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Chapter

6
Middleware for Application

Development: Adaptation
and Agents

Application development for mobile computers is a difficult task—on
their own, applications are faced with a myriad of challenges: limited
power and processing speed, varying levels of network connectivity,
completely disconnected operation, and discovery of needed services.
The goal of mobile middleware is to provide abstractions that reduce
development effort, to offer programming paradigms that make devel-
oping powerful mobile applications easier, and to foster interoperabil-
ity between applications. Service discovery, or the art of dynamically
discovering and advertising services, is the subject of the next chapter.
This chapter examines two other important types of middleware for
mobile computing—adaptation and agents. The first, adaptation, was
first discussed in Chap. 1. We revisit this topic in this chapter.  Recall
that adaptation helps applications to deal intelligently with limited or
fluctuating resource levels.  The second type of middleware, mobile
agents, provides a powerful and flexible paradigm for access to remote
data and services.

6.1 Adaptation

Mobile computers must execute user- and system-level applications
subject to a variety of resource constraints that generally can be ignored
in modern desktop environments. The most important of these con-
straints are power, volatile and nonvolatile memory, and network band-
width, although other physical limitations such as screen resolution
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are also important. In order to provide users with a reasonable com-
puting environment, which approaches the best that currently available
resources will allow, applications and/or system software must adapt to
limited or fluctuating resource levels. For example, given a sudden
severe constraint on available bandwidth, a mobile audio application
might stop delivering a high-bit-rate audio stream and substitute a
lower-quality stream. The user is likely to object less to the lower-
quality delivery than to the significant dropouts and stuttering if the
application attempted to continue delivering the high-quality stream.
Similarly, a video application might adjust dynamically to fluctuations
in bandwidth, switching from high-quality, high-frame-rate color video
to black-and-white video to color still images to black-and-white still
images as appropriate. A third example is a mobile videogame applica-
tion adjusting to decreased battery levels by modifying  resolution or dis-
abling three-dimensional (3D) features to conserve power.

6.1.1 The spectrum of adaptation

At one end of the spectrum, adaptation may be entirely the responsibility
of the mobile computer’s operating system (OS); that is, the software for
handling adaptation essentially is tucked under the OS hood, invisible
to applications. At the other end, adaptation may be entirely the respon-
sibility of individual applications; that is, each application must address
all the issues of detecting and dealing with varying resource levels.
Between these extremes, a number of application-aware strategies are
possible, where the OS and individual application each share some of
the burden of adaptation. While applications are involved in adaptation
decisions, the middleware and/or OS provides support for resource mon-
itoring and other low-level adaptation functions. The spectrum of adap-
tation is depicted in Fig. 6.1. In this part of the chapter, we are concerned
primarily with middleware for adaptation, that is, software interfaces
that allow applications to take part in the adaptation process. Pure
system-level adaptation strategies, those which take place in a mobile-
aware file system such as Coda (e.g., caching and hoarding), are covered
elsewhere in this book.

6.1.2 Resource monitoring

All adaptation strategies must measure available resources so that
adaptation policies can be carried out. For some types of resources—
cash, for example—monitoring is not so difficult. The user simply sets
limits and appropriate accounts. For others, more elaborate approaches
are required. The Advanced Configuration and Power Interface (ACPI)
provides developers with a standardized interface to power-level infor-
mation on modern devices equipped with “smart” batteries. Accurately
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measuring network bandwidth over multihop networks is more difficult.
Some approaches are described in Lai and Baker (1999) for the inter-
ested reader. Whatever methods are used to measure resource levels
have a direct impact on the effectiveness of the entire adaptation process
because accurate measurement of resource levels is critical to making
proper adaptation decisions.

6.1.3 Characterizing adaptation strategies

The Odyssey project (Noble et al., 1997; Noble, 2000) at Carnegie Mellon
University was one of the first application-aware middleware systems,
and it serves as a good model for understanding application-aware adap-
tation. In describing the Odyssey system, Satyanarayanan proposed sev-
eral measures that are useful for classifying the goodness of an adaptation
strategy. We describe these—fidelity, agility, and concurrency—below.

Fidelity measures the degree to which a data item available to an
application matches a reference copy. The reference copy for a data item
is considered the exemplar, the ideal for that data item—essentially, the
version of the data that a mobile computer would prefer given no
resource constraints. Fidelity spans many dimensions, including per-
ceived quality and consistency. For example, a server might store a 30-
frame-per-second (fps), 24-bit color depth video at 1600 × 1200 resolution
in its original form as shot by a digital video camera. This reference copy
of the video is considered to have 100 percent fidelity. Owing to resource
constraints such as limited network bandwidth, a mobile host may have
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Figure 6.1 At one end of the spectrum of adaptation, applications are entirely
responsible for reacting to changing resource levels. At the other end of the
spectrum, the operating system reacts to changing resource levels without the
interaction of individual applications.
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to settle for a version of this video that is substantially reduced in qual-
ity (assigned a lower fidelity measure, perhaps 50 percent) or even for
a sequence of individual black-and-white still frames (with a fidelity
measure of 1 percent). If the video file on the server is replaced period-
ically with a newer version and a mobile host experiences complete dis-
connection, then an older, cached version of the video may be supplied
to an application by adaptation middleware. Even if this cached version
is of the same visual quality as the current, up-to-date copy, its fidelity
may be considered lower because it is not the most recent copy (i.e., it
is stale).

