
8.1 Introduction
In this chapter, I look at techniques and commands you can use from the shell for
debugging interprocess communication (IPC). When you are debugging commu-
nication between processes, it’s always nice to have a neutral third party to intervene
when things go wrong.

8.2 Tools for Working with Open Files
Processes that leave files open can cause problems. File descriptors can be “leaked”
like memory, for example, consuming resources unnecessarily. Each process has a
finite number of file descriptors it may keep open, so if some broken code contin-
ues to open file descriptors without closing them, eventually it will fail with an
errno value of EMFILE. If you have some thoughtful error handling in your code,
it will be obvious what has happened. But then what?

8

415

Debugging IPC with
Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 415

The procfs file system is very useful for debugging such problems. You can see
all the open files of a particular process in the directory /proc/PID/fd. Each open
file here shows up as a symbolic link. The name of the link is the file descriptor
number, and the link points to the open file. Following is an example:

$ stty tostop Force background task to stop on output.
$ echo hello | cat ~/.bashrc 2>/dev/null & Run cat in the background.
[1] 16894 It’s stopped.
$ ls -l /proc/16894/fd Let’s see what files it has open.
total 4
lr-x------ 1 john john 64 Apr 9 12:15 0 -> pipe:[176626]
lrwx------ 1 john john 64 Apr 9 12:15 1 -> /dev/pts/2
l-wx------ 1 john john 64 Apr 9 12:15 2 -> /dev/null
lr-x------ 1 john john 64 Apr 9 12:15 3 -> /home/john/.bashrc

Here, I piped the output of echo to the cat command, which shows up as a pipe
for file descriptor zero (standard input). The standard output points to the current
terminal, and I redirected the standard error (file descriptor 2) to /dev/null.
Finally, the file I am trying to print shows up in file descriptor 3. All this shows
fairly clearly in the output.

8.2.1 lsof
You can see a more comprehensive listing by using the lsof command. With no
arguments, lsof will show all open files in the system, which can be overwhelm-
ing. Even then, it will show you only what you have permission to see. You can
restrict output to a single process with the -p option, as follows:

$ lsof -p 16894
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
cat 16894 john cwd DIR 253,0 4096 575355 /home/john
cat 16894 john rtd DIR 253,0 4096 2 /
cat 16894 john txt REG 253,0 21104 159711 /bin/cat
cat 16894 john mem REG 253,0 126648 608855 /lib/ld-2.3.5.so
cat 16894 john mem REG 253,0 1489572 608856 /lib/libc-2.3.5.so
cat 16894 john mem REG 0,0 0 [heap]
cat 16894 john mem REG 253,0 48501472 801788 .../locale-archive
cat 16894 john 0r FIFO 0,5 176626 pipe
cat 16894 john 1u CHR 136,2 4 /dev/pts/2
cat 16894 john 2w CHR 1,3 1510 /dev/null
cat 16894 john 3r REG 253,0 167 575649 /home/john/.bashrc

This output shows not only file descriptors, but memory-mapped files as well.
The FD heading tells you whether the output is a file descriptor or a mapping. A
mapping does not require a file descriptor after mmap has been called, so the FD

416 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 416

column includes some text for each mapping to indicate the type of mapping. File
descriptors are shown by number as well as the type of access, as summarized in
Table 8-1.

You also can use lsof to discover which process has a particular file open by
providing the filename as an argument. There are many more options to the lsof
command; see lsof(8) for details.

8.2.2 fuser
Another utility for tracking down open files is the fuser command. Suppose that
you need to track down a process that is writing a huge file that is filling up your
file system. You could use fuser as follows:

$ fuser some-huge-file.txt What process has this file open?
some-huge-file.txt: 17005

If that’s all you care about, you could go ahead and kill the process. fuser allows
you to do this with the -k option as follows:

]$ fuser -k -KILL some-huge-file.txt
some-huge-file.txt: 17005
[1]+ Killed cat some-huge-file.txt

8.2 Tools for Working with Open Files 417

TABLE 8-1 Text Used in the FD Column of lsof Output

Identifier Meaning

cwd Current working directory

ltx Shared library text (code and data)

mem Memory-mapped file

mmap Memory-mapped device

pd Parent directory

rtd Root directory

txt Program text (code and data)

{digit}r File descriptor opened read-only

{digit}w File descriptor opened write-only

{digit}u File descriptor opened read/write.

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 417

This sends the SIGKILL signal to any and all processes that have this file open.
Another time fuser comes in handy is when you are trying to unmount a file sys-
tem but can’t because a process has a file open. In this case, the -m option is very
helpful:

$ fuser -m /mnt/flash What process has files open on this file system?
/mnt/flash: 17118

Now you can decide whether you want to kill the process or let it finish what it
needs to do. fuser has more options that are documented in the fuser(1) man page.

8.2.3 ls
You will be interested in the long listing available with the -l option. No doubt you
are aware that this gives you the filename, permissions, and size of the file. The out-
put also tells you what kind of file you are looking at. For example:

$ ls -l /dev/log /dev/initctl /dev/sda /dev/zero
prw------- 1 root root 0 Oct 8 09:13 /dev/initctl A pipe (p)
srw-rw-rw- 1 root root 0 Oct 8 09:10 /dev/log A socket (s)
brw-r----- 1 root disk 8, 0 Oct 8 04:09 /dev/sda A block device (b)
crw-rw-rw- 1 root root 1, 5 Oct 8 04:09 /dev/zero A char device (c)

For files other than plain files, the first column indicates the type of file you are
looking at. You can also use the -F option for a more concise listing that uses unique
suffixes for special files:

$ ls -F /dev/log /dev/initctl /dev/zero /dev/sda
/dev/initctl| /dev/log= /dev/sda /dev/zero

A pipe is indicated by adding a | to the filename, and a socket is indicated by
adding a = to the filename. The -F option does not use any unique character to
identify block or character devices, however.

8.2.4 file
This simple utility can tell you in a very user-friendly way the type of file you are
looking at. For example:

file /dev/log /dev/initctl /dev/sda /dev/zero
/dev/log: socket
/dev/initctl: fifo (named pipe)
/dev/sda: block special (8/0) Includes major/minor numbers
/dev/zero: character special (1/5) Includes major/minor numbers

418 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 418

Each file is listed with a simple, human-readable description of its type. The
file command can also recognize many plain file types, such as ELF files and
image files. It maintains an extensive database of magic numbers to recognize file
types. This database can be extended by the user as well. See file(1) for more
information.

