
ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:361

CHAPTER
8

Query Tuning: Developer
and Beginner DBA

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:40

Color profile: Disabled
Composite Default screen

T his chapter focuses on specific queries that you may encounter and some general
information for tuning those specific queries, but it has also been updated to include

some basic information on Oracle’s 11g Automatic SQL Tuning and some queries to access
Oracle’s 11g Automatic Workload Repository (AWR). Examples of query tuning are spread
throughout this book as well as instructions on making them more effective in terms of your
system’s architecture. This chapter centers on some of the most common queries that can be
tuned on most systems. A query can display several variations in behavior, depending on
system architecture, the data distribution in the tables, what tool or application is accessing
the database, the specific version of Oracle Database, and a variety of other exceptions to
the rules. Your results will vary; use your own testing to come up with the most favorable
performance. The goal in this chapter is to show you many of the issues to watch for and
how to fix them.

This chapter uses strictly cost-based examples for timings (except where noted). No other
queries were performed at the time of the tests performed for this chapter. Many hints are also
used throughout this chapter. For a detailed look at hints and the syntax and structure of hints,
please refer to Chapter 7. Multiple table and complex queries are the focus of the next chapter
and are not covered here.

Please note that this is not an all-inclusive chapter. Many other queries are covered throughout
the book, which need to be investigated when trying to increase performance for a given query. Some
of the most dramatic include using the parallel features of Oracle Database (Chapter 11), using
partitioned tables and indexes (Chapter 2), and using PL/SQL to improve performance (Chapter 10).
Note the benefits of using EXPLAIN and TRACE for queries (Chapter 6). Oracle Database 11g provides
the Automatic Workload Repository (AWR) and Automatic Database Diagnostic Monitor (ADDM).
The Enterprise Manager views of these new features are shown in Chapter 5. Tips covered in this
chapter include the following:

■ What queries do I tune? Querying the V$SQLAREA and V$SQL views

■ Some useful new 11g views for locating resource-intensive sessions and queries

■ When should I use an index?

■ What if I forget the index?

■ Creating and checking an index

■ What if I create a bad index?

■ Exercising caution when dropping an index

■ Using invisible indexes

■ Function based indexes and virtual columns

■ Increasing performance by indexing the SELECT and WHERE columns

■ Using the Fast Full Scan feature to guarantee success

■ Making queries “magically” faster

■ Caching a table into memory

■ Using the new 11g Result Cache

362 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:362

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:40

Color profile: Disabled
Composite Default screen

■ Choosing between multiple indexes on a table (use the most selective)

■ Indexes that can get suppressed

■ Tuning OR Clauses

■ Using the EXISTS clause and the nested subquery

■ That table is a view!

■ SQL and the Grand Unified Theory

■ Automatic SQL Tuning and the SQL Tuning Advisor

■ Using the SQL Performance Analyzer (SPA)

What Queries Do I Tune? Querying
V$SQLAREA and V$SQL Views
V$SQLAREA and V$SQL are great views that you can query to find the worst-performing SQL
statements that need to be optimized. The value in the DISK_READS column signifies the volume
of disk reads that are being performed on the system. This, combined with the executions
(DISK_READS/EXECUTIONS), return the SQL statements that have the most disk hits per
statement execution. Any statement that makes the top of this list is most likely a problem query
that needs to be tuned. The AWR Report or Statspack Report also lists the resource-intensive
queries; see Chapter 14 for detailed information.

Selecting from the V$SQLAREA View
to Find the Worst Queries
The following query can be used to find the worst queries in your database. This query alone is
worth the price of this book if you’ve not heard of V$SQLAREA yet.

To find the worst queries:

select b.username username, a.disk_reads reads,

a.executions exec, a.disk_reads /decode

(a.executions, 0, 1,a.executions) rds_exec_ratio,

a.sql_text Statement

from V$sqlarea a, dba_users b

where a.parsing_user_id = b.user_id

and a.disk_reads > 100000

order by a.disk_reads desc;

USERNAME READS EXEC RDS_EXEC_RATIO STATEMENT

-------- ------- ----- --------------- ---------------------

ADHOC1 7281934 1 7281934 select custno, ordno

from cust, orders

Chapter 8: Query Tuning: Developer and Beginner DBA 363

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:363

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

ADHOC5 4230044 4 1057511 select ordno

from orders where trunc(ordno) = 721305

ADHOC1 801716 2 400858 select custno,

ordno from cust where substr(custno,1,6) = '314159'

The DISK_READS column in the preceding statement can be replaced with the BUFFER_GETS
column to provide information on SQL statements requiring the largest amount of memory.

Now consider the output in a second example where there is a count of a billion-row table
(EMP3) and a count of what was originally a 130M row table (EMP2), where all of the rows in
EMP2, except the first 15 rows inserted, were deleted. Note that Oracle counts all the way up to
the high water mark (HWM) of EMP2 (it read over 800,000, 8K blocks even though all of the data
was only in 1 block). This listing would have told you something is wrong with the query on
EMP2 that needs to be addressed, given that it only has 15 rows in it (analyzing the table will
not improve this).

USERNAME READS EXEC RDS_EXEC_RATIO STATEMENT

-------- ------- ----- --------------- -------------------------

SCOTT 5875532 1 5875532 select count(*) from emp3

SCOTT 800065 1 800065 select count(*) from emp2

For this issue, if the EMP2 table was completely empty, you could simply truncate the table
to fix it. Since the table still has 15 rows, you have a few options; which option you choose
depends on your unique situation. I can

■ EXPORT/TRUNCATE/IMPORT; CREATE TABLE emp2b AS SELECT * FROM emp2 (CTAS)
and then DROP and RENAME (I have to worry about indexes/related objects, etc.)

■ Do an “ALTER TABLE emp2 MOVE TABLESPACE new1” and rebuild the indexes.

■ If it has a primary key, use DBMS_REDEFINITION.CAN_REDEF_TABLE to verify that the
table can be redefined online.

Please check the Oracle documentation for syntax/advantages/disadvantages and stipulations
(not all are listed here) for each of these options, so you can apply the best option to your
situation (each of these options have major downsides, including users not being able to access
the table and related objects getting dropped depending on which you use, so be careful). Once
I reorganize the table, the next count(*)only reads 1 block instead of 800,065 blocks (it was
well worth fixing the problem). Note in the query, I change “emp2” to emP2” so I can find that
cursor in the cache.

alter table emp2 move; -- You can specify a tablespace

select count(*)

from emP2;

select b.username username, a.disk_reads reads,

a.executions exec, a.disk_reads /decode

(a.executions, 0, 1,a.executions) rds_exec_ratio,

a.sql_text Statement

364 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:364

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

from V$sqlarea a, dba_users b

where a.parsing_user_id = b.user_id

and a.sql_text like '%emP2%'

order by a.disk_reads desc;

USERNAME READS EXEC RDS_EXEC_RATIO STATEMENT

-------- ------- ----- --------------- ---------------------

SCOTT 1 1 1 select count(*) from emP2

You can also shrink space in a table, index-organized table, index, partition, subpartition,
materialized view, or materialized view log. You do this using ALTER TABLE, ALTER INDEX,
ALTER MATERIALIZED VIEW, or ALTER MATERIALIZED VIEW LOG statement with the SHRINK
SPACE clause. See the Oracle Administrators Guide for additional information. Lastly, if you
want to use the “ALTER TABLE table MOVE TABLESPACE tablespace_name” command, consider
using the same size tablespace (or smaller if appropriate) to move things “back and forth” so as
not to waste space.

TIP
Query V$SQLAREA to find your problem queries that need to be
tuned.

Selecting from the V$SQL View to Find the Worst Queries
Querying V$SQL allows you to see the shared SQL area statements individually versus grouped
together (as V$SQLAREA does). Here is a faster query to get the top statements from V$SQL (this
query can also access V$SQLAREA by only changing the view name):

select *

from (select address,

rank() over (order by buffer_gets desc) as rank_bufgets,

to_char(100 * ratio_to_report(buffer_gets) over (), '999.99') pct_bufgets

from v$sql)

where rank_bufgets < 11;

ADDRESS RANK_BUFGETS PCT_BUF

-------- ------------ -------

131B7914 1 66.36

131ADA6C 2 24.57

131BC16C 3 1.97

13359B54 4 .98

1329ED20 5 .71

132C7374 5 .71

12E966B4 7 .52

131A3CDC 8 .48

131947C4 9 .48

1335BE14 10 .48

1335CE44 10 .48

Chapter 8: Query Tuning: Developer and Beginner DBA 365

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:365

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

You can alternatively select SQL_TEXT instead of ADDRESS if you want to see the SQL:

COL SQL_TEXT FOR A50

select *

from (select sql_text,

rank() over (order by buffer_gets desc) as rank_bufgets,

to_char(100 * ratio_to_report(buffer_gets) over (), '999.99')

pct_bufgets

from v$sql)

where rank_bufgets < 11;

TIP
You can also query V$SQL to find your problem queries that need to
be tuned.

Oracle 11g Views for Locating
Resource-Intensive Sessions and Queries
Oracle 11g provides many new views, giving you access to a wealth of information from the OS
(operating system) and the Automatic Workload Repository (AWR). The AWR provides metric-based
information, which is useful for monitoring and diagnosing performance issues. Metrics are a set of
statistics for certain system attributes as defined by Oracle. Essentially, they are context-defined
statistics that are collated into historical information within the AWR.

Accessing the AWR and ADDM information via Enterprise Manager is covered in Chapter 5
as well as in the Oracle documentation. In this section, I am only looking at pulling some specific
information out of these views using SQL to locate queries that may need tuning.

Selecting from V$SESSMETRIC to Find Current
Resource-Intensive Sessions
This query shows the sessions that are heaviest in physical reads, CPU usage, or logical reads
over a defined interval (15 seconds, by default). You may want to adjust the thresholds as
appropriate for your environment.

To find resource-intensive sessions:

Select TO_CHAR(m.end_time,'DD-MON-YYYY HH24:MI:SS') e_dttm, -- Interval End Time

m.intsize_csec/100 ints, -- Interval size in sec

s.username usr,

m.session_id sid,

m.session_serial_num ssn,

ROUND(m.cpu) cpu100, -- CPU usage 100th sec

m.physical_reads prds, -- Number of physical reads

m.logical_reads lrds, -- Number of logical reads

m.pga_memory pga, -- PGA size at end of interval

m.hard_parses hp,

m.soft_parses sp,

366 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:366

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

m.physical_read_pct prp,

m.logical_read_pct lrp,

s.sql_id

from v$sessmetric m, v$session s

where (m.physical_reads > 100

or m.cpu > 100

or m.logical_reads > 100)

and m.session_id = s.sid

and m.session_serial_num = s.serial#

order by m.physical_reads DESC, m.cpu DESC, m.logical_reads DESC;

E_DTTM INTS USR SID SSN CPU100 PRDS LRDS PGA HP SP PRP

LRP SQL_ID

-------------------- ---- --- --- ---- ------ ----- ---- ------ -- -- ---

---------- --------------

20-NOV-2010 00:11:07 15 RIC 146 1501 1758 41348 1 781908 0 0 100

.512820513 03ay719wdnqz1

Viewing Available AWR Snapshots
The next few queries access AWR snapshot information.