While some data-dependent dimensions of fidelity, such as the frame
rate of a video or the recording quality of audio, are easily characterized,
others, such as the extent to which a database table is out of date or a
video is not the most current version available, do not map easily to a
0 to 100 percent fidelity scale. In cases where there is no obvious map-
ping, a user’s needs must be taken into account carefully when assign-
ing fidelity levels. More problematic is the fact that fidelity levels are
in general type-dependent—there are as many different types of fidelity-
related adaptations as there are types of data streams; for example,
image compression schemes are quite different from audio compression
schemes. Generally, an adaptation strategy should provide the highest
fidelity possible given current and projected resource levels. Current
adaptation middleware tends to concentrate on the present. Factoring
projected resource levels into the equation is an area for future research.

Agility measures an adaptation middleware’s responsiveness to
changes in resource levels. For example, a highly agile system will deter-
mine quickly and accurately that network bandwidth has increased
substantially or that a fresh battery has been inserted. An adaptation
middleware’s agility directly limits the range of fidelity levels that can
be accommodated. This is best illustrated with several examples, which
show the importance of both speed and accuracy. For example, if the mid-
dleware is very slow to respond to a large increase in network bandwidth
over a moderate time frame (perhaps induced by a user resting in an
area with 802.11 WLAN connectivity), then chances to perform oppor-
tunistic caching, where a large amount of data are transferred and
hoarded in response to high bandwidth, may be lost. Similarly, an adap-
tation middleware should notice that power levels have dropped sub-
stantially before critical levels are reached. Otherwise, a user enjoying
a high-quality (and power-expensive) audio stream may be left with
nothing, rather than a lower-quality audio stream that is sustainable.

Agility, however, is not simply a measure of the speed with which
resource levels are measured; accuracy is also extremely important.
For example, consider an 802.11a wireless network, which is much more
sensitive to line-of-sight issues than 802.11b or 802.11g networks. A
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momentary upward spike in available bandwidth, caused by a mobile
host connected to an 802.11a network momentarily having perfect line
of sight with an access point, should not necessarily result in adjust-
ments to fidelity level. If such highly transient bandwidth increases
result in a substantial increase in fidelity level of a streaming video, for
example, many frames may be dropped when bandwidth suddenly
returns to a lower level.

The last measure for adaptation middleware that we will discuss is con-
currency. Although the last generation of PDAs (such as the original
Pilot by Palm, Inc.) used single-threaded operating systems, capable of
executing only one application at a time; newer PDAs, running newer ver-
sions of Palm OS, variants of Microsoft Windows, and Linux, run full-
featured multitasking OSs. Thus it is reasonable to expect that even the
least powerful of mobile devices, not to mention laptops that run desk-
top operating systems, will execute many concurrent applications, all of
which compete for limited resources such as power and network band-
width. This expectation has a very important implication for adapta-
tion: Handling adaptation at the left end of the spectrum (as depicted in
Fig. 6.1), where individual applications assume full responsibility for
adapting to resource levels, is probably not a good idea. To make intelli-
gent decisions, each application would need to monitor available resources,
be aware of the resource requirements of all other applications, and know
about the adaptation decisions being made by the other applications.
Thus some system-level support for resource monitoring, where the OS
can maintain the “big picture” about available resources needs and
resource levels, is important.

6.1.4 An application-aware adaptation
architecture: Odyssey

In this section we examine the Odyssey architecture in greater detail.
In the spectrum of adaptation, Odyssey sits in the middle—applications
are assisted by the Odyssey middleware in making decisions concerning
fidelity levels. Odyssey provides a good model for understanding the
issues in application-aware adaptation because the high-level architec-
ture is clean, and the components for supporting adaptation are clearly
delineated. The Odyssey architecture consists of several high-level com-
ponents: the interceptor, which resides in the OS kernel, the viceroy, and
one or more wardens. These are depicted in Fig. 6.2. The version of
Odyssey described in Nobel and colleagues (1997) runs under NetBSD;
more recent versions also support Linux and FreeBSD. To minimize
changes to the OS kernel, Odyssey is implemented using the Virtual
File System (VFS) interface, which is described in great detail for kernel
hacker types in Bovet and Cesati (2002). Applications interact with

Middleware for Application Development: Adaptation and Agents 117

Richard_CH06.qxd  10/20/04  10:02 AM  Page 117



Odyssey using (mostly) file system calls, and the interceptor, which
resides in the kernel, performs redirection of Odyssey-specific system
calls to the other Odyssey components.