8.2.5 stat
The stat command is a wrapper for the stat system that can be used from the
shell. The output consists of all the data you would get from the stat system call
in human-readable format. For example:

stat /dev/sda
File: `/dev/sda'
Size: 0 Blocks: 0 IO Block: 4096 block special file

Device: eh/14d Inode: 1137 Links: 1 Device type: 8,0
Access: (0640/brw-r-----) Uid: (0/ root) Gid: (6/ disk)
Access: 2006-10-08 04:09:34.750000000 -0500
Modify: 2006-10-08 04:09:34.750000000 -0500
Change: 2006-10-08 04:09:50.000000000 -0500

stat also allows formatting like the printf function, using specially defined
format characters defined in the stat(1) man page. To see only the name of each
file followed by its access rights in human-readable form and octal, you could use
the following command:

stat --format="%-15n %A,%a" /dev/log /dev/initctl /dev/sda /dev/zero
/dev/log srw-rw-rw-,666
/dev/initctl prw-------,600
/dev/sda brw-r-----,640
/dev/zero crw-rw-rw-,666

stat can be very useful in scripts to monitor particular files on disk. During
debugging, such scripts can act like watchdogs. You can watch a UNIX socket to
look for periods of inactivity as follows:

while [true]; do
ta=$(stat -c %X $filename) # Time of most recent activity
tnow=$(date +%s) # Current time

if [$(($tnow - $ta)) -gt 5]; then
echo No activity on $filename in the last 5 seconds.

fi
sleep 1

done

8.2 Tools for Working with Open Files 419

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 419

In this example, the script checks a file every second for the most recent access to
the file, which is given with the %X format option to stat. Whenever a process
writes to the socket, the time is updated, so the difference between the current time
and the time from the stat command is the amount of elapsed time (in seconds)
since the last write or read from the socket.

8.3 Dumping Data from a File
You probably are familiar with a few tools for this purpose, including your favorite
text editor for looking at text files. All the regular text processing tools are at your
disposal for working with ASCII text files. Some of these tools have the ability to
work with additional encodings—if not through a command-line option, maybe
via the locale setting. For example:

$ wc -w konnichiwa.txt Contains the Japanese phrase “konnichiwa” (one word).
0 konnichiwa.txt wc reports 0 words based on current locale.
$ LANG=ja_JP.UTF-8 wc -w konnichiwa.txt
1 konnichiwa.txt Forced Japanese locale gives us the correct answer.

Several tools can help with looking at binary data, but not all of them help inter-
pret the data. To appreciate the differences among tools, you’ll need an example
(Listing 8-1).

LISTING 8-1 filedat.c: A Program That Creates a Data File with Mixed Formats

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4 const char message[] = { // UTF-8 message
5 0xbf, 0xe3, 0x81, 0x93, 0xe3, 0x82, 0x93, 0xe3, 0x81, 0xab,
6 0xe3, 0x81, 0xa1, 0xe3, 0x81, 0xaf, '\r', 0x20, 0x20, 0x20,
7 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x0a, 0x0a, 0
8 };
9

10 int main(int argc, char *argv[])
11 {
12 const char *filename = "floats-ints.dat";
13 FILE *fp = fopen(filename, "wb");
14
15 /* error checking omitted. */
16
17 fprintf(fp, "Hello World\r%12s\n", "");
18 fwrite(message, sizeof(message), 1, fp);
19
20 /* write 250 zeros to the file. */

420 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 420

21 char *zeros = calloc(250, 1);
22 fwrite(zeros, 250, 1, fp);
23
24 int i;
25
26 /* Write four ints to the file 90000, 90001, ... */
27 for (i = 0; i < 4; i++) {
28 int idatum = i + 90000;
29 fwrite((char *) &idatum, sizeof(idatum), 1, fp);
30 }
31
32 /* Write four floats to the file 90000, 90001, ... */
33 for (i = 0; i < 4; i++) {
34 float fdatum = (float) i + 90000.0;
35 fwrite((char *) &fdatum, sizeof(fdatum), 1, fp);
36 }
37 printf("wrote %s\n", filename);
38 fclose(fp);
39 }

Listing 8-1 creates a file that contains a mix of ASCII, UTF-8, and binary data.
The binary data is in native integer format (32 bits on my machine) and IEEE float
(also 32 bits). A simple cat command produces nothing but garbage:

$./filedat
wrote floats-ints.dat
$ cat floats-ints.dat

floats-ints.dat____È¯GÈ¯GÉ¯GÉ¯G$ Not even “Hello World” is printed!

The problem, of course, is that cat just streams bytes out to the terminal, which
then interprets those bytes as whatever encoding the locale is using. In the “Hello
World” string on line 17 of Listing 8-1, I included a carriage return followed by 12
spaces. This has the effect of writing “Hello World” but then overwriting it with
12 spaces, which effectively makes the string invisible on the terminal.

You could use a text editor on this file, but the results may vary based on your
text editor. Earlier, I looked at the bvi editor, which is a Vi clone for files with
binary data.

Figure 8-1 shows that bvi does a good job of representing raw bytes and ASCII
strings, and even lets you modify the data, but it is not able to represent data
encoded in UTF-8, IEEE floats, or native integers. For that, you’ll need other tools.

8.3 Dumping Data from a File 421

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 421

8.3.1 The strings Command
Often, the text strings in a data file can give you a clue as to its contents. Sometimes,
the text can tell you all you need to know. When the text is embedded in a bunch
of binary data, however, you need something better than a simple cat command.

Looking back at the output of Listing 8-1, you can use the strings command
to look at the text strings in this data:

$ strings floats-ints.dat
Hello World

Invisible characters? Newlines? Who knows?

$

Now you can see Hello World and the spaces, but something is still missing.
Remember that message array on line 18? It’s actually UTF-8 text I encoded in
binary. strings can look for 8-bit encodings (that is, non-ASCII) when you use
the -e option as follows:

$ strings -eS floats-ints.dat Tell strings to look for 8-bit encodings (-eS)

Hello World

Japanese “konnichiwa,” “good day” in UTF-8

Our floats and ints produce this gobbledygook.

422 Chapter 8 • Debugging IPC with Shell Commands

FIGURE 8-1 The Output from Listing 8-1 As Seen in bvi

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 422

The example above shows that the UTF-8 output is in Japanese, but I glossed
over one detail: To show this on your screen, your terminal must support UTF-8
characters. Technically, you also need the correct font to go with it, but it seems that
most UTF-8 font sets have the Hiragana1 characters required for the message above.
With gnome-terminal, you can get the required support by setting the character
encoding to UTF-8. This is visible below Terminal on the menu bar. Not every ter-
minal supports UTF-8; check your documentation.

By default, strings limits the output to strings of four characters or more; any-
thing smaller is ignored. You can override this with the -n option, which indicates the
smallest string to look for. To see the binary data in your file, you will need other tools.