Query the DBA_HIST_SNAPSHOT view to find more information about specific AWR
snapshots:

select snap_id,

TO_CHAR(begin_interval_time,'DD-MON-YYYY HH24:MI:SS') b_dttm,

TO_CHAR(end_interval_time,'DD-MON-YYYY HH24:MI:SS') e_dttm

from dba_hist_snapshot

where begin_interval_time > TRUNC(SYSDATE);

SNAP_ID B_DTTM E_DTTM

-------- -------------------- ---------------------

503 25-MAY-2011 00:00:35 25-MAY-2011 01:00:48

504 25-MAY-2011 01:00:48 25-MAY-2011 02:00:00

505 25-MAY-2011 02:00:00 25-MAY-2011 03:00:13

506 25-MAY-2011 03:18:38 25-MAY-2011 04:00:54

507 25-MAY-2011 04:00:54 25-MAY-2011 05:00:07

Selecting from the DBA_HIST_SQLSTAT
View to Find the Worst Queries
SQL statements that have exceeded predefined thresholds are kept in the AWR for a predefined
time (seven days, by default). You can query the DBA_HIST_SQLSTAT view to find the worst
queries. The following is the equivalent statement to the V$SQLAREA query earlier in this
chapter.

Chapter 8: Query Tuning: Developer and Beginner DBA 367

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:367

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

To query DBA_HIST_SQLSTAT view to find the worst queries:

select snap_id, disk_reads_delta reads_delta,

executions_delta exec_delta, disk_reads_delta /decode

(executions_delta, 0, 1,executions_delta) rds_exec_ratio,

sql_id

from dba_hist_sqlstat

where disk_reads_delta > 100000

order by disk_reads_delta desc;

SNAP_ID READS_DELTA EXEC_DELTA RDS_EXEC_RATIO SQL_ID

------- ------------- ------------ --------------- -------------

38 9743276 0 9743276 03ay719wdnqz1

39 9566692 0 9566692 03ay719wdnqz1

37 7725091 1 7725091 03ay719wdnqz1

Note that in the output, the same SQL_ID appears in three different AWR snapshots. (In this case,
it was executed during the first one and is still running). You could also choose to filter on other
criteria, including cumulative or delta values for DISK_READS, BUFFER_GETS, ROWS_PROCESSED,
CPU_TIME, ELAPSED_TIME, IOWAIT, CLWAIT (cluster wait), and so on. Run a DESC command of
the view DBA_HIST_SQLSTAT to get a full list of its columns. This listing shows different SQL_IDs at
the top of the list.

SNAP_ID READS_DELTA EXEC_DELTA RDS_EXEC_RATIO SQL_ID

---------- ----------- ---------- -------------- -------------

513 5875532 1 5875532 f6c6qfq28rtkv

513 800065 1 800065 df28xa1n6rcur

Selecting Query Text from the DBA_HIST_SQLTEXT View
The query text for the offending queries shown in the previous two examples can be obtained
from the DBA_HIST_SQLTEXT view with the following query:

To query DBA_HIST_SQLTEXT:

select command_type,sql_text

from dba_hist_sqltext

where sql_id='03ay719wdnqz1';

COMMAND_TYPE SQL_TEXT

------------ ----------------------------

3 select count(1) from t2, t2

select command_type,sql_text

from dba_hist_sqltext

where sql_id='f6c6qfq28rtkv';

COMMAND_TYPE SQL_TEXT

------------ ---------------------------

3 select count(*) from emp3

368 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:368

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Selecting Query EXPLAIN PLAN
from the DBA_HIST_SQL_PLAN View
The EXPLAIN PLAN for the offending SQL is also captured. You may view information about the
execution plan through the DBA_HIST_SQL_PLAN view. If you want to display the EXPLAIN
PLAN, the simplest way is to use the DBMS_XPLAN package with a statement such as this one:

select *

from table(DBMS_XPLAN.DISPLAY_AWR('03ay719wdnqz1'));

PLAN_TABLE_OUTPUT

--

--

SQL_ID 03ay719wdnqz1

select count(1) from t2, t2

Plan hash value: 1163428054

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | 10G(100) | |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | MERGE JOIN CARTESIAN | | 6810G| 10G (2) |999:59:59 |

| 3 | INDEX FAST FULL SCAN | T2_I1 | 2609K| 3996 (2) | 00:00:48 |

| 4 | BUFFER SORT | | 2609K| 10G (2) |999:59:59 |

| 5 | INDEX FAST FULL SCAN | T2_I1 | 2609K| 3994 (2) | 00:00:48 |

As you can see, this particular query is a Cartesian join, which is normally not a valid table
join (certainly not a good idea as it joins every row of one table with every row of another table)
and can lead to the massive resource consumption. This query was used to show how to take
advantage of some of the new 11g functionality for identifying and collecting information about
poorly performing SQL. Here is the output for the query that was used earlier that queries the
EMP3 table, which is over 1 billion rows (still fast at 5 minutes, even though it’s 1B rows):

select *

from table(DBMS_XPLAN.DISPLAY_AWR('f6c6qfq28rtkv'));

PLAN_TABLE_OUTPUT

--

SQL_ID f6c6qfq28rtkv

select count(*) from emp3

Plan hash value: 1396384608

Chapter 8: Query Tuning: Developer and Beginner DBA 369

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:369

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | | 1605K(100)| |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | TABLE ACCESS FULL| EMP3 | 1006M| 1605K (1)| 05:21:10 |

--

When Should I Use an Index?
In Oracle version 5, many DBAs called the indexing rule the 80/20 Rule; you needed to use an
index if less than 20 percent of the rows were being returned by a query. In version 7, this
number was reduced to about 7 percent on average, and in versions 8i and 9i, the number was
closer to 4 percent. In versions 10g and 11g, Oracle is better at retrieving the entire table, so the
value continues to be in the 5 percent or less range, although it depends not only on the number
of rows but also on how the blocks are distributed as well (see Chapter 2 for additional
information). Figure 8-1 shows when an index should generally be used (in V5 and V6 for
rule-based optimization and in V7, V8i, V9i, V10g, and V11g for cost-based optimization).
However, based on the distribution of data, parallel queries or partitioning can be used and other
factors need to be considered. In Chapter 9, you will see how to make this graph for your own
queries. If the table has fewer than 1000 records (small tables), then the graph is also different.
For small tables, Oracle’s cost-based optimizer generally uses the index when only less than
1 percent of the table is queried. This graph shows you the progress in versions of Oracle. The
lower the percentage of rows returned, the more likely you would use an index. This graph
shows the speed of a full table scan becoming faster. Because of the many variables starting with
Oracle 9i, the percentage could continue to decrease as the trend shows happening from V5 to V8i,

370 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:370

0
V5 V6 V7 V8i V9i V10g V11g

2

4

6

8

10

12

14

16

18

20

% Rows Returned/Use Index

Pe
rc

en
ta

ge
 o

f r
ow

s
re

tu
rn

ed

Version

FIGURE 8-1. When to generally use an index based on the percentage of rows returned by
a query

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

or it could increase slightly, depending on how you architect the database. In Oracle 9i, Oracle
10g, and Oracle11g, you create where the graph goes and Exadata and Exalogic enhancements can
further alter this graph (where percentage could decrease to less than 1 percent); your choice may
depend on how the data and indexes are architected, how the data is distributed within the blocks,
and how it is accessed.

TIP
When a small number of rows (“small” is version and hardware
dependent) are returned to meet a condition in a query, you generally
want to use an index on that condition (column), given that the small
number of rows also returns a small number of individual blocks
(usually the case).

What If I Forget the Index?
Although it seems obvious that columns, which are generally restrictive, require indexes, this
requirement is not always such common knowledge among users or managers. I once went to
a consulting job where their database was suffering from incredibly poor performance. When
I asked for a list of tables and indexes, they replied, “We have a list of tables, but we haven’t
figured out what indexes are yet and if we should use them or not—do you think you can help
our performance?” My first thought was, “Wow, can I ever—my dream tuning job.” My second
thought was that I had been training experts too long and had forgotten that not everyone is as far
along in their performance education. While basic index principles and structure are covered in
Chapter 2, this section will focus on query-related issues surrounding indexes.

Even if you have built indexes correctly for most columns needing them, you may miss a
crucial column here and there. If you forget to put an index on a restrictive column, then the
speed of those queries will not be optimized. Consider the following example where the percent
of rows returned by any given CUST_ID is less than 1 percent (there are about 25M rows on the
SALES2 table and about 25K of them are CUST_ID=22340. Under these circumstances, an index
on the CUST _ID column should normally be implemented. The next query does not have an
index on CUST_ID:

select count(*)

from sales2

where cust_id = 22340;

COUNT(*)

25750

Elapsed: 00:00:08.47 (8.47 seconds)

Execution Plan

--

Plan hash value: 2862189843

Chapter 8: Query Tuning: Developer and Beginner DBA 371

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:371

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 32639 (1)| 00:06:32 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | TABLE ACCESS FULL| SALES2 | 24M| 32639 (1)| 00:06:32 |

119260 consistent gets (memory reads)

119258 physical reads (disk reads)

1,000 times more blocks read than using an index (we'll see this in a moment)

Not only is the query extremely slow, but it also uses a tremendous amount of memory and
CPU to perform the query. This results in an impatient user and a frustrating wait for other users
due to the lack of system resources. (Sound familiar?)

Creating an Index
To accelerate the query in the last example, I build an index on the CUST_ID column. The storage
clause must be based on the size of the table and the column. The table is over 25 million rows
(the space for the index is about 461M). Specifying automatic segment-space management for the
underlying tablespace allows Oracle to manage segment space automatically for best performance.
I could also perform an ALTER SESSION SET SORT_AREA_SIZE = 500000000 (if I had the necessary
OS memory) and the index creation would be much faster.

create index sales2_idx1 on sales2(cust_id)

tablespace rich

storage (initial 400M next 10M pctincrease 0);

Index Created.