The basic Odyssey model is for an application to choose a fidelity level
for each data type that will be delivered—e.g., 320 × 240 color video at 15
fps. The application then computes resource needs for delivery of each
stream and registers these needs with Odyssey in the form of a “window”
specifying minimum and maximum need. The viceroy monitors avail-
able resources and generates a callback to the application when available
resources fall outside registered resource-level window. The application
then chooses a new fidelity level, computes resource needs, and registers
these needs, as before. Thus applications are responsible for deciding
fidelity levels and computing resource requirements—the primary con-
tribution that Odyssey makes is to monitor resources and to notify appli-
cations when available resources fall outside constraints set by the
application. Before describing a sample Odyssey application, the war-
dens and viceroy are discussed in detail below.
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Figure 6.2 The Odyssey architecture consists of a type-independent viceroy and a number
of type-specific wardens. Applications register windows of acceptable resource levels for
particular types of data streams and receive notifications is when current resource levels
fall outside the windows.
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Wardens. A warden is a type-specific component responsible for han-
dling all adaptation-related operations for a particular sort of data
stream (e.g., a source of digital images, audio, or video). Wardens sit
between an application and a data source, handling caching and arrang-
ing for delivery of data of appropriate fidelity levels to the application.
A warden must be written for each type of data source. An application
typically must be partially rewritten (or an appropriate proxy installed)
to accept data through a warden rather than through a direct connec-
tion to a data source, such as a streaming video server.

Viceroy. In Odyssey, the viceroy is a type-independent component that
is responsible for global resource control. All the wardens are statically
compiled with the viceroy. The viceroy monitors resource levels (e.g.,
available network bandwidth) and initiates callbacks to an application
when current resource levels fall outside a range registered by the appli-
cation. The types of resources to be monitored by the viceroy in Odyssey
include network bandwidth, cache, battery power, and CPU, although
the initial implementations of the Odyssey architecture did not support
all these resource types.

6.1.5 A sample Odyssey application

We now turn to one of the sample applications discussed in Nobel and
colleagues (1997): the xanim video player. The xanim video player was
modified to use Odyssey to adapt to varying network conditions, with
three fidelity levels available—two levels of JPEG compression and
black-and-white frames. The JPEG compression frames are labeled 99
and 50 percent fidelity, whereas the black-and-white content is labeled
1 percent fidelity. Integration of xanim with Odyssey is illustrated in
Fig. 6.3. A “video warden” prefetches frames from a video server with
the appropriate fidelity and supplies the application with metadata
for the video being played and with individual frames of the video.

The performance of the modified xanim application was tested using
simulated bandwidths of 140 kB/s for “high” bandwidth and 40 kB/s for
“low” bandwidth. A number of strategies were used to vary bandwidth:
step up, which holds bandwidth at the low level for 30 seconds, followed
by an abrupt increase to high bandwidth for 30 seconds; step down, which
reverses the bandwidth levels of step up but maintains the same time peri-
ods; impulse up, which maintains a low bandwidth over a 60-second
period with a single 2-second spike of high bandwidth in the middle; and
impulse down, which maintains high bandwidth for 60 seconds with a
single 2-second spike of low bandwidth in the middle. Both high and low
bandwidth levels are able to support black-and-white video and the lower-
quality (50 percent fidelity) JPEG video. Only the high bandwidth level
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is sufficient for the 99 percent fidelity JPEG frames to be delivered
without substantial numbers of dropped frames.

In the tests, Odyssey maintained average fidelities of 73, 76, 50, and
98 percent for step up, step down, impulse up, and impulse down, respec-
tively, all with less than 5 percent dropped frames. In contrast, trying
to maintain the 99 percent fidelity rate by transferring high-quality
video at all times, ignoring available network bandwidth, resulted in
losses of 28 percent of the frames for step up and step down and 58 per-
cent of the frames for impulse up. Several other adapted applications
are discussed in the Odyssey publications.

6.1.6 More adaptation middleware

Puppeteer. For applications with well-defined, published interfaces, it
is possible to provide adaptation support without modifying the appli-
cations directly. The Puppeteer architecture allows component-based
applications with published interfaces to be adapted to environments
with poor network bandwidth (a typical situation for mobile hosts) with-
out modifying the application (de Lara, Wallach, and Zwaenepoel, 2001).
This is accomplished by outfitting applications and data servers with
custom proxies that support the adaptation process. A typical applica-
tion adaptation under Puppeteer is a retrofit of Microsoft PowerPoint
to support incremental loading of slides from a large presentation or sup-
port for progressive JPEG format to speed image loading. Both these
adaptations presumably would enhance a user’s experience when handling
a large PowerPoint presentation over a slow network link.
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Figure 6.3 Architecture of the adapted video player in .y.
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The Puppeteer architecture is depicted in Fig. 6.4. The Puppeteer
provides a kernel that executes on both the client and server side prox-
ies, supporting a document type called the Puppeteer Intermediate
Format (PIF), a hierarchical, format-neutral format. The kernel also
handles all communication between client and server sides. To adapt a
document, the server and client side proxies communicate to establish
a high-level PIF skeleton of the document. Adaptation policies control
which portions of the document will be transferred and which fidelities
will be chosen for the transmitted portions. For example, for a Microsoft
PowerPoint document, selected slides may transferred, with images
rendered at a lower fidelity than in the original presentation. The import
driver and export driver parse native document format to PIF and PIF
to native document format, respectively. Transcoders in Puppeteer per-
form transformations on data items to support the adaptation policies.
For example, a Puppeteer transcoder may reduce the quality of JPEG
images or support downloading only a subset of a document’s data. A typ-
ical Puppeteer-adapted application operates as follows:
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Figure 6.4 (a) Illustrates the overall Puppeteer architecture, where client applications
interact with data servers through proxies. DMI is the Data Manipulation Interface of the
applications, which allows Puppeteer to view and modify data acted on by the application.
The relationship between client-side and server-side proxies is illustrated in (b).
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� When the user opens a document, the Puppeteer kernel instantiates
an appropriate import driver on the server side.