8.3.2 The xxd Command
xxd is part of Vim and produces output very similar to bvi. The difference is that
xxd is not a text editor. Like bvi, xxd shows data in hexadecimal and shows only
ASCII characters:

$ xxd floats-ints.dat
0000000: 4865 6c6c 6f20 576f 726c 640d 2020 2020 Hello World.
0000010: 2020 2020 2020 2020 0abf e381 93e3 8293
0000020: e381 abe3 81a1 e381 af0d 2020 2020 2020
0000030: 2020 2020 0a0a 0000 0000 0000 0000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0000 0000 0000 0000 0000 0000 0000 0000
0000080: 0000 0000 0000 0000 0000 0000 0000 0000
0000090: 0000 0000 0000 0000 0000 0000 0000 0000
00000a0: 0000 0000 0000 0000 0000 0000 0000 0000
00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
00000c0: 0000 0000 0000 0000 0000 0000 0000 0000
00000d0: 0000 0000 0000 0000 0000 0000 0000 0000
00000e0: 0000 0000 0000 0000 0000 0000 0000 0000
00000f0: 0000 0000 0000 0000 0000 0000 0000 0000
0000100: 0000 0000 0000 0000 0000 0000 0000 0000
0000110: 0000 0000 0000 0000 0000 0000 0000 0000
0000120: 0000 0000 0000 0000 0000 0000 0000 0000
0000130: 0090 5f01 0091 5f01 0092 5f01 0093 5f01 .._..._..._..._.
0000140: 0000 c8af 4780 c8af 4700 c9af 4780 c9af G...G...G...
0000150: 47 G

8.3 Dumping Data from a File 423

1. Hiragana is one of three sets of characters required to render Japanese text.

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 423

xxd defaults to 16-bit words, but you can adjust this with the -g option. To see
the data in groups of 4 bytes, for example, use -g4. Make sure, however, that the
groups preserve the byte order in the file. This means that 32-bit words printed on
an IA32 will be incorrect. IA32 stores words with the least significant byte first,
which is the reverse of the byte order in memory. This is sometimes called Little
Endian byte order. To display the correct words, you must reverse the order of the
bytes, which xxd does not do.

This can come in handy on some occasions. If you need to look at Big Endian
data on a Little Endian machine, for example, you do not want to rearrange the
bytes. Network protocols use the so-called network byte order for data transfer,
which happens to be the same as Big Endian. So if you happen to be looking at a
file that contains protocol headers from a socket, you would want a tool like xxd
that does not swap the bytes.

8.3.3 The hexdump Command
As the name suggests, hexdump allows you to dump a file’s contents in hexadeci-
mal. As with xxd, the default format from hexdump is 16-bit hexadecimal, how-
ever, the byte order is adjusted on Little Endian architectures, so the output can
differ between xxd and hexdump.
hexdump is better suited for terminal output than xxd because hexdump elimi-

nates duplicate lines of data skipped to avoid cluttering the screen. hexdump can
produce many other output formats besides 16-bit hexadecimal, but using them
can difficult. Because the hexdump(1) man page does such a rotten job of explain-
ing this feature, here’s an example using 32-bit hexadecimal output:

$ hexdump -e '6/4 "%8X "' -e '"\n"' floats-ints.dat
6C6C6548 6F57206F D646C72 20202020 20202020 20202020
81E3BF0A 9382E393 E3AB81E3 81E3A181 20200DAF 20202020
20202020 A0A 0 0 0 0

0 0 0 0 0 0
*

0 0 0 0 15F9000 15F9100
15F9200 15F9300 AFC80000 AFC88047 AFC90047 AFC98047

47

Notice that I included two -e options. The first tells hexdump that I want 6 val-
ues per line, each with a width of 4 bytes (32 bits). Then I included a space, fol-
lowed by the printf-like format in double quotes. hexdump looks for the double

424 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 424

quotes and spaces in the format arguments, and will complain if it does not find
them. That is why I needed to enclose the entire expression in single quotes.

Still looking at this first argument, I had to include a space following the %8X to
separate the values. I could have used a comma or semicolon or whatever, but
hexdump interprets this format verbatim. If you neglect to include a separator, all
the digits will appear as one long string.

Finally, I told hexdump how to separate each line of output (every six words) by
including a second -e option, which for some reason must be enclosed in double
quotes. If you can’t tell, I find hexdump to be a nuisance to use, but many pro-
grammers use it. The alternatives to hexdump are xxd and od.

8.3.4 The od Command
od is the traditional UNIX octal dump command. Despite the name, od is capa-
ble of representing data in many other formats and word sizes. The -t option is
the general-purpose switch for changing the output data type and element size
(although there are aliases based on legacy options). You can see the earlier text
file as follows:

$ od -tc floats-ints.dat Output data as ASCII characters
0000000 H e l l o W o r l d \r
0000020 \n 277 343 201 223 343 202 223
0000040 343 201 253 343 201 241 343 201 257 \r
0000060 \n \n \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000100 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

* Duplicate lines are skipped (indicated with “*”).

0000460 \0 220 _ 001 \0 221 _ 001 \0 222 _ 001 \0 223 _ 001
0000500 \0 \0 310 257 G 200 310 257 G \0 311 257 G 200 311 257
0000520 G
0000521

This output is comparable to what you’ve already seen with other tools. By
default, the offsets on the left are printed in octal (in keeping with the name). You
can change the base of the offsets with the -A option. -Ax, for example, prints the
offsets in hexadecimal.

od’s treatment of strings is similar to that of xxd and bvi. It recognizes ASCII
for display on the terminal but treats everything else as raw binary. What od can do
that the others can’t is rearrange the bytes when necessary to represent data in native
format. Recall that the data from Listing 8-1 has IEEE floats and integers in the

8.3 Dumping Data from a File 425

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 425

data. To see the integers in decimal, you can use the -td option, but you must tell
od where the data starts. In this case, the float data starts at offset 0x131 in the file,
so use the -j option as follows:

$ od -td4 -j0x131 floats-ints.dat Show me 4-byte words in decimal.
0000461 90000 90001 90002 90003
0000501 1202702336 1202702464 1202702592 1202702720 Float data (gibberish)
0000521

Now you can see the four consecutive decimal numbers we stored, starting with
90000. If you do not specify the offset to the data, the output will be incorrect. The
float and integer data in this case starts on an odd boundary. The float data starts at
offset 0x141, so you must use the -j option again to see your floats:

$ od -tf4 -j0x141 floats-ints.dat
0000501 9.000000e+04 9.000100e+04 9.000200e+04 9.000300e+04
0000521

I stored four consecutive float values starting with 90000. Notice that in this case,
I qualified the type as -tf4. I used IEEE floats in the program, which are 4 bytes each.
The default for the -tf option is to display IEEE doubles, which are 8 bytes each. If
you do not specify IEEE floats, you would see garbage.