Invisible Index
Oracle 11g has a new feature called invisible indexes. An invisible index is invisible to the
optimizer by default. Using this feature, you can test a new index without affecting the execution
plans of the existing SQL statements or you can test the effect of dropping an index without actually
dropping it (the index continues to be maintained even though it is not seen by the optimizer; this
ensures if you make it visible again, it’s up to date). Note that Chapter 2 has additional information
and queries related to invisible indexes.

You can create an invisible index or you can alter an existing index to make it invisible. To
enable the optimizer to use all invisible indexes (not a good idea usually), a new initialization
parameter called OPTIMIZER_USE_INVISIBLE_INDEXES can be set to TRUE. This parameter is
set to FALSE by default. You can run this CREATE instead of the one in the previous section:

create index sales2_idx1 on sales2(cust_id)

tablespace rich

storage (initial 400M next 10M pctincrease 0) invisible;

Index Created

372 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:372

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Checking the Index on a Table
Before creating indexes, check for current indexes that exist on that table to ensure there are no
conflicts.

Once you have created the index, verify that it exists by querying the DBA_IND_COLUMNS
view:

select table_name, index_name, column_name, column_position

from dba_ind_columns

where table_name = 'SALES2'

and table_owner = 'SH'

order by index_name, column_position;

TABLE_NAME INDEX_NAME_ COLUMN_NAME COLUMN_POSITION

---------- ----------- ----------- ---------------

SALES2 SALES2_IDX1 CUST_ID 1

The TABLE_NAME is the table that is being indexed; the INDEX_NAME is the name of the
index; the COLUMN_NAME is the column being indexed; and the COLUMN_POSITION is
the order of the columns in a multipart index. Because our index involves only one column,
the COLUMN_POSITION is ‘1’ (CUST_ID is the first and only column in the index). In the
concatenated index section (later in this chapter), you will see how a multipart index appears.

Query USER_INDEXES to verify the visibility of the index:

select index_name, visibility

from user_indexes

where index_name = 'SALES2_IDX1';

INDEX_NAME VISIBILITY

----------------------- ----------

SALES2_IDX1 VISIBLE

Is the Column Properly Indexed?
Rerun the same query now that the CUST_ID column is properly indexed. The query is dramatically
faster, and more important, it no longer “floods” the system with a tremendous amount of data to the
SGA (it has a much lower number of block reads) and subsequently reduces the physical I/O as well.
Originally, this query took around 120,000 physical reads. Now it only takes about 60 physical reads
(1000× less) and over 800× faster. Even though the query itself runs in seconds, this time difference
can be a big deal if the query runs many times.

select count(*)

from sales2

where cust_id = 22340;

COUNT(*)

25750

Chapter 8: Query Tuning: Developer and Beginner DBA 373

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:373

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Elapsed: 00:00:00.01 (0.01 seconds -)

Execution Plan

--

Plan hash value: 3721387097

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 1 | 4 | 10 (0)| 00:00:01

| 1 | SORT AGGREGATE | | 1 | 4 | |

|* 2 | INDEX RANGE SCAN| SALES2_IDX | 3514 | 14056 | 10 (0)| 00:00:01

127 consistent gets (memory reads)

60 physical reads (disk reads)

TIP
The first tip concerning slow queries is that you’ll have a lot of them if
you don’t index restrictive columns (return a small percentage of the
table). Building indexes on restrictive columns is the first step toward
better system performance.

What If I Create a Bad Index?
In the query to the PRODUCT table, I have a COMPANY_NO column. Since this company’s
expansion has not occurred, all rows in the table have a COMPANY_NO = 1. What if I am a
beginner and I have heard that indexes are good and have decided to index the COMPANY_NO
column? Consider the following example which selects only certain columns from the PLAN_TABLE
after executing the query.

The cost-based optimizer will analyze the index as bad and suppress it. The table must be
reanalyzed after the index is created for the cost-based optimizer to make an informed choice.
The index created on COMPANY_NO is correctly suppressed by Oracle internally (since it
would access the entire table and index):

select product_id, qty

from product

where company_no = 1;

Elapsed time: 405 seconds (all records are retrieved via a full table scan)

OPERATION OPTIONS OBJECT NAME

------------------ -------------- -----------

SELECT STATEMENT

TABLE ACCESS FULL PRODUCT

49,825 consistent gets (memory reads)

41,562 physical reads (disk reads)

374 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:374

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

You can force an originally suppressed index to be used (bad choice), as follows:

select /*+ index(product company_idx1) */ product_id, qty

from product

where company_no = 1;

Elapsed time: 725 seconds (all records retrieved using the index on company_no)

OPERATION OPTIONS OBJECT NAME

------------------ -------------- -----------

SELECT STATEMENT

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN COMPANY_IDX1

4,626,725 consistent gets (memory reads)

80,513 physical reads (disk reads)

Indexes can also be suppressed when they cause poorer performance by using the FULL hint:

select /*+ FULL(PRODUCT) */ product_id, qty

from product

where company_no = 1;

Elapsed time: 405 seconds (all records are retrieved via a full table scan)

OPERATION OPTIONS OBJECT NAME

------------------ -------------- -----------

SELECT STATEMENT

TABLE ACCESS FULL PRODUCT

49,825 consistent gets (memory reads)

41,562 physical reads (disk reads)

Next, consider a similar example in an 11gR2 database on a faster server with a 25M row
table where I am summing all rows together. Oracle is once again smart enough to do a full table
scan since I am summing the entire table. A full table scan only scans the table, but if I force an
index (as in the second example), it has to read many more blocks (almost 50 percent more),
scanning both the table and the index (resulting in a query that is almost four times slower).

select sum(prod_id)

from sales

where cust_id=1;

SUM(PROD_ID)

1939646817

Elapsed: 00:00:08.58

Chapter 8: Query Tuning: Developer and Beginner DBA 375

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:375

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Execution Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 7 | 33009 (2)| 00:06:37 |

| 1 | SORT AGGREGATE | | 1 | 7 | | |

|* 2 | TABLE ACCESS FULL| SALES3 | 24M| 165M| 33009 (2)| 00:06:37 |

Statistic

--

119665 consistent gets

119660 physical reads

Now let’s try scanning the index and then go to the table (bad idea):

select /*+ index (sales3 sales3_idx) */ sum(prod_id)

from sales

where cust_id=1

SUM(PROD_ID)

1939646817

Elapsed: 00:00:33.9

Execution Plan

--

| Id | Operation | Name | Rows |Bytes| Cost (%CPU)|Time |

| 0 | SELECT STATEMENT | | 1 | 7 | 213K (1) |00:42:37 |

| 1 | SORT AGGREGATE | | 1 | 7 | | |

| 2 | TABLE ACCESS BY INDEX ROWID | SALES3 | 24M|165M | 213K (1) |00:42:37 |

|* 3 | INDEX RANGE SCAN | SALES3_IDX| 24M| |47976 (1) |00:09:36 |

--

Statistic

--

168022 consistent gets

168022 physical reads

TIP
Bad indexes (indexing the wrong columns) can cause as much trouble
as forgetting to use indexes on the correct columns. While Oracle’s
cost-based optimizer generally suppresses poor indexes, problems
can still develop when a bad index is used at the same time as a good
index.

Exercising Caution When Dropping an Index
Some people’s first reaction when they find a query that is using a poor index is to drop the
index. Suppressing the index should be your first reaction, however, and investigating the impact
of the index on other queries should be the next action. Unless your query was the only one

376 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:376

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

being performed against the given table, changing/dropping an index might be a detrimental
solution. The invisible index feature in 11g can be used to determine the effect of dropping an
index without actually dropping it. Issue the following command against the index that needs to
be dropped.

alter index sales2_idx1 invisible;

An invisible index is an index that continues to be maintained but is ignored by the optimizer
unless you explicitly set it back to being visible or turn all invisible indexes on by setting the
OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE (careful). This way you can test the effect of
dropping a particular index. If you want to reverse it, all you need to do is

alter index sales2_idx visible;

The next section investigates indexing columns that are both in the SELECT and WHERE
clauses of the query.

Indexing the Columns Used
in the SELECT and WHERE
The preceding section described how dropping an index can hurt performance for a query. Consider
the following query where the index was created to help. I built a million-row EMPLOYEES table
from the famous SCOTT.EMP table. This query does not have indexed columns:

select ename

from employees

where deptno = 10;

Elapsed time: 55 seconds (a full table scan is performed)

OPERATION OPTIONS OBJECT NAME

------------------ -------------- -----------

SELECT STATEMENT

TABLE ACCESS FULL EMPLOYEES

First, I place an index on the DEPTNO column to try to improve performance:

Create index dept_idx1 on employees (deptno)

Tablespace test1

Storage (initial 20M next 5M pctincrease 0);

select ename

from employees

where deptno = 10;

Elapsed time: 70 seconds (the index on deptno is used but made things worse)

Chapter 8: Query Tuning: Developer and Beginner DBA 377

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:377

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

OPERATION OPTIONS OBJECT NAME

------------------ -------------- -----------

SELECT STATEMENT

TABLE ACCESS BY INDEX ROWID EMPLOYEES

INDEX RANGE SCAN DEPT_IDX1

This situation is now worse. In this query, only the ENAME is selected. If this is a crucial
query on the system, choose to index both the SELECT and the WHERE columns. By doing this,
you create a concatenated index:

Drop index dept_idx1;

Create index emp_idx1 on employees (deptno, ename)

Tablespace test1

Storage (initial 20M next 5M pctincrease 0);

The query is now tremendously faster:

select ename

from employees

where deptno = 10;

Elapsed time: Less than 1 second (the index on deptno AND ename is used)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

INDEX RANGE SCAN EMP_IDX1

The table itself did not have to be accessed, which increases the speed of the query. Indexing
both the column in the SELECT clause and the column in the WHERE clause allows the query to
only access the index.

Consider the following 25M-row SALES3 table (created from SALES2). I have a two-part single
index on the CUST_ID and PROD_ID columns. Oracle only needs to access the index (no table
access), since all needed information is contained in the index (60K reads instead of the 160K you
saw earlier).

select sum(prod_id)

from sales3

where cust_id=1;

SUM(PROD_ID)

1939646817

Elapsed: 00:00:05.4

378 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:378

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Execution Plan

| Id | Operation | Name | Rows | Bytes |Cost (%CPU|Time |

| 0 |SELECT STATEMENT | | 1 | 7 |16690 (2)|00:03:21 |

| 1 |SORT AGGREGATE | | 1 | 7 | | |

|* 2 |INDEX FAST FULL SCAN|SALES_IDX_MULTI| 24M| 165M|16690 (2)|00:03:21 |

Statistics:

60574 consistent gets

60556 physical reads

TIP
For crucial queries on your system, consider concatenated indexes on
the columns contained in both the SELECT and the WHERE clauses so
only the index is accessed.