� The import driver parses the native document format and creates a
PIF format document. The skeleton of the PIF is transmitted by the
kernel to the client-side proxy.

� On the client side, policies available to the client-side proxy result in
requests to transfer selected portions of the PIF (at selected fidelities)
from the server side. These items are rendered by the export driver
into native format and supplied to the application through its well-
known interface.

� At this point, the user regains control of the application. If specified
by the policy, additional portions of the requested document can be
transferred by Puppeteer in the background and supplied to the appli-
cation as they arrive.

Coordinating adaptation for multiple mobile applications. Efstatiou and
colleagues (2002a, 2002b) argue that what’s missing from most current
adaptation middleware architectures is coordination among adaptive
applications. Odyssey and Puppeteer, for example, support sets of inde-
pendently adapting applications but do not currently assist multiple
applications in coordinating their adaptation strategies. When multiple
applications are competing for shared resources, individual applica-
tions may make decisions that are suboptimal. At least three issues are
introduced when multiple applications attempt to adapt to limited
resources—conflicting adaptation, suboptimal system operation, and
suboptimal user experience.

Several sample scenarios illustrate these concerns. First, consider a
situation where a number of applications executing on a mobile host with
limited power periodically write data to disk. This would occur, for exam-
ple, if two or more applications with automatic backup features were exe-
cuting. Imagine that the mobile host maintains a powered-down state
for its hard drives to conserve energy. Then, each time one of the auto-
matic backup facilities executes, a hard disk on the system must be
spun up. If the various applications perform automatic backups at unco-
ordinated times, then the disk likely will spin up quite frequently, wast-
ing a significant amount of energy. If the applications coordinated to
perform automatic backups, on the other hand, then disk writes could
be performed “in bulk,” maximizing the amount of time that the disk
could remain powered down. This example illustrates suboptimal system
operation despite adaptation.

Another issue when multiple applications adapt independently is con-
flicting adaptation. Imagine that one application is adapting to varying
power, whereas another application is adapting to varying network
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bandwidth. When the battery level in the mobile device becomes a con-
cern, then the power-conscious application might throttle its use of the
network interface. This, in turn, makes more bandwidth available, which
might trigger the bandwidth-conscious application to raise fidelity levels
for a data stream, defeating the other application’s attempt to save energy.

A third issue is that in the face of limited resources, a user’s needs can
be exceedingly difficult to predict. Thus some user participation in the
adaptation process probably is necessary. To see this, imagine that a user
is enjoying a high-bandwidth audio stream (Miles Davis, Kind of Blue?)
while downloading a presentation she needs to review in 1 hour. With
abundant bandwidth, both applications can be well served. However, if
available bandwidth decreases sharply (because an 802.11 access point has
gone down, for example, and the mobile host has fallen back to a 3G con-
nection), should a lower-quality stream be chosen and the presentation
download delayed because Miles is chewing up a few tens of kilobits per
second? Or should the fun stop completely and the work take precedence?

Efstatiou and colleagues propose using an adaptation policy language
based on the event calculus (Kowalsky, 1986) to specify global adapta-
tion policies. The requirements for their architecture are that a set of
extensible adaptation attributes be sharable among applications, that
the architecture be able to centrally control adaptation behavior, and
that flexible, system-wide adaptation policies, depending on a variety
of issues, be expressible in a policy language. Their architecture also
allows human interaction in the adaptation process both to provide
feedback to the user and to engage the user in resolving conflicts (e.g.,
Miles Davis meets downloading PowerPoint). Applications are required
to register with the system, providing a set of adaptation policies and
modes of adaptation supported by the application. In addition, the appli-
cation must expose a set of state variables that define the current state
of the application. Each application generates events when its state
variables change in meaningful ways so that the adaptation architec-
ture can determine if adaptive actions need to be taken; for example,
when a certain application is minimized, a global adaptation policy may
cause that application to minimize its use of system resources. A registry
in the architecture stores information about each application, and an
adaptation controller monitors the state of the system, determining
when adaptation is necessary and which applications should adapt.
Another policy language–driven architecture advocating user involve-
ment is described in Keeney and Cahill (2003).

6.2 Mobile Agents

We now turn to another type of mobile middleware, mobile agent systems.
Almost all computer users have used mobile code, whether they realize

Middleware for Application Development: Adaptation and Agents 123

Richard_CH06.qxd  10/20/04  10:02 AM  Page 123



it or not—modern browsers support Javascript, Java applets, and other
executable content, and simply viewing Web pages results in execution
of the associated mobile code. Applets and their brethren are mostly
static, in that code travels from one or more servers to a client and is exe-
cuted on the client. For security reasons, the mobile code often is prevented
from touching nonlocal resources. Mobile agents are a significant step for-
ward in sophistication, supporting the migration of not only code but also
state. Unlike applets, whose code typically travels (at an abstract level
at least) one “hop” from server to client, mobile agents move freely about
a network, making autonomous decisions on where to travel next. Mobile
agents have a mission and move about the network extracting data and
communicating with other agents in order to meet the mission goals.