Note that od adjusts the byte order only when necessary. As long as your data is
in native byte order, od will produce correct results. If you are looking at data that
you know is in network byte order (that is, Big Endian), od will show you incorrect
answers on a Little Endian machine such as IA32.

8.4 Shell Tools for System V IPC
The preferred tools for working with System V IPC objects are the ipcs and
ipcrm commands. ipcs is a generic tool for all the System V IPC objects I’ve dis-
cussed. ipcrm is used to remove IPC objects that may be left behind after a process
exits or crashes.

8.4.1 System V Shared Memory
For shared memory objects, the ipcs command will show you the application-
defined key (if any), as well as the system-defined ID for each key. It will also show
you whether any processes are attached to the shared memory. The X Window sys-
tem uses System V IPC shared memory extensively, so a spot check on your system
is likely to reveal many shared memory objects in use. For example:

426 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 426

$ ipcs -m -m indicates that only shared memory objects should be shown.

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 163840 john 600 196608 2 dest
0x66c8f395 32769 john 600 1 0
0x237378db 65538 john 600 1 0
0x5190ec46 98307 john 600 1 0
0x31c16fd1 131076 john 600 1 0
0x00000000 196613 john 600 393216 2 dest
0x00000000 229382 john 600 393216 2 dest
0x00000000 262151 john 600 196608 2 dest
0x00000000 294920 john 600 393216 2 dest
0x00000000 327689 john 600 393216 2 dest
0x00000000 360458 john 600 196608 2 dest
0x00000000 393227 john 600 393216 2 dest
0x00000000 425996 john 600 196608 2 dest
0x00000000 884749 john 600 12288 2 dest
0x00000000 2031630 john 600 393216 2 dest
0x00000000 2064399 john 600 196608 2 dest
0x00000000 2097168 john 600 16384 2 dest

Here, you see a mix of private and public shared memory objects. Private objects
have a key of zero, although every object has a unique shmid. The nattch column
tells you how many processes currently are attached to the shared memory object.
The -p option of ipcs shows you the process ID of the object’s creator and the
process ID of the process that most recently attached to or detached from each
shared object. For example:

$ ipcs -m -p

------ Shared Memory Creator/Last-op --------
shmid owner cpid lpid
163840 john 2790 2906
32769 john 2788 0
65538 john 2788 0
98307 john 2788 0
131076 john 2788 0
196613 john 2897 2754
229382 john 2899 2921
262151 john 2899 2921
294920 john 2907 2754
327689 john 2921 2923
360458 john 2893 2754
393227 john 2893 2754
425996 john 2921 2754
884749 john 2893 2754
2031630 john 8961 9392
2064399 john 8961 9392
2097168 john 8961 9392

8.4 Shell Tools for System V IPC 427

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 427

The creator’s PID is listed as cpid and the last PID to attach or detach is listed
as lpid. You may think that as long as nattch is 2, these are the only processes.
Don’t forget that there is no guarantee that the object creator is still attached (or
still running). Likewise, the last process to attach or detach to the object doesn’t
tell you much.

If nattch is zero, and neither process listed by ipcs is running, it may be safe to
delete the object with the icprm command. What ipcs does not answer is “Who
has this memory mapped now?” You can answer this question with a brute-force
search using the lsof command. Consider the following example:

$ ipcs -m

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
...
0xdeadbeef 2752529 john 666 1048576 3

There are three processes attached to this object, but what are they?

$ ipcs -m -p

------ Shared Memory Creator/Last-op --------
shmid owner cpid lpid
2752529 john 10155 10160

Process 10155 and 10160 are suspects. lsof to the rescue.

$ lsof | head -1 ; lsof | grep 2752529
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sysv-shm 10155 john DEL REG 0,7 2752529 /SYSVdeadbeef
sysv-clie 10158 john DEL REG 0,7 2752529 /SYSVdeadbeef
sysv-clie 10160 john DEL REG 0,7 2752529 /SYSVdeadbeef

The lsof command produces a great deal of output, but you can grep for the
shmid to see which processes are still using this object. Notice that lsof indicates
the key in the NAME column in hexadecimal. You could have used this as the search
key as well.

If no running process is attached to the shared memory, you probably can assume
that this object is just code droppings and can be removed.

428 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 428

You can get more information about a shared memory object by using the -i
option to ipcs. When you’ve decided that it’s safe to remove a System V shared
memory object, you need to use the shmid of the object (not the key). For example:

$ ipcs -m -i 32769 Tell me about this shmid.

Shared memory Segment shmid=32769
uid=500 gid=500 cuid=500 cgid=500
mode=0600 access_perms=0600
bytes=1 lpid=0 cpid=2406 nattch=0 Created by process 2406...
att_time=Not set
det_time=Not set
change_time=Sat Apr 8 15:48:24 2006

$ kill -0 2406 Is this process still running?
bash: kill: (2406) – No such process Not running

$ ipcrm -m 32769 Let’s delete the shared memory.

Notice that you must indicate that you are deleting a shared memory object with
-m. ipcs is used for all types of IPC objects, not just shared memory. The shmid
alone does not tell the system about the type of object; nothing prevents a message
queue and a shared memory object from using the same identifier.

8.4.2 System V Message Queues
You can use the ipcs command to list all the System V message queues by using
the -q option as follows:

$ ipcs -q
------ Message Queues --------
key msqid owner perms used-bytes messages
0x00000000 131072 john 600 0 0
0x00000000 163841 john 600 0 0
0x00000000 196610 john 600 0 0
0x00000000 229379 john 600 132 1

The values listed in the key column are the application-defined keys, whereas the
values listed under msqid are the system-defined keys. As you might expect, the sys-
tem-defined keys are unique. The application-defined keys in this case are all 0,
which means these message queues were created with the IPC_PRIVATE key.

One of the queues listed above (msgqid 229379) has data in it, which you can
see below the headings used-bytes and messages. This could be a symptom of a

8.4 Shell Tools for System V IPC 429

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 429

problem, because most applications don’t let messages sit in queues for very long.
Again, the -i option of ipcs is helpful:

$ ipcs -q -i 229379

Message Queue msqid=229379
uid=500 gid=500 cuid=500 cgid=500 mode=0600
cbytes=132 qbytes=16384 qnum=1 lspid=12641 lrpid=0
send_time=Sun Oct 22 15:25:53 2006
rcv_time=Not set
change_time=Sun Oct 22 15:25:53 2006

Notice that the lspid and lrpid fields contain the last sender PID and the last
receiver PID, respectively. If you can determine that this queue is no longer needed,
you can delete it by using the message queue ID as follows:

$ ipcrm -q 229379

Again, the ipcrm command applies to more than just message queues, so you
indicate the system ID of the object as well as the fact that it is a message queue
with the -q option.