Using the Fast Full Scan
The preceding section demonstrated that if I index both the SELECT and the WHERE columns,
the query is much faster. Oracle does not guarantee that only the index will be used under these
circumstances. However, there is a hint that guarantees (under most circumstances) that only the
index will be used. The INDEX_FFS hint is a fast full scan of the index. This hint accesses only
the index and not the corresponding table. Consider a query from a table with 100M rows with
the index on CUST_ID called SALES2_IDX.

First, you check the number of blocks read for a full table scan and then a full index scan:

select /*+ full(sales2) */ count(*)

from sales2;

COUNT(*)

100153887

Elapsed: 00:01:42.63

Execution Plan

--

Plan hash value: 2862189843

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 32761 (1)| 01:06:32 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | TABLE ACCESS FULL| SALES2 | 24M| 32761 (1)| 01:06:32 |

Chapter 8: Query Tuning: Developer and Beginner DBA 379

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:379

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Statistics

--

820038 consistent gets

481141 physical reads

Now let’s try to select using a full index scan instead:

select /*+ index_ffs (sales2 sales2_idx) */ count(*)

from sales2;

COUNT(*)

100153887

Elapsed: 00:24:06.07

Execution Plan

--

Plan hash value: 3956822556

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 1 | 81419 (2)| 00:16:18 |

| 1 | SORT AGGREGATE | | 1 | | |

| 2 | INDEX FAST FULL SCAN| SALES2_IDX | 24M| 81419 (2)| 00:16:18 |

--

Statistics

--

298091 consistent gets

210835 physical reads

The query with the INDEX_FFS hint now only accesses the index. Instead of scanning over
800K blocks (of which 400K were physical reads), you only scan around 300K blocks (of which
210K are physical reads). Also note, sometimes your queries scan the entire index (as this one
did), which is often not as good as if you have a limiting condition, so be careful; using an index
search is much better than a full index scan when possible. Oracle often scans the index versus
scanning the table for a count(*), by default, in 11g. Running either of these queries a second
time (see next section) does not get rid of the physical scans since the query retrieves enough
data to fill half of the number of blocks as in the total buffer cache (it is pushed out of the cache
quickly since it is not a short table; see Chapter 14 for additional details).

TIP
The INDEX_FFS (available since Oracle 8) processes only the index
and does not access the table. All columns that are used and retrieved
by the query must be contained in the index.

380 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:380

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Making the Query “Magically” Faster
Consider the following query from the last example in which the user adds a hint called
“RICHS_SECRET_HINT.” The user overheard a conversation about this hint at a recent user group
and believes this hint (buried deep in the X$ tables) is the hidden secret to tuning. First, the query
is run and no index can be used (a large EMPLOYEES table with over 14M rows):

select ename, job

from employees

where deptno = 10

and ename = 'ADAMS';

Elapsed time: 45.8 seconds (one record is retrieved in this query)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

TABLE ACCESS FULL EMPLOYEES

There is no index that can be used on this query. A full table scan is performed.
The user now adds Rich’s secret hint to the query:

select /*+ richs_secret_hint */ ename, job

from employees

where deptno = 10

and ename = 'ADAMS';

Elapsed time: under 1 second (one record is retrieved in this query)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

TABLE ACCESS FULL EMPLOYEES

The hint worked and the query is “magically” faster, although a full table scan was still
performed in the second query. Actually, the data is now stored in memory and querying the
data from memory is now much faster than going to disk for the data—so much for the magic! By
effectively using the 11g Result Cache, you can magically make things faster as well. See the
“Using the New 11g Result Cache” section later in this chapter (Chapters 1 and 4 also include
additional information).

TIP
When running a query multiple times in succession, it becomes faster
because you have now cached the data in memory (although full
table scans are aged out of memory quicker than indexed scans). At
times, people are tricked into believing that they have made a query
faster, when in actuality they are accessing data stored in memory.
Flushing the buffer cache or restarting the test system can help you get
accurate tuning results for comparisons.

Chapter 8: Query Tuning: Developer and Beginner DBA 381

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:381

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

Caching a Table in Memory
While it is disappointing that there is no “secret hint” for tuning (ORDERED and LEADING are
the hints closest to magic), you can use the last section to learn from, and then you can use this
knowledge to your advantage. In the last section, the query ran faster the second time because it
was cached in memory. What if the tables used most often were cached in memory all the time?
Well, the first problem is that if you cannot cache every table in memory, you must focus on the
smaller and more often used tables to be cached. You can also use multiple buffer pools as
discussed in Chapter 4. The following query is run against an unindexed customer table to return
one of the rows:

select prod_id, cust_id

from sales

where cust_id=999999999

and prod_id is not null;

PROD_ID CUST_ID

---------- ----------

13 999999999

Elapsed: 00:00:00.84

Execution Plan

--

Plan hash value: 781590677

--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |

| 0 | SELECT STATEMENT | | 50 | 1300 | 1241 (2)| 00:00:15 |

|* 1 | TABLE ACCESS FULL| SALES | 50 | 1300 | 1241 (2)| 00:00:15 |

--

The database is then stopped and restarted so as to not influence the timing statistics (you can
also perform an “ALTER SYSTEM FLUSH BUFFER_CACHE” but only do this on a test system).
The table is altered to cache the records:

alter table sales cache;

Table altered.

Query the unindexed, but now cached, SALES table and it still takes 0.84 seconds. The table
has been altered to be cached, but the data is not in memory yet. Every subsequent query will
now be faster (after the first one). I query the unindexed (but now cached) SALES table to return
one of the rows in 0.04 seconds, or 21 times faster (this increase in speed could add up fast if this
query is run thousands of times):

select prod_id, cust_id

from sales

where cust_id=999999999

and prod_id is not null;

382 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:382

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

PROD_ID CUST_ID

---------- ----------

13 999999999

Elapsed: 00:00:00.04

Execution Plan

--

Plan hash value: 781590677

--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |

| 0 | SELECT STATEMENT | | 50 | 1300 | 1241 (2)| 00:00:15 |

|* 1 | TABLE ACCESS FULL| SALES | 50 | 1300 | 1241 (2)| 00:00:15 |

--

The query is faster because the table is now cached in memory; in fact, all queries to this
table are now fast regardless of the condition used. A cached table is “pinned” into memory and
placed at the “most recently used” end of the cache; it is pushed out of memory only after other
full table scans to tables that are not cached are pushed out. Running a query multiple times
places the data in memory so subsequent queries are faster—only caching a table ensures that
the data is not later pushed out of memory. Oracle 11g caches frequently used data, by default,
as you access things over and over.

TIP
Caching an often-used but relatively small table into memory ensures
that the data is not pushed out of memory by other data. Be careful,
however—cached tables can alter the execution path normally
chosen by the optimizer, leading to an unexpected execution order
for the query (for instance, affecting the driving table in nested loop
joins).

Using the New 11g Result Cache
In Oracle 11g, a new feature called the Result Cache lets you cache SQL results in an area of the
SGA to improve performance.

The following RESULT_CACHE hint caches the results on execution:

select /*+ result_cache */ SUM(sal)

from scott.emp

where deptno=20;

When a query with RESULT_CACHE hint is run, Oracle will see if the results of the query have
already been executed, computed, and cached, and, if so, retrieve the data from the cache instead

Chapter 8: Query Tuning: Developer and Beginner DBA 383

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:383

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

of querying the data blocks and computing the results again. Take the following important points
into consideration before using this feature:

■ The Result Cache feature is useful only for SQL queries that are executed over and over
again frequently.

■ The underlying data doesn’t change very often. When the data changes, the result set is
removed from the cache.

If you are executing the same queries over and over, using the RESULT_CACHE hint often
makes subsequent queries run faster. Chapters 1 and 4 contain additional information on this.

TIP
If you are executing the same queries over and over (especially
grouping or calculation functions), using the RESULT_CACHE hint
often makes subsequent queries run faster.

Choosing Among Multiple Indexes
(Use the Most Selective)
Having multiple indexes on a table can cause problems when you execute a query where the
choices include using more than one of the indexes. The optimizer almost always chooses
correctly. Consider the following example where the percent of rows returned by any given
PRODUCT_ID is less than 1 percent where the data is equally distributed between the blocks.
Under these circumstances, place an index on the PRODUCT_ID column. The following query
has a single index on PRODUCT_ID:

select product_id, qty

from product

where company_no = 1

and product_id = 167;

Elapsed time: 1 second (one record is retrieved; the index on product_id is used)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN PROD_IDX1

107 consistent gets (memory reads)

1 physical reads (disk reads)

Now create an additional index on the COMPANY_NO column. In this example, all of the
records have a COMPANY_NO = 1, an extremely poor index. Rerun the query with both indexes
(one on PRODUCT_ID and one on COMPANY_NO) existing on the table:

select product_id, qty

from product

384 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:384

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

where company_no = 1

and product_id = 167;

Elapsed time: 725 seconds (one record is returned; a full table scan is performed)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

TABLE ACCESS FULL PRODUCT

4,626,725 consistent gets (memory reads)

80,513 physical reads (disk reads)

Oracle has chosen not to use either of the two indexes (perhaps because of a multiblock
initialization parameter or some other “exception to the rule”), and the query performed a full
table scan. Depending on the statistical data stored and version of Oracle used, I have seen this
same query use the right index, the wrong index, no index at all, or a merge of both indexes. The
correct choice is to force the use of the correct index. The correct index is the most restrictive.
Rewrite the query to force the use of the most restrictive index, as follows, or better yet, fix the
real initialization parameter issue (the less hints that you use, the better—especially when you
upgrade to the next version of Oracle).

To rewrite the query to force the use of the most restrictive index:

select /*+ index(product prod_idx1) */ product_id, qty

from product

where company_no = 1

and product_id = 167;

Elapsed time: 1 second (one record is retrieved)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN PROD_IDX1

107 consistent gets (memory reads)

1 physical reads (disk reads)

TIP
When multiple indexes on a single table can be used for a query, use
the most restrictive index when you need to override an optimizer
choice. While Oracle’s cost-based optimizer generally forces the
use of the most restrictive index, variations will occur, depending
on the version of Oracle used, the structure of the query, and the
initialization parameters that you may use. Fix the larger issue if you
see this as a trend.

Chapter 8: Query Tuning: Developer and Beginner DBA 385

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:385

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

TIP
Bitmap indexes usually behave differently because they are usually
much smaller. See Chapter 2 for more information on the differences
between bitmap indexes and other indexes.