Like adaptation middleware, mobile agent systems (e.g., Cabri,
Leonardi, and Zambonelli, 2000; Gray, 1996, 1997; Gray et al., 1998, 2000;
Bradshaw et al., 1999; Lange and Oshima, 1998; Peine and Stoplmann,
1997; Wong, Paciorek, and Moore, 1999; Wong et al., 1997) support exe-
cution of mobile applications in resource-limited environments, but mobile
agent systems go far beyond allowing local applications to respond to fluc-
tuating resource levels. A mobile agent system is a dynamic client-server
(CS) architecture that supports the migration of mobile applications
(agents) to and from remote servers. An agent can migrate whenever it
chooses either because it has accomplished its task completely or because
it needs to travel to another location to obtain additional data. An alter-
native to migration that an agent might exercise is to create one or more
new agents dynamically and allow these to migrate. The main idea behind
mobile agents is to get mobile code as close to the action as possible—mobile
agents migrate to remote machines to perform computations and then
return home with the goods.

For example, if a mobile user needs to search a set of databases, a tra-
ditional CS approach may perform remote procedure calls against the
database servers. On the other hand, a mobile agents approach would
dispatch one or more applications (agents) either directly to the data-
base servers or to machines close to the servers. The agents then per-
form queries against the database servers, sifting the results to
formulate a suitable solution to the mobile user’s problem. Finally, the
mobile agents return home and deliver the results.

The advantages of this approach are obvious. First, if bandwidth
available to the mobile user is limited and the database queries are
complicated, then performing a series of remote queries against the
servers might be prohibitively expensive. Since the agents can execute
a number of queries much closer to the database servers in order to
extract the desired information, a substantial amount of bandwidth
might be saved (of course, transmission of the agent code must be taken
into account). Second, continuous network connectivity is not required.
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The mobile user might connect to the network, dispatch the agent, and
then disconnect. When the mobile user connects to the network again
later, the agent is able to return home and present its results. Finally,
the agents are not only closer to the action, but they also can be executed
on much more powerful computers, potentially speeding up the mining
of the desired information.

Of course, there are substantial difficulties in designing and imple-
menting mobile agent systems. After briefly discussing the motivations
for mobile agent systems in the next section, those challenges will con-
sume the rest of this chapter.

6.2.1 Why mobile agents? And why not?

We first discuss the advantages of mobile agents at a conversational
level, and then we look at the technical advantages and disadvantages
in detail. First, a wide variety of applications can be supported by mobile
agent systems, covering electronic commerce (sending an agent shop-
ping), network resource management (an agent might traverse the net-
work, checking versions of installed applications and initiating upgrades
where necessary), and information retrieval (an agent might be dis-
patched to learn everything it can about Thelonious Monk).

An interesting observation made by Gray and colleagues (2000) is
worth keeping in mind when thinking about agent-based applications:
While particular applications may not make a strong case for deployment
of mobile agent technology, sets of applications may make such a case.
To see this point, consider the database query example discussed in the
preceding section. Rather than using mobile agents, a custom applica-
tion could be deployed (statically) on the database servers. This appli-
cation accepts jobs (expressing the type of information required) from a
mobile user, performs a sequence of appropriate queries, and then returns
the results. Since most of the processing is done off the mobile host, the
resource savings would be comparable to a mobile agents solution.

Similarly, little computational power on the mobile host is required
because much of the processing can be offloaded onto the machine host-
ing the custom application. However, what if a slightly different appli-
cation is desired by a mobile user? Then the server configuration must
be changed. Like service discovery protocols, covered in Chap. 7, mobile
agent systems foster creation of powerful, personalized mobile applica-
tions based on common frameworks. While individual mobile applica-
tions can be written entirely without the use of agent technologies, the
amount of effort to support a changing set of customized applications
may be substantially higher than if mobile agents were used.

Mobile agent systems provide the following set of technical advantages
(Milojicic, Douglis, and Wheel, 1998):
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� The limitations of a single client computer are reduced. Rather than
being constrained by resource limitations such as local processor
power, storage space, and particularly network bandwidth, applica-
tions can send agents “into the field” to gather data and perform com-
putations using the resources of larger, well-connected servers.

� The ability to customize applications easily is greatly improved. Unlike
traditional CS applications, servers in an agent system merely pro-
vide an execution environment for agents rather than running cus-
tomized server applications. Agents can be freely customized (within
the bounds of security restrictions imposed by servers) as the user’s
needs evolve.

� Flexible, disconnected operation is supported. Once dispatched, a
mobile agent is largely independent of its “home” computer. It can per-
form tasks in the field and return home when connectivity to the
home computer is restored. Survivability is enhanced in this way,
especially when the home computer is a resource-constrained device
such as a PDA. With a traditional CS architecture, loss of power on a
PDA might result in an abnormal termination of a user’s application.