8.4.3 System V Semaphores
Just as with message queues and shared memory, the ipcs command can be used
to list all the semaphores in the system with the -s option, as follows:

$ ipcs -s

------ Semaphore Arrays --------
key semid owner perms nsems
0x6100f981 360448 john 600 1

Recall that System V semaphores are declared as arrays. The length of the array
is shown in the nsems column. The output is very similar to the output for mes-
sage queues. Likewise, you can remove the semaphore with the ipcrm command as
follows:

$ ipcrm -s 360448

Here again, you specify the system semaphore ID (not the key) to remove the
semaphore. Additional information can be retrieved with the -i option:

430 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 430

$ ipcs -s -i 393216

Semaphore Array semid=393216
uid=500 gid=500 cuid=500 cgid=500
mode=0600, access_perms=0600
nsems = 1
otime = Tue May 9 22:23:30 2006
ctime = Tue May 9 22:22:23 2006
semnum value ncount zcount pid
0 3 0 1 32578

The output is similar to the stat command for files except that there is addi-
tional information specific to the semaphore. The ncount is the number of
processes blocking on the semaphore, waiting for it to increment. The zcount is
the number of processes blocking on the semaphore, waiting for it to go to zero.
The pid column identifies the most recent process to complete a semaphore opera-
tion; it does not identify processes waiting on the semaphore.

The ps command can help identify processes waiting on a semaphore. The
wchan format option shows what system function is blocking a process. For a
process blocking on a semaphore, it looks as follows:

$ ps -o wchan -p 32746
WCHAN
semtimedop

The semtimedop is the system call that is used for the semaphore operation.
Unfortunately, there is no way to identify which process is waiting on which sema-
phore. The process maps and file descriptors do not give away the semaphore IDs.

8.5 Tools for Working with POSIX IPC
POSIX IPC uses file descriptors for every object. The POSIX pattern is that every
file descriptor has a file or device associated with it, and Linux extends this with spe-
cial file systems for IPC. Because each IPC object can be traced to a plain file, the
tools we use for working with plain files are often sufficient for working with
POSIX IPC objects.

8.5.1 POSIX Shared Memory
There are no tools specifically for POSIX shared memory. In Linux, POSIX shared
memory objects reside on the tmpfs pseudo file system, which typically is mounted
on /dev/shm. That means that you can use all the normal file-handling tools at

8.5 Tools for Working with POSIX IPC 431

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 431

your disposal to debug these objects. Everything that I mentioned in the section on
working with open files applies here. The only difference is that all the files you will
need to look at are on a single file system.

As a result of the Linux implementation, it is possible to create and use shared
memory with only standard system calls: open, close, mmap, unlink, and so on.
Just keep in mind that this is all Linux specific. The POSIX standard seems to
encourage this particular implementation, but it does not require it, so portable
code should stick to the POSIX shared memory system calls.

Just to illustrate this point, let’s walk through an example of some shell com-
mands mixed with a little pseudocode. I’ll create a shared memory segment from
the shell that a POSIX program can map:

$ dd if=/dev/zero of=/dev/shm/foo.shm count=100 Create /foo.shm
100+0 records in
100+0 records out
$ ls -lh /dev/shm/foo.shm
-rw-rw-r-- 1 john john 50K Apr 9 21:01 /dev/shm/foo.shm

Now a POSIX shared memory program can attach to this shared memory, using
the name /foo.shm:2

int fd = shm_open("/foo.shm",O_RDWR,0);

Creating a shared memory segment this way is not portable but can be very use-
ful for unit testing and debugging. One idea for a unit test environment is to cre-
ate a wrapper script that creates required shared memory segments to simulate other
running processes while running the process under test.

8.5.2 POSIX Message Queues
Linux shows POSIX message queues via the mqueue pseudo file system.
Unfortunately, there is no standard mount point for this file system. If you need to
debug POSIX message queues from the shell, you will have to mount the file sys-
tem manually. To mount this on a directory named /mnt/mqs, for example, you
can use the following command:

$ mkdir /mnt/mqs
$ mount -t mqueue none /mnt/mqs Must be the root user to use mount

432 Chapter 8 • Debugging IPC with Shell Commands

2. The leading slash is not strictly required, but it is recommended.

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 432

When the file system is mounted, you can see an entry for each POSIX message
queue in the system. These are not regular files, however. If you cat the file, you
will see not messages, but a summary of the queue properties. For example:

$ ls -l /mnt/mqs
total 0
-rw------- 1 john john 80 Apr 9 00:20 myq

$ cat /mnt/mqs/myq
QSIZE:6 NOTIFY:0 SIGNO:0 NOTIFY_PID:0

The QSIZE field tells you how many bytes are in the queue. A nonzero value here
may be indication of a deadlock or some other problem. The fields NOTIFY, SIGNO,
and NOTIFY_PID are used with the mq_notify function, which I do not cover in
this book.

To remove a POSIX message queue from the system using the shell, simply use
the rm command from the shell and remove it from the mqueue file system by name.

8.5.3 POSIX Semaphores
Named POSIX semaphores in Linux are implemented as files in tmpfs, just like
shared memory. Unlike in the System V API, there is no system call in Linux to cre-
ate a POSIX semaphore. Semaphores are implemented mostly in user space, using
existing system calls. That means that the implementation is determined largely by
the GNU real-time library (librt) that comes with the glibc package.

Fortunately, the real-time library makes some fairly predictable choices that are
easy to follow. In glibc 2.3.5, named semaphores are created as files in /dev/shm.
A semaphore named mysem shows up as /dev/shm/sem.mysem. Because the
POSIX API uses file descriptors, you can see semaphores in use as open files in
procfs; therefore, tools such as lsof and fuser can see them as well.

You can’t see the count of a POSIX semaphore directly. The sem_t type that
GNU exposes to the application contains no useful data elements—just an array of
ints. It’s reasonable to assume, however, that the semaphore count is embedded in
this data. Using the posix_sem.c program from Listing 7-14 in Chapter 7, for
example:

$./posix_sem 1 Create and increment the semaphore.
created new semaphore
incrementing semaphore
semaphore value is 1

8.5 Tools for Working with POSIX IPC 433

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 433

$./posix_sem 1 Increment the semaphore again.
semaphore exists
incrementing semaphore
semaphore value is 2
$ od -tx4 /dev/shm/sem.mysem Dump the file to dump the count.
0000000 00000002 ...