The Index Merge
Oracle’s index merge feature allows you to merge two separate indexes and use the result of the
indexes instead of going to the table from one of the indexes. Consider the following example (in 11g,
if you use a rule-based hint, which Oracle does not support, Oracle includes a note in the EXPLAIN
PLAN that specifically suggests you use the cost-based optimizer). Also note that OPTIMIZER_MODE
set to CHOOSE is not supported either, so use either ALL_ROWS or FIRST_ROWS instead.

The following statistics are based on 1,000,000 records. The table is 210M.

create index year_idx on test2 (year);

create index state_idx on test2 (state);

select /*+ rule index(test2) */ state, year

from test2

where year = '1972'

and state = 'MA';

SELECT STATEMENT Optimizer=HINT: RULE

TABLE ACCESS (BY INDEX ROWID) OF 'TEST2'

INDEX (RANGE SCAN) OF 'STATE_IDX' (NON-UNIQUE)

Note

- rule based optimizer used (consider using cbo)

Elapsed time: 23.50 seconds

select /*+ index_join(test2 year_idx state_idx) */

state, year

from test2

where year = '1972'

and state = 'MA';

SELECT STATEMENT

VIEW OF 'index$_join$_001'

HASH JOIN

INDEX (RANGE SCAN) OF 'YEAR_IDX' (NON-UNIQUE)

INDEX (RANGE SCAN) OF 'STATE_IDX' (NON-UNIQUE)

Elapsed time: 4.76 seconds

In the first query, I test the speed of using just one of the indexes and then going back to the
table (under certain scenarios, Oracle tunes this with an AND-EQUAL operation to access data
from the indexes). I then use the INDEX_JOIN hint to force the merge of two separate indexes

386 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:386

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:41

Color profile: Disabled
Composite Default screen

and use the result of the indexes instead of going back to the table. When the indexes are both
small compared to the size of the table, this can lead to better performance. On a faster system,
the second query takes only 0.06 seconds, so your mileage will vary.

Now, let’s consider a query to the 25M row SALES3 table on a faster server with separate
indexes on the CUST_ID and PROD_ID columns. Using an index merge of the two indexes
yields a very slow response time and many blocks read (over 200K physical reads):

select /*+ index_join (sales3 sales3_idx sales3_idx2) */ sum(prod_id)

from sales3

where cust_id=1;

SUM(PROD_ID)

1939646817

Elapsed: 00:01:37.5

Execution Plan

--

| Id | Operation | Name |Rows| Bytes |Cost(%CPU)|Time |

--

| 0 |SELECT STATEMENT | | 1 | 7 | 158K (1)|00:31:47|

| 1 | SORT AGGREGATE | | 1 | 7 | | |

|* 2 | VIEW | index$_join$_001| 24M| 165M| 158K (1)|00:31:47|

|* 3 | HASH JOIN | | | | | |

|* 4 | INDEX RANGE SCAN | SALES3_IDX | 24M| 165M |48211 (2) |00:09:39|

| 5 | INDEX FAST FULL SCAN | SALES3_IDX2 | 24M| 165M |63038 (1) |00:12:37|

--

Statistic

8536 consistent gets

217514 physical reads

If I drop the two indexes on SALES3 and replace them with a two-part single index on the
CUST_ID and PROD_ID columns, performance improves greatly—over ten times faster. Another
benefit is the reduction of physical block reads from over 200K to only 60K.

select sum(prod_id)

from sales3

where cust_id=1;SUM(PROD_ID)

1939646817

Execution Plan

| Id | Operation | Name |Rows | Bytes |Cost(%CPU)|Time |

| 0 |SELECT STATEMENT | | 1 | 7 |16690 (2) |00:03:21 |

| 1 |SORT AGGREGATE | | 1 | 7 | | |
|* 2 |INDEX FAST FULL SCAN|SALES_IDX_MULTI| 24M| 165M |16690(2) |00:03:21 |

Statistic

60574 consistent gets

60556 physical reads

Chapter 8: Query Tuning: Developer and Beginner DBA 387

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:387

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Indexes That Can Get Suppressed
Building the perfect system with all of the correctly indexed columns does not guarantee
successful system performance. With the prevalence in business of bright-eyed ad-hoc query
users comes a variety of tuning challenges. One of the most common is the suppression of
perfectly good indexes. A modification of the column side of a WHERE clause often results in
that index being suppressed (unless function-based indexes are utilized or the super-smart
optimizer figures out a better path). Alternative methods for writing the same query do exist that
do not modify the indexed column. A couple of those examples are listed next. Oracle does use
the indexes in many cases, internally fixing the suppression (they continue to get better at this
from version to version), especially when an index search or a full index scan can be run instead
of a full table scan. If you use 3GL code or code within applications, the results vary, so I
continue to show these areas that are a problem with certain tools or applications for you to
consider when you run into that full table scan that you didn’t expect.

A math function is performed on the column:

select product_id, qty

from product

where product_id+12 = 166;

Elapsed time: 405 second

OPERATION OPTIONS OBJECT NAME

---------------- ------- -----------

SELECT STATEMENT

TABLE ACCESS FULL PRODUCT

The math function is performed on the other side of the clause (Oracle often fixes this
internally):

select product_id, qty

from product

where product_id = 154;

Elapsed time: 1 second

OPERATION OPTIONS OBJECT NAME

---------------- ------- --------------

SELECT STATEMENT

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN PROD_IDX1

A function is performed on the column:

select product_id, qty

from product

where substr(product_id,1,1) = 1;

Elapsed time: 405 second

388 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:388

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

OPERATION OPTIONS OBJECT NAME

---------------- ------- -----------

SELECT STATEMENT

TABLE ACCESS FULL PRODUCT

The function is rewritten so the column is not altered (a LIKE or function-based index would
fix this):

select product_id, qty

from product

where product_id like '1%';

Elapsed time: 1 second

OPERATION OPTIONS OBJECT NAME

---------------- ---------- -----------

SELECT STATEMENT

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN PROD_IDX1

As I stated previously, Oracle is often smart enough to figure out the issue and still use the
index. The following query shows that the index is scanned with no table access despite the
attempt to suppress the index (adding zero (0) or using an NVL gave the same result). In
the following case, everything needed is in the index. Oracle figures out the substring function
on the leading edge of the index but is still able to use only the index despite needing both
columns from the index (versus using the index to access back to the table).

select sum(prod_id)

from sales3

where substr(cust_id,1)=1;

SUM(PROD_ID)

1939646817

Elapsed: 00:00:12.49

Execution Plan

| Id | Operation | Name |Rows |Bytes|Cost(%CPU| Time |

| 0 |SELECT STATEMENT | | 1 | 7|17651(8) |00:03:32|

| 1 | SORT AGGREGATE | | 1 | 7| | |

|* 2 | INDEX FAST FULL SCAN|SALES_IDX_MULTI| 248K|1695K|17651 (8)|00:03:32|

TIP
At times, modifying the column side of the query can result in the
index being suppressed unless a function-based index is used. Oracle
may also fix this issue during parsing.

Chapter 8: Query Tuning: Developer and Beginner DBA 389

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:389

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Function-Based Indexes
One of the largest problems with indexes, as seen in the previous section, is that indexes are
often suppressed by developers and ad-hoc users. Developers using functions often suppress
indexes. There is a way to combat this problem. Function-based indexes allow you to create an
index based on a function or expression. The value of the function or expression is specified by
the person creating the index and is stored in the index. Function-based indexes can involve
multiple columns, arithmetic expressions, or maybe a PL/SQL function or C callout.

The following example shows how to create a function-based index:

CREATE INDEX emp_idx ON emp (UPPER(ename));

An index that uses the UPPER function has been created on the ENAME column. The following
example queries the EMP table using the function-based index:

select ename, job, deptno

from emp

where upper(ename) = 'ELLISON';

The function-based index (EMP_IDX) can be used for this query. For large tables where the
condition retrieves a small amount of records, the query yields substantial performance gains
over a full table scan. See Chapter 2 for additional details and examples.

The following initialization parameters must be set (subject to change with each version)
to use function-based indexes (the optimization mode must be cost-based as well). When a
function-based index is not working, this is often the problem.

query_rewrite_enabled = true

query_rewrite_integrity = trusted (or enforced)

TIP
Function-based indexes can lead to dramatic performance gains
when used to create indexes on functions often used on selective
columns in the WHERE clause.

To check the details for function-based indexes on a table, you may use a query similar to this:

select table_name, index_name, column_expression

from dba_ind_expressions

where table_name = 'SALES2'

and table_owner = 'SH'

order by index_name, column_position;

Virtual Columns
Oracle 11g has introduced a new feature called the virtual column, a column that allows you to
define a function on other column(s) in the same table. Here is an example of creating a table
with a virtual column:

CREATE TABLE my_employees (

empId NUMBER,

390 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:390

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

firstName VARCHAR2(30),

lastName VARCHAR2(30),

salary NUMBER(9,2),

bonus NUMBER GENERATED ALWAYS AS (ROUND(salary*(5/100)/12))

VIRTUAL,

CONSTRAINT myemp_pk PRIMARY KEY (empId));

An important point to remember is that indexes defined against virtual columns are
equivalent to function-based indexes.

The “Curious” OR
The cost-based optimizer often has problems when the OR clause is used. The best way to think
of the OR clause is as multiple queries that are then merged. Consider the following example
where there is a single primary key on COL1, COL2, and COL3. Prior to Oracle 9i, the Oracle
Database performed this query in the following way:

select *

from table_test

where pk_col1 = 'A'

and pk_col2 in ('B', 'C')

and pk_col3 = 'D';

2 Table Access By Rowid TABLE_TEST

1 Index Range Scan TAB_PK

NOTE
PK_COL2 and PK_COL3 were not used for index access.

Since Oracle 9i, Oracle HAS improved how the optimizer handles this query (internally
performing an OR-expansion). In Oracle 11g, the optimizer uses the full primary key and
concatenates the results (as shown next), which is much faster than using only part of the primary
key (as in the preceding access path). Even though the access path for the preceding query looks
better because there are fewer lines, don’t be tricked; fewer lines in the EXPLAIN PLAN doesn’t
mean a more efficient query.