Despite these advantages, mobile agent architectures have several sig-
nificant disadvantages or, if that is too strong a word, disincentives.
One is that neither a killer application nor a pressing need to deploy
mobile agent technology has been identified. Despite their sexiness,
mobile agents do not provide solutions to problems that are otherwise
unsolvable; rather, they simply seem to provide a good framework in
which to solve certain problems. In reflections on the Tacoma project
(Milojicic, Douglis, and Wheel, 1998), Johansen, Schneider, and van
Renesse note that while agents potentially reduce bandwidth and tol-
erate intermittent communication well, bandwidth is becoming ever
more plentiful, and communication is becoming more reliable. As wire-
less networking improves and mobile devices become more powerful
and more prevalent, will mobile agents technologies become less rele-
vant? Further, while a number of systems exist, they are largely living
in research laboratories. For mobile agent systems to meet even some
of their potential, widespread deployment of agent environments is
required so that agents may travel freely about the Internet.

A related problem is a lack of standardization. Most mobile agent sys-
tems are not interoperable. Some effort has gone into interoperability for
agent systems, but currently, there seem to be no substantial market
pressures forcing the formation of a single (or even several) standards
for mobile agent systems. The Mobile Agents System Interoperability
Facility (MASIF; Milojicic et al., 1999) is one early attempt at fostering
agent interoperability for Java-based agent systems.
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All the disadvantages just discussed are surmountable with a little
technical effort—apply a good dose of marketing, and most disappear.
There is a killer disadvantage, however, and that is security. Even
applets and client-side scripting languages (such as Javascript), which
make only a single hop, scare security-conscious users to death, and
many users turn off Java, Javascript, and related technologies in their
Web browsers. Such users maintain this security-conscious stance even
when interacting with Web sites in which they place significant trust
because the potential for serious damage is high should the sandbox
leak. Security for mobile agent systems is far more problematic than
simple mobile code systems such as Java applets because agents move
autonomously.

There are at least two broad areas of concern. First, agents must be
prevented from performing either unintentional or malicious damage as
they travel about the network. Could an agent have been tampered
with at its previous stop? Is it carrying a malicious logic payload? Does
it contain contraband that might be deposited on a machine? Will the
agent use local resources to launch a denial-of-service attack against
another machine? Essentially, if agents are to be allowed to get “close
to the action,” then the “action” must be convinced (and not just with
some marketing) that the agents will not destroy important data or
abuse resources. Second, the agents themselves must be protected from
tampering by malicious servers. For example, an agent carrying credit
card information to make purchases on behalf of its owner should be able
to control access to the credit card number.  Similarly, an agent equipped
with a proprietary data-mining algorithm should be able to resist reverse
engineering attacks as it traverses the network.

6.2.2 Agent architectures 

To illustrate the basic components of mobile agent architectures, a high-
level view of Telescript (White in Milojicic, Douglic, and Wheel, 1998)
works well. Telescript was one of the first mobile agent systems, and
while it is no longer under development, many subsequent systems bor-
rowed ideas from Telescript. There are a number of important compo-
nents in the Telescript architecture: agents, places, travel, meetings,
connections, authorities, and permits. These are depicted in Fig. 6.5.
Each of these components is described in detail below.

Places. In a mobile agent system, a network is composed of a set of
places—each place is a location in the network where agents may visit.
Each place is hosted by a server (or perhaps a user’s personal computer)
and provides appropriate infrastructure to support a mobile agent
migrating to and from that location. Servers in a network that do not
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offer a “place” generally will not be visitable by agents. Places offer
agents a resting spot in which they can access resources local to that
place through a stationary agent that “lives” there, interacting with
other agents currently visiting that place.

Travel. Travel allows agents to move closer to or to colocate with needed
resources. For example, an agent dispatched by a user to obtain tickets
to a jazz concert and reservations at one of several restaurants (depend-
ing on availability) might travel from its home place to the place hosted
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Figure 6.5 The major Telescript components are illustrated above. Tom has just dispatched
an agent which has not yet arrived at the theater server. When Tom’s agent arrives, it will
interact with the static agent in the box office place to arrange for theater tickets. Daryl
previously dispatched an agent to purchase tickets and has a connection with her agent
in the box office place, so she can actively negotiate prices. Daryl’s agent and the box office
agent have identified each other through their respective authorities and permits associ-
ated with Daryl’s agent have been evaluated to see what actions are permitted. The static
agents in the drugstore and music store places, which both reside on a shopping center
server, are currently idle. To interact with the drugstore or music store agents, Daryl or
Tom’s agents will have to travel to the drugstore and music store places.
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by the jazz club’s box office before traveling to the places hosted by the
restaurants. The primary difference between mobile code strategies
such as Java applets and agents is that agents travel with at least part
of their state intact—after travel, an agent can continue the computa-
tion it was engaged in at the instant that travel was initiated. Migration
is studied in further detail below in the section entitled, “Migration
Strategies.”

Meetings. Meetings are local interactions between two or more agents
in the same place. In Telescript, this means that the agents can invoke
each other’s procedures. The agent in search of jazz tickets and a restau-
rant reservation (discussed under “Travel” above) would engage in meet-
ings with appropriate agents at the ticket office and at the restaurant’s
reservation office to perform its duty. 