Although you can use tools like lsof to find processes using a semaphore,
remember that just because a process is using a semaphore doesn’t mean that it’s
blocking on it. One way to determine whether a process is blocking on a particular
semaphore is to use ltrace. For example:

$ lsof /dev/shm/sem.mysem Identify the process using a named semaphore...
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
pdecr 661 john mem REG 0,16 16 1138124 /dev/shm/sem.mysem

$ ltrace -p 661 Find out what it is doing...
__errno_location() = 0xb7f95b60
sem_wait(0xb7fa1000, 0x503268, 0xbffa3968, 0x804852f, 0x613ff4 <unfinished ...>

Process is blocking in a sem_wait call on a semaphore located at 0xb7a1000...

$ pmap -d 661 | grep mysem
b7fa1000 4 rw-s- 0000000000000000 000:00010 sem.mysem

This address is mapped to a file named sem.mysem! This process is blocking on our semaphore.

This is a bit of work, but you get your answer. Note that for this to work, your
program must handle interrupted system calls. I did not do that in the examples,
but the pattern looks like this:

do {
r = sem_wait(mysem); Returns -1 with errno == EINTR if interrupted

} while (r == -1 && errno == EINTR);

This is required because tools like ltrace and strace stop your process with
SIGSTOP. This results in a semaphore function returning with -1 and errno set to
EINTR.

8.6 Tools for Working with Signals
One useful command for debugging signals from the shell is the ps command,
which allows you to examine a process’s signal mask as well as any pending
(unhandled) signals. You can also see which signals have user-defined handlers
and which don’t.

434 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 434

By now, you may have guessed that the -o option can be used to view the signal
masks as follows:

$ ps -o pending,blocked,ignored,caught
PENDING BLOCKED IGNORED CAUGHT

0000000000000000 0000000000010000 0000000000384004 000000004b813efb
0000000000000000 0000000000000000 0000000000000000 0000000073d3fef9

A more concise equivalent uses the BSD syntax, which is a little unconventional
because it does not use a dash to denote arguments. Nevertheless, it’s easy to use and
provides more output for you:

$ ps s Notice there’s no dash before the s.
UID PID PENDING BLOCKED IGNORED CAUGHT ...

500 6487 00000000 00000000 00384004 4b813efb ...
500 6549 00000000 00000000 00384004 4b813efb ...
500 12121 00000000 00010000 00384004 4b813efb ...
500 17027 00000000 00000000 00000000 08080002 ...
500 17814 00000000 00010000 00384004 4b813efb ...
500 17851 00000000 00000000 00000000 73d3fef9 ...

The four values shown for each process are referred to as masks, although the ker-
nel stores only one mask, which is listed here under the BLOCKED signals. The other
masks are, in fact, derived from other data in the system. Each mask contains 1 or
0 for each signal N in bit position N-1, as follows:

• Caught—Signals that have a nondefault handler

• Ignored—Signals that are explicitly ignored via signal(N,SIG_IGN)

• Blocked—Signals that are explicitly blocked via sigprocmask

• Pending—Signals that were sent to the process but have not yet been handled

Let’s spawn a shell that ignores SIGILL (4) and look at the results:

$ bash -c 'trap "" SIGILL; read '&
[1] 4697
$ jobs -x ps s %1
UID PID PENDING BLOCKED IGNORED CAUGHT STAT ...
500 4692 00000000 00000000 0000000c 00010000 T ...

You ignore SIGILL by using the built-in trap command in Bash. The value for
SIGILL is 4, so you expect to see bit 3 set under the IGNORED heading. There,

8.6 Tools for Working with Signals 435

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 435

indeed, you see a value of 0xc—bits 2 and 3. Now this job is stopped, and you know
that if you send a SIGINT to a stopped job, it won’t wake up, so see what happens:

$ kill -INT %1
[1]+ Stopped bash -c 'trap "" SIGILL; read '
$ jobs -x ps s %1
UID PID PENDING BLOCKED IGNORED CAUGHT STAT ...
500 5084 00000002 00000000 0000000c 00010000 T ...

Now you can see a value of 2 (bit 1) under the PENDING heading. This is the
SIGINT (2) you just sent. The handler will not be called until the process is
restarted.

Another useful tool for working with signals is the strace command. strace
shows transitions from user mode to kernel mode in a running process while listing
the system call or signal that caused the transition. strace is a very flexible tool,
but it is a bit limited in what it can tell you about signals.

For one thing, strace can only inform you when the user/kernel transition takes
place. Therefore, it can only tell you when a signal is delivered, not when it was sent.
Also, queued signals look exactly like regular signals; none of the sender’s informa-
tion is available from strace. To get a taste of what strace is capable of, look at
the rt-sig program from Listing 76 in Chapter 7 when you run it with strace.

$ strace -f -e trace=signal ./rt-sig > /dev/null
rt_sigaction(SIGRT_2, {0x8048628, [RT_2], SA_RESTART}, {SIG_DFL}, 8) = 0
rt_sigprocmask(SIG_BLOCK, ~[RTMIN RT_1], [], 8) = 0
Process 18460 attached
[pid 18459] rt_sigprocmask(SIG_BLOCK, [CHLD], ~[KILL STOP RTMIN RT_1], 8) = 0
[pid 18460] kill(18459, SIGRT_2) = 0
[pid 18460] kill(18459, SIGRT_2) = 0
[pid 18460] kill(18459, SIGRT_2) = 0
Process 18460 detached
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
--- SIGCHLD (Child exited) @ 0 (0) ---
--- SIGRT_2 (Real-time signal 0) @ 0 (0) ---
sigreturn() = ? (mask now [])
--- SIGRT_2 (Real-time signal 0) @ 0 (0) ---
sigreturn() = ? (mask now [])
--- SIGRT_2 (Real-time signal 0) @ 0 (0) ---
sigreturn() = ? (mask now [])

I cheated a little here. Because rt-sig forks, I can trace both processes with the
-f option, which follows forks. This allows me to see the sender and receiver in
one trace.

436 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 436

strace normally produces a great deal of output that has little to do with what
you are interested in. It is common to use a filter, specified with the -e option, to
limit the output to what you are interested in. In this case, you would use the
trace=signal filter to limit the output to the results of signals and signal-related
system calls.