5 Concatenation

2 Table Access By Rowid TAB

1 Index Unique Scan TAB_PK

4 Table Access By Rowid TAB

3 Index Unique Scan TAB_PK

To get this desired result prior to 9i, you would have needed to break up the query as shown
here (I show this since often making a query longer can make it faster, as it’s processed
differently):

select *

from table_test

where (pk_col1 = 'A'

Chapter 8: Query Tuning: Developer and Beginner DBA 391

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:391

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

and pk_col2 = 'B'

and pk_col3 = 'D')

or (pk_col1 = 'A'

and pk_col2 = 'C'

and pk_col3 = 'D');

5 Concatenation

2 Table Access By Rowid TAB

1 Index Unique Scan TAB_PK

4 Table Access By Rowid TAB

3 Index Unique Scan TAB_PK

TIP
Oracle has improved the way that it performs the OR clause. The
NO_EXPAND hint can still be helpful, as it prevents the optimizer
from using OR expansion, as described in Chapter 7.

Using the EXISTS Function
and the Nested Subquery
Another helpful tip to remember is to use the EXISTS function instead of the IN function in most
circumstances. The EXISTS function checks to find a single matching row to return the result in
a subquery. Because the IN function retrieves and checks all rows, it is slower. Oracle has also
improved the optimizer so it often performs this optimization for you as well. Consider the
following example, where the IN function leads to very poor performance. This query is faster
only if the ITEMS table is extremely small:

select product_id, qty

from product

where product_id = 167

and item_no in

(select item_no

from items);

Elapsed time: 25 minutes (The items table is 10 million rows)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

NESTED LOOPS SEMI

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN PROD_IDX1

SORT

TABLE ACCESS FULL ITEMS

In this query, the entire ITEMS table is retrieved.

392 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:392

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

This query is faster when the condition PRODUCT_ID = 167 substantially limits the outside
query:

select product_id, qty

from product a

where product_id = 167

and exists

(select 'x'

from items b

where b.item_no = a.item_no);

Elapsed time: 2 seconds (The items table query search is limited to 3 rows)

OPERATION OPTIONS OBJECT NAME

------------------ ---------- -----------

SELECT STATEMENT

NESTED LOOPS SEMI

TABLE ACCESS BY ROWID PRODUCT

INDEX RANGE SCAN PROD_IDX1

INDEX RANGE SCAN ITEM_IDX1

In this query, only the records retrieved in the outer query (from the PRODUCT table) are
checked against the ITEMS table. This query can be substantially faster than the first query if
the ITEM_NO in the ITEMS table is indexed or if the ITEMS table is very large, yet the items are
limited by the condition PRODUCT_ID = 167 in the outer query.

TIP
Using the nested subquery with an EXISTS clause may make queries
dramatically faster, depending on the data being retrieved from each
part of the query. Oracle11g often makes this translation internally,
saving you time and giving you performance gains!

That Table Is Actually a View!
Views can hide the complexity of SQL but they can also add to the complexity of optimization.
When looking at a SELECT statement, unless you have instituted some kind of naming convention
for views, you cannot tell if an object is a table or a view from the SELECT statement alone. You
must examine the object in the database to tell the difference. Views can join multiple tables. Be
careful about joining views or using a view designed for one purpose for a different purpose, or
you may pay a heavy performance price. Ensure that all tables involved in the view are actually
required by your query. Also keep in mind that different types of triggers can also hide performance
issues behind a simple query. Good developer documentation can save a lot of time in finding
performance issues in complex code.

SQL and Grand Unified Theory
Many physicists have searched for a single theory that explains all aspects of how the universe
works. Many theories postulated have worked well in certain circumstances and break down in
others. This is fine for theoretical physics, but it can spell disaster in a database. When writing

Chapter 8: Query Tuning: Developer and Beginner DBA 393

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:393

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

SQL, one should not attempt to write the “Grand Unified SQL” statement that will do all tasks,
depending on the arguments passed to it. This typically results in suboptimal performance for
most tasks performed by the statement (or you feel the effect during the next upgrade). It is better
to write separate, highly efficient statements for each task that needs to be performed.

Tuning Changes in Oracle Database 11g
The general SQL tuning principles remain the same in 11g, but some significant optimizer
changes should be noted.

■ The RULE (and CHOOSE) OPTIMIZER_MODE has been deprecated and desupported
in 11g. (The only way to get rule-based behavior in 11g is by using the RULE hint in a
query, which is not supported either). In general, using the RULE hint is not recommended,
but for individual queries that need it, it is there. Consult with Oracle support before using
the RULE hint in 11g.

■ In 11g, the cost-based optimizer has two modes: NORMAL and TUNING.

■ In NORMAL mode, the cost-based optimizer considers a very small subset of
possible execution plans to determine which one to choose. The number of plans
considered is far smaller than in past versions of the database in order to keep the
time to generate the execution plan within strict limits. SQL profiles (statistical
information) can be used to influence which plans are considered.

■ The TUNING mode of the cost-based optimizer can be used to perform more
detailed analysis of SQL statements and make recommendations for actions to be
taken and for auxiliary statistics to be accepted into a SQL profile for later use when
running under NORMAL mode. TUNING mode is also known as the Automatic
Tuning Optimizer mode, and the optimizer can take several minutes for a single
statement (good for testing). See the Oracle Database Performance Tuning Guide
Automatic SQL Tuning (Chapter 17 in the 11.2 docs).

Oracle states that the NORMAL mode should provide an acceptable execution path for most
SQL statements. SQL statements that do not perform well in NORMAL mode may be tuned in
TUNING mode for later use in NORMAL mode. This should provide a better performance
balance for queries that have defined SQL profiles, with the majority of the optimizer work for
complex queries being performed in TUNING mode once, rather than repeatedly, each time the
SQL statement is parsed.

Oracle 11g Automatic SQL Tuning
Oracle Database 10g introduced the SQL Tuning Advisor to help DBAs and developers improve
the performance of SQL statements. The Automatic SQL Tuning Advisor includes statistics
analysis, SQL profiling, access path analysis, and SQL structure analysis, and can be performed
through the SQL Tuning Advisor. The SQL Tuning Advisor uses input from the ADDM, from
resource-intensive SQL statements captured by the AWR, from the cursor cache, or from SQL
Tuning Sets. Oracle 11g has extended the SQL Tuning Advisor by adding additional features such
as SQL Replay, Automatic SQL Tuning, SQL Statistics Management, and SQL Plan Management.

394 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:394

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Since this chapter is focused on query tuning, I’ll describe how to pass specific SQL to the SQL
Tuning Advisor in the form of a SQL Tuning Set, and then I’ll cover 11g’s Automatic SQL Tuning
Advisor and SQL Performance Analysis (SQL Replay).The Oracle recommended interface for the
SQL Tuning Advisor is Oracle Enterprise Manager (see Chapter 5), but you can use the APIs via
the command line in SQL*Plus. I cover the command-line session so you can better understand
the analysis procedure for a single query. This section is only a small glance into the functionality
of the SQL Tuning Advisor. You also have the capability to create SQL Tuning Sets and SQL
profiles as well as the ability to transport SQL Tuning Sets from one database to another.

Ensuring the Tuning User Has Access to the API
Access to these privileges should be restricted to authorized users in a production environment.
The privileges are granted by SYS. The “ADMINISTER SQL TUNING SET” privilege allows a user
to access only his or her own tuning sets.

GRANT ADMINISTER SQL TUNING SET to &TUNING_USER; -- or

GRANT ADMINISTER ANY SQL TUNING SET to &TUNING_USER;

GRANT ADVISOR TO &TUNING_USER

GRANT CREATE ANY SQL PROFILE TO &TUNING_USER;

GRANT ALTER ANY SQL PROFILE TO &TUNING_USER;

GRANT DROP ANY SQL PROFILE TO &TUNING_USER;

Creating the Tuning Task
If you want to tune a single SQL statement, for example,

select COUNT(*)

from t2

where UPPER(owner) = 'RIC';

you must first create a tuning task using the DBMS_SQLTUNE package:

DECLARE

tuning_task_name VARCHAR2(30);

tuning_sqltext CLOB;

BEGIN

tuning_sqltext := 'SELECT COUNT(*) ' ||

'FROM t2 ' ||

'WHERE UPPER(owner) = :owner';

tuning_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(

sql_text => tuning_sqltext,

bind_list => sql_binds(anydata.ConvertVarchar2(100)),

user_name => 'RIC',

scope => 'COMPREHENSIVE',

time_limit => 60,

task_name => 'first_tuning_task13',

description => 'Tune T2 count');

END;

/

Chapter 8: Query Tuning: Developer and Beginner DBA 395

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:395

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Making Sure the Task Can Be Seen in the Advisor Log
To see the task, query the USER_ADVISOR log:

select task_name

from user_advisor_log;

TASK_NAME

first_tuning_task13

Executing the SQL Tuning Task
To execute the tuning task, you use the DBMS_SQLTUNE package, as shown here:

BEGIN

DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_name => 'first_tuning_task13');

END;

/

Checking Status of the Tuning Task
To see the specific tuning task, query the USER_ADVISOR log:

select status

from user_advisor_tasks

where task_name = 'first_tuning_task13';

STATUS

COMPLETED

Displaying the SQL Tuning Advisor Report
To see the SQL Tuning Advisor Report, you also use the DBMS_SQLTUNE package:

SET LONG 8000

SET LONGCHUNKSIZE 8000

SET LINESIZE 100

SET PAGESIZE 100

select dbms_sqltune.report_tuning_task('first_tuning_task13')

from dual;

396 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:396

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Reviewing the Report Output
The report output shown next is lengthy, but it essentially recommends creating a function-based
index on the owner column of table T2. Had the SQL Tuning Advisor recommended the use of a
SQL profile, this could have been accepted by using the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE
package.

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

GENERAL INFORMATION SECTION

Tuning Task Name : first_tuning_task13

Tuning Task Owner : RIC

Workload Type : Single SQL Statement

Scope : COMPREHENSIVE

Time Limit(seconds) : 60

Completion Status : COMPLETED

Started at : 11/20/2010 20:49:56

Completed at : 11/20/2010 20:49:56

Number of Index Findings : 1

Number of SQL Restructure Findings: 1

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

--

Schema Name: RIC

SQL ID : 8ubrqzjkkyj3g

SQL Text : SELECT COUNT(*) FROM t2 WHERE UPPER(owner) = 'RIC'

FINDINGS SECTION (2 findings)

1- Index Finding (see explain plans section below)

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

The execution plan of this statement can be improved by creating one or more

indices.

Recommendation (estimated benefit: 100%)

Consider running the Access Advisor to improve the physical schema design

or creating the recommended index.

create index RIC.IDX$$_00CF0001 on RIC.T2(UPPER('OWNER'));

Rationale

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

Creating the recommended indexes significantly improves the execution plan

of this statement. However, it might be preferable to run "Access Advisor"

Chapter 8: Query Tuning: Developer and Beginner DBA 397

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:397

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

using a representative SQL workload as opposed to a single statement. This

will allow Oracle to get comprehensive index recommendations which takes into

account index maintenance overhead and additional space consumption.