Connections. Connections allow agents at different places to commu-
nicate and allow agents to communicate with human users or other
applications over a network. An agent in search of jazz tickets, for exam-
ple, might contact the human who dispatched it to indicate that an
additional show has been added, although the desired show was sold out
(e.g., “Is the 11 P.M. show OK?”). Connections in Telescript require an
agent to identify the name and location of the remote agent, along with
some other information, such as required quality of service. This remote
communication method, which tightly binds two communicating agents
(since both name and location are required for communication), is the
most restrictive of the mechanisms discussed in further detail below in
the section entitled, “Communication Strategies.”

Authorities. An agent’s or place’s authority is the person or organization
(in the real world) that it represents. In Telescript, agents may not with-
hold their authority; that is, anonymous operation is not allowed—the
primary justification for this limitation is to deter malicious agent activ-
ity. When an agent wishes to migrate to another location, the destina-
tion can check the authority to determine if migration will be permitted.
Similarly, an agent may examine the authority of a potential destination
to determine if it wishes to migrate there. Implementation of authorities
in an untrusted network is nontrivial and requires strong cryptographic
methods because an agent’s authority must be unforgeable.

Permits. Permits determine what agents and places can do—they are
sets of capabilities. In general, these capabilities may have virtually any
form, but in Telescript they come in two flavors. The first type of capabil-
ity determines whether an agent or place may execute certain types of
instructions, such as instructions that create new agents. The second type
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of capability places resource limits on agents, such as a maximum number
of bytes of network traffic that may be generated or a maximum lifetime
in seconds. If an agent attempts to exceed the limitations imposed by its
permits, it is destroyed. The actions permitted an agent are those which
are allowed by both its internal permits and the place(s) it visits.

Other issues. A number of details must be taken into account when
designing an architecture to support mobile agents, but one of the fun-
damental issues is the choice of language for implementation of the
agents (which might differ from the language used to implement the
agent architecture). To support migration of agents, all computers to
which an agent may migrate must share a common execution language.
While it is possible to restrict agents to a particular computer archi-
tecture and OS (e.g., Intel 80 × 86 running Linux 2.4), clearly, agent sys-
tems that can operate in heterogeneous computer environments are the
most powerful. Compiled languages such as C and C++ are problematic
because agent executables must be available for every binary architec-
ture on which agents will execute. Currently, interpreted languages
such as Java, TCL, and Scheme are the most popular choices because
many problems with code mobility are alleviated by interpreted lan-
guages. In cases where traditionally compiled languages such as C++
are used for implementation of agents, a portable, interpreted byte
code typically is emitted by a custom compiler to enable portability
(e.g., see Gray et al., 2000). Java is particularly popular for mobile
agents because Java has native support for multithreading, object seri-
alization (which allows the state of arbitrary objects to be captured and
transmitted), and remote procedure calls.

Other factors, aside from the implementation language for agents,
include migration strategies, communication, and security. Migration and
communication strategies are discussed in detail below. A thorough treat-
ment of security in agent systems is beyond the scope of this chapter.

6.2.3 Migration strategies

To support the migration of agents, it must be possible to either capture
the state of an agent or to spawn an additional process that captures the
state of the agent. This process state must then be transmitted to the
remote machine to which the agent (or its child, in the case of spawn-
ing an additional process) will migrate. This is equivalent to process
checkpointing, where the state of a process, including the stack, heap,
program code, static variables, etc., is captured and stored for a later
resuscitation of the process. Process checkpointing is a very difficult
problem that has been studied in the operating systems and distributed
systems communities for a number of years, primarily to support fault
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tolerance and load balancing (Jul et al., 1988; Douglis and Ousterhout,
1991; Plank, 1995). In general, commodity operating systems do not
provide adequate support for checkpointing of processes, and add-on
solutions [e.g., in the form of libraries such as libckpt (Plant, 1995)] are
nonportable and impose significant restrictions, such as an inability to
reconstitute network connections transparently. A number of research
operating systems have been designed that better support process
migration, but since none of these is viable commercially (even in the
slightest sense), they are not currently appropriate platforms.

Checkpointing processes executing inside a virtual machine, such as
Java processes, are a bit easier, but currently most of these solutions
(Richard and Tu, 1998; Sakamoto, Sekiguchi, and Yonezawa, 2000; Truyen
et al., 2000) also impose limitations, such as restrictions on the use of call-
backs, network connections, and file activity. The virtual machine itself
can be checkpointed, but then the issues of portability discussed earlier
reemerge, and network connections and file access will still pose problems.
So where is this going? The punch line is that if commodity operating sys-
tems are to be targeted by agent systems—and for wide-scale deploy-
ment, this must be the case—then completely capturing the state of
general processes to support migration is rife with problems.

One solution is to impose strong restrictions on the programming
model used for mobile agents. Essentially, this entails capturing only the
essential internal state of an agent, i.e., sufficient information about its
current execution state to continue the computation on reconstitution,
combined with a local cleanup policy. This means that an agent might
perform a local cleanup, including tearing down communication con-
nections and closing local files, before requesting that the agent mid-
dleware perform a migration operation. For example, in Aglets (Lange
and Oshima, 1998), which is a Java-based mobile agents system, agents
are notified at the beginning of a migration operation. It is the respon-
sibility of an individual agent, on receiving such a notification, to save
any significant state in local variables so that the agent can be properly
“reconstituted” at the new location. Such a state may include the names
of communication peers, loop indices, etc. Agent migration in Aglets
begins with an agent initiating a migration (its own or that of another
agent) by invoking dispatch(). A callback, onDispatch(), will be
triggered subsequently, notifying the agent that it must save its state.
After the migration, the agent’s onArrival() callback will be invoked
so that the agent can complete its state restoration.