8.7 Tools for Working with Pipes and Sockets
The preferred user-space tool for debugging sockets is netstat, which relies heav-
ily on the information in the /proc/net directory. Pipes and FIFOs are trickier,
because there is no single location you can look at to track down their existence.
The only indication of a pipe’s or FIFO’s existence is given by the /proc/pid/fd
directory of the process using the pipe or FIFO.

8.7.1 Pipes and FIFOs
The /proc/pid/fd directory lists pipes and FIFOs by inode number. Here is a
running program that has called pipe to create a pair of file descriptors (one write-
only and one read-only):

$ ls -l !$
ls -l /proc/19991/fd
total 5
lrwx------ 1 john john 64 Apr 12 23:33 0 -> /dev/pts/4
lrwx------ 1 john john 64 Apr 12 23:33 1 -> /dev/pts/4
lrwx------ 1 john john 64 Apr 12 23:33 2 -> /dev/pts/4
lr-x------ 1 john john 64 Apr 12 23:33 3 -> pipe:[318960]
l-wx------ 1 john john 64 Apr 12 23:33 4 -> pipe:[318960]

The name of the “file” in this case is pipe:[318960], where 318960 is the inode
number of the pipe. Notice that although two file descriptors are returned by the
pipe function, there is only one inode number, which identifies the pipe. I discuss
inodes in more detail later in this chapter.

The lsof function can be helpful for tracking down processes with pipes. In this
case, if you want to know what other process has this pipe open, you can search for
the inode number:

$ lsof | head -1 && lsof | grep 318960
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
ppipe 19991 john 3r FIFO 0,5 318960 pipe
ppipe 19991 john 4w FIFO 0,5 318960 pipe
ppipe 19992 john 3r FIFO 0,5 318960 pipe
ppipe 19992 john 4w FIFO 0,5 318960 pipe

8.7 Tools for Working with Pipes and Sockets 437

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 437

As of lsof version 4.76, there is no command-line option to search for pipes and
FIFOs, so you resort to grep. Notice that in the TYPE column, lsof does not dis-
tinguish between pipes and FIFOs; both are listed as FIFO. Likewise, in the NAME
column, both are listed as pipe.

8.7.2 Sockets
Two of the most useful user tools for debugging sockets are netstat and lsof.
netstat is most useful for the big-picture view of the system use of sockets. To get
a view of all TCP connections in the system, for example:

$ netstat --tcp -n

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 48 ::ffff:192.168.163.128:22 ::ffff:192.168.163.1:1344 ESTABLISHED

Following is the same command using lsof:

$ lsof -n -i tcp
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 1853 rpc 4u IPv4 4847 TCP *:sunrpc (LISTEN)
rpc.statd 1871 rpcuser 6u IPv4 4881 TCP *:32769 (LISTEN)
smbd 2120 root 20u IPv4 5410 TCP *:microsoft-ds (LISTEN)
smbd 2120 root 21u IPv4 5411 TCP *:netbios-ssn (LISTEN)
X 2371 root 1u IPv6 6310 TCP *:x11 (LISTEN)
X 2371 root 3u IPv4 6311 TCP *:x11 (LISTEN)
xinetd 20338 root 5u IPv4 341172 TCP *:telnet (LISTEN)
sshd 23444 root 3u IPv6 487790 TCP *:ssh (LISTEN)
sshd 23555 root 3u IPv6 502673 ...

TCP 192.168.163.128:ssh->192.168.163.1:1344 (ESTABLISHED)
sshd 23557 john 3u IPv6 502673 ...

TCP 192.168.163.128:ssh->192.168.163.1:1344 (ESTABLISHED)

The lsof output contains PIDs for each socket listed. It shows the same socket
twice, because two sshd processes are sharing a file descriptor. Notice that the
default output of lsof includes listening sockets, whereas by default, netstat
does not.
lsof does not show sockets that don’t belong to any process. These are TCP

sockets that are in one of the so-called wait states that occur when sockets are closed.
When a process dies, for example, its connections may enter the TIME_WAIT state.
In this case, lsof will not show this socket because it no longer belongs to a process.
netstat on the other hand, will show it. To see all TCP sockets, use the --tcp
option to netstat as follows:

438 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 438

$ netstat -n --tcp
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.1:60526 127.0.0.1:5000 TIME_WAIT

When using these tools to look at sockets, note that every socket has an inode
number, just like a file. This is true for both network sockets and local sockets, but
it is more important for local sockets, because the inode often is the only unique
identifier for the socket. Consider this output from netstat for local sockets:

Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 2 [] DGRAM 3478 @udevd
unix 2 [] DGRAM 5448 @/var/run/...
unix 8 [] DGRAM 4819 /dev/log
unix 3 [] STREAM CONNECTED 642738
unix 3 [] STREAM CONNECTED 642737
unix 2 [] DGRAM 487450
unix 2 [] DGRAM 341168
unix 3 [] STREAM CONNECTED 7633
unix 3 [] STREAM CONNECTED 7632

This is just a small piece of the output. I’ll zoom in on something specific that I
can talk about in more detail. The GNOME session manager, for example, creates
a listen socket in the /tmp/.ICE-unix directory. The name of the socket is the
process ID of the gnome-session process. A look at this file with lsof shows that
this file is open by several processes:

lsof /tmp/.ICE-unix/*
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
gnome-ses 2408 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
gnome-ses 2408 john 19u unix 0xc2709cc0 7036 /tmp/.ICE-unix/2408
gnome-ses 2408 john 20u unix 0xc27094c0 7054 /tmp/.ICE-unix/2408
gnome-ses 2408 john 22u unix 0xc2193100 7072 /tmp/.ICE-unix/2408
gnome-ses 2408 john 23u unix 0xc1d3ddc0 7103 /tmp/.ICE-unix/2408
gnome-ses 2408 john 24u unix 0xc1831840 7138 /tmp/.ICE-unix/2408
gnome-ses 2408 john 25u unix 0xc069b1c0 7437 /tmp/.ICE-unix/2408
gnome-ses 2408 john 26u unix 0xc3567880 7600 /tmp/.ICE-unix/2408
bonobo-ac 2471 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
gnome-set 2473 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
wnck-appl 2528 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
gnome-vfs 2531 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
notificat 2537 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
clock-app 2541 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408
mixer_app 2543 john 15u unix 0xc3562540 6830 /tmp/.ICE-unix/2408

8.7 Tools for Working with Pipes and Sockets 439

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 439

The first thing to notice is that most of these have unique inodes, although they
all point to the same file on disk. Each time the server accepts a connection, a new
file descriptor is allocated. This file descriptor continues to point to the same file
(the listen socket), although it has a unique inode number.