2- Restructure SQL finding (see plan 1 in explain plans section)

--

The predicate UPPER("T2"."OWNER")='RIC' used at line ID 2 of the execution

plan contains an expression on indexed column "OWNER". This expression

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

prevents the optimizer from selecting indices on table "RIC"."T2".

Recommendation

- Rewrite the predicate into an equivalent form to take advantage of

indices. Alternatively, create a function-based index on the expression.

Rationale

The optimizer is unable to use an index if the predicate is an inequality

condition or if there is an expression or an implicit data type conversion

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

on the indexed column.

EXPLAIN PLANS SECTION

1- Original

Plan hash value: 1374435053

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |Time |

| 0 | SELECT STATEMENT | | 1 | 6 | 4049 (3) |00:00:49 |

| 1 | SORT AGGREGATE | | 1 | 6 | | |

|* 2 | INDEX FAST FULL SCAN| T2_I1 | 26097 | 152K | 4049 (3) | 00:00:49 |

Predicate Information (identified by operation id):

2 - filter(UPPER("OWNER")='RIC')

DBMS_SQLTUNE.REPORT_TUNING_TASK('FIRST_TUNING_TASK13')

--

2- Using New Indices

Plan hash value: 2206416184

| Id | Operation | Name | Rows | Bytes |Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 6 |524 (2) | 00:00:07|

| 1 | SORT AGGREGATE | | 1 | 6 |

|* 2 | INDEX RANGE SCAN | IDX$$_00CF0001 | 237K | 1390K| 524 (2) | 00:00:07|

398 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:398

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Tuning SQL Statements Automatically
Using SQL Tuning Advisor
Now let’s look at Oracle 11g’s Automatic SQL Tuning Advisor. Oracle 11g’s Automatic SQL
Tuning Advisor analyzes Automatic Workload Repository data to find high-load SQL statements
that have been executed repeatedly. It then uses SQL Tuning Advisor to tune those statements,
creates SQL profiles, if needed, and tests them thoroughly. If it thinks implementing the SQL
profile is beneficial, it automatically implements them. No intervention is needed. Automatic
SQL Tuning Advisor runs during the normal maintenance window. The DBA can then run reports
against those recommendations and validate those SQL profiles.

Enabling Automatic SQL Tuning Advisor
The following procedure is used to enable Automatic SQL Tuning Advisor:

BEGIN

DBMS_AUTO_TASK_ADMIN.ENABLE(client_name => 'sql tuning advisor', operation =>

NULL, window_name => NULL);

END;

/

Configuring Automatic SQL Tuning Advisor
To query what is currently set, run the following query:

select parameter_name, parameter_value

from dba_advisor_parameters

where task_name = 'SYS_AUTO_SQL_TUNING_TASK'

and parameter_name IN ('ACCEPT_SQL_PROFILES',

'MAX_SQL_PROFILES_PER_EXEC',

'MAX_AUTO_SQL_PROFILES');

PARAMETER_NAME PARAMETER_VALUE

------------------------------ ------------------------------

ACCEPT_SQL_PROFILES FALSE

MAX_SQL_PROFILES_PER_EXEC 20

MAX_AUTO_SQL_PROFILES 10000

Now change SQL_PROFILE parameters as follows:

SQL> CONNECT / AS SYSDBA

BEGIN

DBMS_SQLTUNE.set_tuning_task_parameter(

task_name => 'SYS_AUTO_SQL_TUNING_TASK',

parameter => 'ACCEPT_SQL_PROFILES',

Chapter 8: Query Tuning: Developer and Beginner DBA 399

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:399

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

value => 'TRUE');

END;

/

The next step is to force the execution of the task so you see the results immediately:

exec dbms_sqltune.execute_tuning_task(task_name=>'SYS_AUTO_SQL_TUNING_TASK');

Viewing Automatic SQL Tuning Results
The following procedure reports the most recent run:

VARIABLE p_report CLOB;

BEGIN

:p_report := DBMS_SQLTUNE.report_auto_tuning_task(

begin_exec => NULL,

end_exec => NULL,

type => DBMS_SQLTUNE.type_text, -- 'TEXT'

level => DBMS_SQLTUNE.level_typical, -- 'TYPICAL'

section => DBMS_SQLTUNE.section_all, -- 'ALL'

object_id => NULL,

result_limit => NULL);

END;

Print :p_report prints the report and recommendation:

Set long 1000000

PRINT :p_report

GENERAL INFORMATION SECTION

Tuning Task Name : SYS_AUTO_SQL_TUNING_TASK

Tuning Task Owner : SYS

Workload Type : Automatic High-Load SQL Workload

Execution Count : 14

Current Execution : EXEC_1259

Execution Type : TUNE SQL

Scope : COMPREHENSIVE

Global Time Limit(seconds) : 3600

Per-SQL Time Limit(seconds) : 1200

Completion Status : COMPLETED

Started at : 02/03/2011 17:14:17

Completed at : 02/03/2011 17:14:27

Number of Candidate SQLs : 3

Cumulative Elapsed Time of SQL (s) : 50

SUMMARY SECTION

Global SQL Tuning Result Statistics

Number of SQLs Analyzed : 3

Number of SQLs in the Report : 3

Number of SQLs with Findings : 3

Number of SQLs with Statistic Findings : 3

400 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:400

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

SQLs with Findings Ordered by Maximum (Profile/Index) Benefit, Object ID

object ID SQL ID statistics profile(benefit) index(benefit) restructure

---------- ------------- ---------- ---------------- -------------- -----------

42 4q8yn4bnqw19s 1

43 fvzwdtr0ywagd 1

44 5sp4ugqbs4ms6 1

Objects with Missing/Stale Statistics (ordered by schema, object, type)

Schema Name Object Name Type State Cascade

---------------------------- ---------------------------- ----- ------- -------

SYS OBJECT_TAB TABLE MISSING NO

--

DETAILS SECTION

Statements with Results Ordered by Maximum (Profile/Index) Benefit, Object ID

Object ID : 42

Schema Name : SYS

SQL ID : 4q8yn4bnqw19s

SQL Text : insert into object_tab select * from object_tab

FINDINGS SECTION (1 finding)

1- Statistics Finding

Table "SYS"."OBJECT_TAB" was not analyzed.

Recommendation

- Consider collecting optimizer statistics for this table.

execute dbms_stats.gather_table_stats(ownname => 'SYS', tabname =>

'OBJECT_TAB', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

Rationale

The optimizer requires up-to-date statistics for the table in order to

select a good execution plan.

EXPLAIN PLANS SECTION

1- Original

Plan hash value: 622691728

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | INSERT STATEMENT | | 4674K| 419M| 7687 (1)| 00:01:33 |

| 1 | LOAD TABLE CONVENTIONAL | OBJECT_TAB | | | | |

| 2 | TABLE ACCESS FULL | OBJECT_TAB | 4674K| 419M| 7687 (1)| 00:01:33 |

Object ID : 43

Schema Name: SYS

SQL ID : fvzwdtr0ywagd

Chapter 8: Query Tuning: Developer and Beginner DBA 401

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:401

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

SQL Text : select count(*) from object_tab where UPPER(owner)='SYS'

FINDINGS SECTION (1 finding)

1- Statistics Finding

Table "SYS"."OBJECT_TAB" was not analyzed.

Recommendation

- Consider collecting optimizer statistics for this table.

execute dbms_stats.gather_table_stats(ownname => 'SYS', tabname =>

'OBJECT_TAB', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

Rationale

The optimizer requires up-to-date statistics for the table in order to

select a good execution plan.

EXPLAIN PLANS SECTION

1- Original

Plan hash value: 2592930531

--

-

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 17 | 7703 (1)| 00:01:33 |

| 1 | SORT AGGREGATE | | 1 | 17 | | |

|* 2 | TABLE ACCESS FULL| OBJECT_TAB | 2000K| 32M| 7703 (1)| 00:01:33 |

Predicate Information (identified by operation id):

2 - filter(UPPER("OWNER")='SYS')

Object ID : 44

Schema Name: SYS

SQL ID : 5sp4ugqbs4ms6

SQL Text : select count(*) from object_tab where UPPER(owner)='SCOTT'

FINDINGS SECTION (1 finding)

1- Statistics Finding

Table "SYS"."OBJECT_TAB" was not analyzed.

Recommendation

- Consider collecting optimizer statistics for this table.

execute dbms_stats.gather_table_stats(ownname => 'SYS', tabname =>

'OBJECT_TAB', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE,

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

Rationale

402 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:402

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

The optimizer requires up-to-date statistics for the table in order to

select a good execution plan.

EXPLAIN PLANS SECTION

1- Original

Plan hash value: 2592930531

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 17 | 7703 (1)| 00:01:33 |

| 1 | SORT AGGREGATE | | 1 | 17 | | |

|* 2 | TABLE ACCESS FULL| OBJECT_TAB | 311 | 5287 | 7703 (1)| 00:01:33 |

Predicate Information (identified by operation id):

2 - filter(UPPER("OWNER")='SCOTT')

Check the recommendation section. Tuning Advisor has recommended that you collect
statistics. Just by running the following statement, you would improve the performance of the
problem SQL listed in the SQL Tuning Advisor report:

execute dbms_stats.gather_table_stats(ownname => 'SYS', tabname => -

'OBJECT_TAB', estimate_percent => DBMS_STATS.AUTO_SAMPLE_SIZE, -

method_opt => 'FOR ALL COLUMNS SIZE AUTO');

Using SQL Performance Analyzer (SPA)
The concept of SQL Tuning Sets and the SQL Tuning Advisor were introduced in 10g as described
in earlier sections of this chapter. Oracle 11g makes use of SQL Tuning Sets with the SQL
Performance Analyzer, often referred to as SPA. The SPA compares the performance of specific
SQL statements defined in a particular SQL Tuning Set, before and after a database change. The
database change could be a major upgrade from 10g to 11g, an initialization parameter change,
or simply an index or statistics collection change. Chapter 5 covers how to do this in Enterprise
Manager. Because this chapter focuses on SQL Tuning, let’s see what the SQL Performance
Analyzer can do with queries before and after creating an index. In Chapter 9, I cover more uses
for SPA, especially in database and application upgrades, as well as Real Application Testing and
Database Replay. SPA is a part of Real Application Testing and is not available in the database by
default. The use of SQL Performance Analyzer (SPA) and Database Replay requires the Oracle Real
Application Testing licensing option (from Oracle’s Real Application Manual).

