lib/jvm/jre
 unset JDK_HOME
 unset SDK_HOME
 fi
fi

Listing 1.1: The alljava.sh script.

Instead of changing the alljava.sh script, you can create a new script to clear and set environment
variables appropriately. Listing 1.2 shows a potential script jdkjava.sh.

 PATH is also adjusted to include the /bin directory of the JDK.

19

Chapter 1

unset JDK_HOME
unset JAVA_BINDIR
unset JAVA_HOME
unset JRE_HOME
unset SDK_HOME
unset JAVA_ROOT

export JAVA_HOME=/usr/java/jdk1.5.0_03
export PATH=$PATH:$JAVA_HOME/bin

Listing 1.2:The jdkjava.sh script.

This example is just a skeleton that you will likely change and augment. You need to “source”
the script, not just execute it, in order to change the environment variables of your current shell.
That is, execute at the command line

prompt> source ./jdkjava.sh

In addition, be aware that SUSE creates a link in /usr/bin for the java executable. You should
delete the link so that the executable in the JDK /bin directory is used.

Different packages will require you to modify different details so that they are adjusted to your
system environment. The JDK example is representative of what needs to be considered and can
be used as an example of what to look for when working with other packages. Depending on
your needs and particular development project, your final setup will likely be a combination of
packages from the SUSE distribution and direct downloads. You might even find situations in
which you are working with the source for a package that you modify and re-build for use in
your project—that is, after all, one of the benefits of open source application development.

Requirements for Debug and Test
Developing server-based enterprise applications, you will need a server environment to debug
and test the application. Although you might want to do so using separate server hardware, it is
also possible to run application servers for Java and Mono .NET on the development
workstation. If you are building unit test capability into your application, install the junit package
available in the SUSE distribution. Java container servers such as Tomcat are easy to install on
your development workstation and can be used for debugging and testing. IDEs such as Eclipse
and netBeans often bundle major supporting pieces such as Tomcat and ant as part of their
installation packages.

20

Chapter 1

Summary
The development of applications based on open source components has come a long way in the
past 20 years—with major growth occurring in the past 5 years. In the past, developers had to
invest a lot of time and effort gathering components and writing code for parts that were not
available. The open source community has created many new fundamental components and
enhanced and re-engineered the early components. For example, SUSE has built enhancements
such as YaST and time-saving package collections. SUSE Linux Professional makes a great
platform for application development. A comprehensive distribution with easy-to-use setup and
configuration tools, this solution enables you to be up and coding much quicker than if you had
to assemble the pieces on your own.

[Editor's Note: This content was excerpted from the free eBook The Developer Shortcut Guide
to SUSE Linux (Realtimepublishers) written by John Featherly and available at
http://cc.realtimepublishers.com/portal.aspx?pubid=339.]

21

http://cc.realtimepublishers.com/portal.aspx?pubid=339

	Chapter 1: Using SUSE Linux Professional
	SUSE Linux Professional
	Desktop Environments
	GNOME
	KDE

	Application Packages and Development Tools
	Application Servers
	JBoss
	Mono XSP

	IDEs
	Eclipse
	MonoDevelop

	Libraries and Development Kits
	Java Libraries
	.NET Libraries
	C/C++ Libraries
	Development Kits

	Programming Languages

	Building and Configuring a Development Workstation
	Installation
	YaST
	Package Groups
	Requirements for Debug and Test

	Summary