A little intuition and some corroborating evidence tell you that the server is the
gnome-session process—PID 2408. In this case, the filename of the socket is a
dead giveaway as well. The server is listening on file descriptor 15 (inode number
6830). Several other processes are using file descriptor 15 and inode number 6830.
Based on what you know about fork, these processes appear to be children or
grandchildren of gnome-session. Most likely, they inherited the file descriptor
and neglected to close it.

To locate the server using netstat, try using -l to restrict the output to listen
sockets and -p to print the process identification, as follows:

$ netstat --unix -lp | grep /tmp/.ICE-unix/
unix 2 [ACC] STREAM LISTENING 7600 2408/gnome-session /tmp/.ICE-unix/2408

Notice that the duplicate file descriptors are omitted, and only one server is
shown. To see the accepted connections, omit the -l option (by default, netstat
omits listen sockets):

netstat -n --unix -p | grep /tmp/.ICE-unix/2408
Proto RefCnt/Flags/Type/State/I-Node/PID/Program name Path
unix 3 [] STREAM CONNECTED 7600 2408/gnome-session /tmp/.ICEunix/2408
unix 3 [] STREAM CONNECTED 7437 2408/gnome-session /tmp/.ICEunix/2408
unix 3 [] STREAM CONNECTED 7138 2408/gnome-session /tmp/.ICEunix/2408
unix 3 [] STREAM CONNECTED 7103 2408/gnome-session /tmp/.ICEunix/2408
unix 3 [] STREAM CONNECTED 7072 2408/gnome-session /tmp/.ICEunix/2408
unix 3 [] STREAM CONNECTED 7054 2408/gnome-session /tmp/.ICEunix/2408
unix 3 [] STREAM CONNECTED 7036 2408/gnome-session /tmp/.ICEunix/2408

Unlike lsof, the netstat command does not show the inherited file descrip-
tors that are unused.

8.8 Using Inodes to Identify Files and IPC Objects
Linux provides a virtual file system (vfs) that is common to all file systems. It
enables file systems that are not associated with a physical device (such as tmpfs and
procfs) and at the same time provides an API for physical disks. As a result, vir-
tual files are indistinguishable from files that reside on a disk.

440 Chapter 8 • Debugging IPC with Shell Commands

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 440

The term inode comes from UNIX file-system terminology. It refers to the struc-
ture saved on disk that contains a file’s accounting data—the file-size permissions
and so on. Each object in a file system has a unique inode, which you see in user
space as a unique integer. In general, you can assume that anything in Linux that
has a file descriptor has an inode.

Inode numbers can be useful for objects that don’t have filenames, including net-
work sockets and pipes. Inode numbers are unique within a file system but are not
guaranteed to be unique across different file systems. Although network sockets can
be identified uniquely by their port numbers and IP addresses, pipes cannot. To
identify two processes that are using the same pipe, you need to match the inode
number.
lsof prints the inode number for all the file descriptors it reports. For most files

and other objects, this is reported in the NODE column. netstat also prints inode
numbers for UNIX domain sockets only. This is natural, because UNIX-domain
listen sockets are represented by files on disk.

Network sockets are treated differently, however. In Linux, network sockets have
inodes, although lsof and netstat (which run under operating systems in addi-
tion to Linux) pretend that they don’t. Although netstat will not show you an
inode number for a network socket, lsof does show the inode number in the
DEVICE column. Look at the TCP sockets open by the xinetd daemon (you must
be the root user to do this):

$ lsof -i tcp -a -p $(pgrep xinetd)
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
xinetd 2838 root 5u IPv4 28178 TCP *:telnet (LISTEN)

Here, you can see that xinetd is listening on the telnet socket (port 23).
Although the NODE column contains only the word TCP, the DEVICE column con-
tains the inode number. You also can find the inode for network sockets listed in
various places in procfs. For example:

$ ls -l /proc/$(pgrep xinetd)/fd
total 7
lr-x------ 1 root root 64 Oct 22 22:24 0 -> /dev/null
lr-x------ 1 root root 64 Oct 22 22:24 1 -> /dev/null
lr-x------ 1 root root 64 Oct 22 22:24 2 -> /dev/null
lr-x------ 1 root root 64 Oct 22 22:24 3 -> pipe:[28172]
l-wx------ 1 root root 64 Oct 22 22:24 4 -> pipe:[28172]
lrwx------ 1 root root 64 Oct 22 22:24 5 -> socket:[28178]
lrwx------ 1 root root 64 Oct 22 22:24 7 -> socket:[28175]

8.8 Using Inodes to Identify Files and IPC Objects 441

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 441

Now procfs uses the same number for file descriptor 5 as lsof, although it
appears inside the filename between brackets. It’s still not obvious that this is the
inode, however, because both lsof and procfs are pretty cryptic about reporting
it. To prove that this is really the inode, use the stat command, which is a wrap-
per for the stat system call:

$ stat -L /proc/$(pgrep xinetd)/fd/5
File: `/proc/2838/fd/5'
Size: 0 Blocks: 0 IO Block: 1024 socket

Device: 4h/4d Inode: 28178 Links: 1
Access: (0777/srwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 1969-12-31 18:00:00.000000000 -0600
Modify: 1969-12-31 18:00:00.000000000 -0600
Change: 1969-12-31 18:00:00.000000000 -0600

Finally, the inode is unambiguously indicated in the output.3 Notice that I used
the -L option to the stat command, because the file-descriptor files in procfs are
symbolic links. This tells stat to use the lstat system call instead of stat.

8.9 Summary
This chapter introduced several tools and techniques for debugging various IPC
mechanisms, including plain files. Although System V IPC requires special tools,
POSIX IPC lends itself to debugging with the same tools used for plain files.

8.9.1 Tools Used in This Chapter

• ipcs, ipcrm—command-line utilities for System V IPC

• lsof, fuser—tools for looking for open files and file descriptor usage

• ltrace—traces a process’s calls to functions in shared objects

• pmap—user-friendly look at a process’s memory map

• strace—traces the system call usage of a process

442 Chapter 8 • Debugging IPC with Shell Commands

3. Another place to look is /proc/net/tcp. The inode is unambiguous, but the rest of the output is not
very user friendly.

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 442

8.9.2 Online Resources

• http://procps.sourceforge.net—the procps home page, source of the pmap
command

• http://sourceforge.net/projects/strace—the strace home page

8.9 Summary 443

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 443

0132198576_Fusco_c08.qxd 2/13/07 1:40 PM Page 444

	Downloading and Installing Open Source Tools
	Building from Source
	Finding Help
	Editing and Maintaining Source Files
	What Every Developer Should Know about the Kernel
	Understanding Processes
	Communication between Processes
	Debugging IPC with Shell Commands
	Performance Tuning
	Debugging
	Index