Step 1: Set Up the Testing Environment
For this test, a table is created called OBJECT_TAB, and the table is populated to simulate a
decent workload:

create table object_tab as

select *

from dba_objects;

Chapter 8: Query Tuning: Developer and Beginner DBA 403

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:403

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

insert into object_tab

select *

from object_tab;

commit;

The OBJECT_TAB table does not have any indexes; statistics are collected (as displayed here):

exec dbms_stats.gather_table_stats(USER,'OBJECT_TAB',cascade=>TRUE);

Next, the shared pool is flushed to clear out SQL statements in memory to get a new workload:

alter system flush shared_pool;

Step 2: Execute the Queries
Execute the following testing queries:

select count(*)

from object_tab

where object_id=100;

select count(*)

from object_tab

where object_id<100;

select count(*)

from object_tab

where object_id=1000;

select count(*)

from object_tab

where object_id<=1000;

Later on you’ll create an index for the OBJECT_ID column and compare the performance of
the SQL statement before and after the index is created.

Step 3: Create SQL Tuning Set

exec DBMS_SQLTUNE.create_sqlset(sqlset_name=>'sql_replay_test');

Step 4: Load SQL Tuning Set
The following procedure loads the Tuning Set by obtaining SQL statements from the
CURSOR_CACHE that query the OBJECT_TAB table.

DECLARE

l_cursor DBMS_SQLTUNE.sqlset_cursor;

BEGIN

OPEN l_cursor FOR

SELECT VALUE(a)

FROM TABLE(DBMS_SQLTUNE.select_cursor_cache(

404 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:404

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

basic_filter => 'sql_text LIKE ''%object_tab%'' and parsing_schema_name =

''SYS''',

attribute_list => 'ALL')

) a;

DBMS_SQLTUNE.load_sqlset(sqlset_name => 'sql_replay_test',populate_cursor=>

l_cursor);

END;

/

Step 5: Query from the SQL Tuning Set

select sql_text

from dba_sqlset_statements

where sqlset_name = 'sql_replay_test';

SQL_TEXT

Select count(*) from object_tab where object_id=100;

Select count(*) from object_tab where object_id<100;

Select count(*) from object_tab where object_id=1000;

Select count(*) from object_tab where object_id<=1000;

Step 6: Print from the SQL Tuning Set

VARIABLE v_task VARCHAR2(64);

EXEC :v_task :=

DBMS_SQLPA.create_analysis_task(sqlset_name=>'sql_replay_test');

print :v_task

V_TASK

TASK_832

Don’t forget to note this TASK ID (record it somewhere for later use).

Step 7: Execute Before Analysis Task
Execute the contents of the Tuning Set before the database change to gather performance
information:

BEGIN

DBMS_SQLPA.execute_analysis_task(task_name => :v_task,execution_type => 'test

execute',

execution_name => 'before_change');

END;

/

Step 8: Make the Necessary Changes
Add an index that you already know you need to improve performance of the queries in the
Tuning Set (and regather statistics):

create index object_tab_indx_id on object_tab(object_id);

exec dbms_stats.gather_table_stats(USER,'OBJECT_TAB',cascade=>TRUE);

Chapter 8: Query Tuning: Developer and Beginner DBA 405

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:405

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Step 9: Execute after Create Index Analysis Task

VARIABLE v_task VARCHAR2(64);

BEGIN

DBMS_SQLPA.execute_analysis_task(task_name => 'TASK_832',execution_type =>

'test execute',

execution_name => 'after_change');

END;

/

Step 10: Execute Compare Analysis Task

VARIABLE v_task VARCHAR2(64);

--EXEC :v_task := DBMS_SQLPA.create_analysis_task(sqlset_name =>

'sql_replay_test');

BEGIN

DBMS_SQLPA.execute_analysis_task(task_name => 'TASK_832', execution_type =>

'compare performance',

execution_params => dbms_advisor.arglist(

'execution_name1',

'before_change',

'execution_name2',

'after_change'));

END;

/

Step 11: Print the Final Analysis

SET LONG 100000000

SET PAGESIZE 0

SET LINESIZE 200

SET LONGCHUNKSIZE 200

SET TRIMSPOOL ON

spool /tmp/report.txt

SELECT DBMS_SQLPA.report_analysis_task('TASK_832')

from dual;

spool off

Report Output

General Information

--

Task Information: Workload Information:

--- ---------------------------------------

Task Name : TASK_832 SQL Tuning Set Name :

sql_replay_test

Task Owner : SYS SQL Tuning Set Owner : SYS

Description : Total SQL Statement Count : 7

406 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:406

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

Execution Information:

Execution Name : EXEC_847

Started : 02/04/2010 15:57:00

Execution Type : COMPARE PERFORMANCE

Last Updated : 02/04/2010 15:57:00

Description :

Global Time Limit : UNLIMITED

Scope : COMPREHENSIVE

Per-SQL Time Limit : UNUSED

Status : COMPLETED

Number of Errors : 0

Number of Unsupported SQL : 1

Analysis Information:

--

Before Change Execution: After Change Execution:

--- ----------------------------------

Execution Name : before_change Execution Name : after_change

Execution Type : TEST EXECUTE Execution Type : TEST EXECUTE

Scope : COMPREHENSIVE Scope : COMPREHENSIVE

Status : COMPLETED Status : COMPLETED

Started : 02/04/2010 15:50:08 Started : 02/04/2010 15:56:13

Last Updated : 02/04/2010 15:51:41 Last Updated : 02/04/2010 15:56:15

Global Time Limit : UNLIMITED Global Time Limit : UNLIMITED

Per-SQL Time Limit : UNUSED Per-SQL Time Limit : UNUSED

Number of Errors : 0 Number of Errors : 0

Comparison Metric: ELAPSED_TIME

Workload Impact Threshold: 1%

SQL Impact Threshold: 1%

Report Summary

--

Projected Workload Change Impact:

Overall Impact : 99.59%

Improvement Impact : 99.59%

Regression Impact : 0%

SQL Statement Count

SQL Category SQL Count Plan Change Count

Overall 7 4

Improved 4 4

Unchanged 2 0

Unsupported 1 0

Top 6 SQL Sorted by Absolute Value of Change Impact on the Workload

--

| | | Impact on | Execution | Metric | Metric | Impact | Plan |

| object_id | sql_id | Workload | Frequency | Before | After | on SQL | Change|

Chapter 8: Query Tuning: Developer and Beginner DBA 407

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:407

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

| 19 | 2suq4bp0p1s9p | 27.56% | 1 | 11598790 | 34 | 100% | y |

| 21 | 7j70yfnjfxy9p | 25.02% | 1 | 10532117 | 2778 | 99.97% | y |

| 22 | c8g33h1hn04xh | 24.28% | 1 | 10219529 | 370 | 100% | y |

| 23 | g09jahhhn7ft3 | 22.72% | 1 | 9564149 | 1123 | 99.99% | y |

| 18 | 033g69gb60ajp | -.04% | 2 | 42989 | 50359 | -17.14% | n |

| 24 | gz549qa95mvm0 | 0% | 2 | 41798 | 42682 | -2.11% | n |

--

Note: time statistics are displayed in microseconds

Wow! Overall impact is a positive 99.59 percent! Having viewed the queries, this makes sense.
The query accessed a 1.1-million row table, yet only 16 rows satisfied the OBJECT_ID = 100
condition. By adding an index on the OBJECT_ID column, performance is drastically improved!

Tips Review
■ Query V$SQLAREA and V$SQL to find problem queries that need to be tuned.

■ When a small number of rows (“small” is version dependent) are to be returned based on
a condition in a query, you generally want to use an index on that condition (column),
given that the rows are not skewed within the individual blocks.

■ The first tip concerning slow queries is that you will have a lot of them if you are missing
indexes on columns that are generally restrictive. Building indexes on restrictive columns
is the first step toward better system performance.

■ Bad indexes (indexing the wrong columns) can cause as much trouble as forgetting to
use indexes on the correct columns. While Oracle’s cost-based optimizer generally
suppresses poor indexes, problems can still develop when a bad index is used at the
same time as a good index.

■ For crucial queries on your system, consider concatenated indexes on the columns
contained in both the SELECT and the WHERE clauses.

■ The INDEX_FFS processes only the index and will not take the result and access the table.
All columns that are used and retrieved by the query must be contained in the index. This
method is a much better way to guarantee the index will be used.

■ When a query is run multiple times in succession, it becomes faster since you have now
cached the data in memory. At times, people are tricked into believing that they have
actually made a query faster when, in actuality, they are accessing data stored in memory.

■ Caching an often-used but relatively small table into memory ensures that the data is not
pushed out of memory by other data. Also, be careful—cached tables can alter the
execution path normally chosen by the optimizer, leading to an unexpected execution
order for the query (it can affect the driving table in nested loop joins).

■ Oracle 11g provides a CACHE_RESULT feature, which you can use to cache the result
of a query, allowing subsequent queries to access the result set directly instead finding
the result through aggregating data stored in the database block buffers a subsequent
time.

408 Oracle Database 11g Release 2 Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:408

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

■ When multiple indexes on a single table can be used for a query, use the most restrictive
index. While Oracle’s cost-based optimizer generally forces use of the most restrictive
index, variations occur, depending on the Oracle version and the query structure.

■ Any modification to the column side of the query results in the suppression of the index
unless a function-based index is created. Function-based indexes can lead to dramatic
performance gains when used to create indexes on functions often used on selective
columns in the WHERE clause.

■ Oracle’s optimizer now performs OR-expansion, which improves the performance of
certain queries that ran poorly in prior versions.

■ Using the nested subquery with an EXISTS clause may make queries dramatically faster,
depending on the data being retrieved from each part of the query. Oracle11g often
makes this translation internally, saving you time and giving you performance gains!

References
Deb Dudek, DBA Tips, or a Job Is a Terrible Thing to Waste (TUSC).
Rich Niemiec, DBA Tuning Tips: Now YOU Are the Expert (TUSC).
Oracle® Database Performance Tuning Guide 11g Release 2 (11.2).
Query Optimization in Oracle 9i, An Oracle Whitepaper (Oracle).

Rama Balaji added several new sections and helped with the update for 11g. Thanks to
Connor McDonald for his feedback on V$SQLAREA. Rob Christensen contributed the major
portion of the previous update to this chapter.

Chapter 8: Query Tuning: Developer and Beginner DBA 409

ORACLE T&T / Oracle Database 11g Release 2 Performance Tuning Tips & Techniques / Niemiec / 178026-2 / Chapter 8
Blind Folio 8:409

ch08.ps
P:\010Comp\Oracle_Tip\026-2_Oracle_Tip\ch08.vp
08 February 2012 16:38:42

Color profile: Disabled
Composite Default screen