6.2.4 Communication strategies

Communication among agents in a mobile agent system can take many
forms, including the use of traditional CS techniques, remote procedure
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call, remote method invocation (e.g., using Java’s RMI), mailboxes, meet-
ing places, and coordination languages. Each of these communication
strategies has advantages and disadvantages, some of which are exac-
erbated in mobile agent systems. One consideration is the degree of
temporal and spatial locality exhibited by a communication scheme
(Cabri, Leonardi, and Zambonelli, 2000).

Temporal locality means that communication among two or more
agents must take place at the same physical time, like a traditional tele-
phone conversation. Interagent communication mechanisms exhibiting
temporal locality are limiting in a mobile agent’s architecture because
all agents participating in a communication must have network con-
nectivity at the time the communication occurs. If an agent is in tran-
sit, then attempts to communicate with that agent typically will fail.

Spatial locality means that the participants must be able to name each
other for communication to be possible—in other words, unique names
must be associated with agents, and their names must be sufficient for
determining their current location. Some of the possible communication
mechanisms for interagent communication are discussed below.

Traditional CS communication. Advantages of traditional CS mechanisms
such as sockets-based communication, Remote Method Invocation (RMI)
in Java, and CORBA include a familiar programming model for soft-
ware developers and compatibility with existing applications. Significant
drawbacks include strong temporal and spatial locality—for communi-
cation to be possible, agents must be able to name their communication
peers and initiate communication when their peers are also connected.
RMI and other communication mechanisms built on the Transmission
Control Protocol/Internet Protocol (TCP/IP) also require stable network
connectivity; otherwise, timeouts and subsequent connection reestab-
lishments will diminish performance significantly. Examples of agents
systems that use traditional CS mechanisms are D’Agents (Gray et al.,
1998) and Aglets (Lange and Oshima, 1998). In Aglets, an agent first
must obtain another agent’s proxy object (of type AgletProxy) before com-
munication can take place. This proxy allows the holder to transmit
arbitrary messages to the target and to request that the target agent per-
form operations such as migration and cloning (which creates an iden-
tical agent). To obtain a proxy object for a target agent, an agent typically
must provide both the name of the target agent and its current location.
If either agent moves, then the proxy must be reacquired.

Meeting places. Meeting places are specific places where agents can
congregate in order to exchange messages and typically are defined stat-
ically, avoiding problems with spatial locality but not temporal locality.
In Ara (Peine and Stolpmann, 1997), meeting places are called service
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points and provide a mechanism for agents to perform local communi-
cation. Messages are directed to a service point rather than to a specific
agent, eliminating the need to know the names of colocated agents.

Tuple spaces. Linda-like tuple spaces are also appropriate for intera-
gent communication. Linda provides global repositories for tuples (essen-
tially lists of values), and processes communicate and coordinate by
inserting tuples into the tuple space, reading tuples that have been
placed into the tuple space, and removing tuples from the tuple space.
Tuple spaces eliminate temporal and spatial bindings between com-
municating processes because communication is anonymous and asyn-
chronous.

Retrieval of objects from a tuple space is based on the content or type
of data, so choosing objects of interest is easier than if objects were
required to be explicitly named. One agent architecture that provides a
Linda-like communication paradigm is Mobile Agent Reactive Spaces
(MARS; Cabri, Leonardi, and Zambonelli, 2000). MARS extends Java’s
JavaSpaces concept, which provides read(), write(), take(),
readAll(), and takeAll() methods to access objects in a JavaSpace.
The extensions include introduction of reactions, which allow program-
mable operations to be executed automatically on access to certain objects
in an object space. This allows, for example, a local service to be started
and new objects introduced into the object space, all based on a single
access to a “trigger” object by an agent. While distributed implementa-
tions of the Linda model exist, MARS simply implements a set of inde-
pendent object spaces, one per node. Agents executing on a particular
node may communicate through the object space, but agents executing
on different nodes cannot use the object spaces to communicate directly.
MARS is intended as a communication substrate for other mobile agent
systems rather than as an independent mobile agent system.

6.3 Summary

This chapter introduced two types of middleware, adaptation middle-
ware and mobile agent systems.  Adaptation middleware assists appli-
cations in providing the best quality of service possible to users, given
the widely fluctuating resource levels that may exist in mobile envi-
ronments. Mobile agents provide an alternative to static client/server
systems for designing interesting mobile applications that access
remote data and computational services. Rather than issuing remote
procedure calls against distant services, mobile agents migrate code
closer to the action to reduce communication and computational
requirements for mobile hosts. When a mobile agent has completed its
tasks, it can then return home to present the results to the user (or to
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another application). Both of these types of middleware are comple-
mentary to service discovery frameworks, which are the subject of the
next chapter.
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