In this chapter, we will introduce the new features in Oracle 10g that deal with database security.

Here is a list of security enhancement features:

Column-Level VPD - Virtual Private Database (VPD) is now finer grained. You are now able to enforce VPD rewrite when a query references a particular column.
VPD Static and Dynamic Policies - Virtual Private Database (VPD) now lets you distinguish between static policies, which are suitable for hosting environments that always need to enforce an unchanging policy, and dynamic policies, which are suitable for time-dependent enforcement, such as time of day, where rows returned must vary at a particular time.

Fine-Grained Auditing (FGA) on DML - Fine-Grained Auditing (FGA) extends the support to include UPDATE, INSERT, and DELETE statements.

Virtual Private Database

Virtual Private Database (VPD) was first introduced in Oracle8i. It set a new standard in database security, being built into the database server, instead of each application accessing the data. Security is no longer bypassed when a user accesses the database with an ad hoc query tool or a new application. Virtual Private Database is a key enabling technology for organizations building hosted, web-based applications that expose mission-critical resources to customers.

Virtual Private Database Overview

Virtual Private Database enables the database to perform query modification based on a security policy you have defined in a package. A security policy is a restriction associated with a table or view.

When a user directly or indirectly accesses a table or view associated with a VPD security policy, the server dynamically modifies the user’s SQL statement. The modification is based on a where condition (a predicate) returned by a function which implements the security policy. The database modifies the statement dynamically and is transparent to the user.

Data access via Virtual Private Database will perform the following five steps:

1. User sends SQL to the database server.

2. The associated table triggers a pre-defined security policy.

3. The security policy returns a predicate.

4. The SQL statement is modified according to the security policy.

5. Secured data returns to user.

[image: image1.wmf]USER

Security

Policy

Where

Table

Predicate

Package

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 15.1 Virtual Private Database Overview

In Oracle8i, the Virtual Private Database provided the following key features:

· Fine-grained Access Control

· Application Context

· Row Level Security

· VPD support for table and view

Oracle9i expanded the Virtual Private Database features as follows:

· Oracle Policy Manager

· Partitioned fine-grained access control

· Global application context

· VPD support for synonyms

Oracle 10g makes the following three major enhancements in Virtual Private Database:

· Column-Level Privacy - It increases performance by limiting the number of queries that the database rewrites. Rewrites only occur when the statement references relevant columns. This feature also leads to more privacy.

· Customization - With the introduction of four new types of policies, you can customize VPD to always enforce the same predicate with a static policy or you can have VPD predicates that change dynamically with a non-static policy.

· Shared Policies - You can apply a single VPD policy to multiple objects, and therefore reduce administration costs.

Column-Level Privacy

Virtual Private Database provides row-level security (RLS). Oracle 10g will only enforce row-level access control when a SQL statement accesses security-relevant columns. You can specify multiple columns in a policy. If relevant columns are specified for an object in a policy, then VPD rewrites all SQL statements referenced to the object.

The following table employees in the Sample HR schema will be used in our VPD examples:

SQL> desc hr.employees

 Name Null? Type

 --- -------- ------------

 EMPLOYEE_ID NOT NULL NUMBER(6)

 FIRST_NAME VARCHAR2(20)

 LAST_NAME NOT NULL VARCHAR2(25)

 EMAIL NOT NULL VARCHAR2(25)

 PHONE_NUMBER VARCHAR2(20)

 HIRE_DATE NOT NULL DATE

 JOB_ID NOT NULL VARCHAR2(10)

 SALARY NUMBER(8,2)

 COMMISSION_PCT NUMBER(2,2)

 MANAGER_ID NUMBER(6)

 DEPARTMENT_ID NUMBER(4)

Apply a Column-Level VPD Policy

The syntax to apply a policy to a table, view, or synonym is:

dbms_rls.add_policy(

object_schema IN VARCHAR2 := NULL,
object_name IN VARCHAR2,

policy_name IN VARCHAR2,

function_schema IN VARCHAR2 := NULL,

policy_function IN VARCHAR2,

statement_types IN VARCHAR2 := NULL,

update_check IN BOOLEAN := FALSE,

enable IN BOOLEAN := TRUE,

static_policy IN BOOLEAN := FALSE,

policy_type IN BINARY_INTEGER := NULL,

long_predicate BOOLEAN := FALSE,

sec_relevant_cols IN VARCHAR2 := NULL);

Steps to Apply a VPD Policy

6. Grant the appropriate user with privilege to apply policy.

SQL> grant execute on dbms_rls to vpd_admin;

7. Create a function that implements the VPD policy

CREATE OR REPLACE FUNCTION HR.dept_policy_func

Return … is
begin

...
end;
/

8. Apply the policy to the table by using the dbms_rls package.

BEGIN

dbms_rls.add_policy (

object_schema => ‘hr’,

object_name => ‘employees’,

policy_name => ‘hr_policy’,

function_schema => ‘hr’,

function_function => ‘dept_policy_func’,

statement_type XE "statement_type" => ‘select, update’,

sec_relevant_cols => ‘salary’);

END;

/

In the example above, assume the policy allows users to view their own salary information and department managers to view all salaries in their own department but not for employees in different departments.

The following SQL statement will not enforce row-level access control because none of the relevant columns is accessed. Therefore, all rows will be returned from the employees table.

SQL> select first_name, last_name, phone_number

 2 from employees;

The following SQL statement will enforce row-level access control because a security relevant column salary is accessed.

SQL> select employee_id, last_name, salary, department_id

 2 from employees;

If user Tobias issues the above SQL statement, the query will rewrite as follows, and he will only see one row return with his own information:

SQL> select employee_id, last_name, salary, department_id

 2 from employees

 3 where employee_id = 117;

EMPLOYEE_ID LAST_NAME SALARY DEPARTMENT_ID

----------- ------------------------- ---------- -------------

 117 Tobias 2800 30

If manager Raphaely issues the same SQL statement, the query will rewrite as follows, and he will see all employees information returned from his own department 30:

SQL> select employee_id, last_name, salary, department_id

 2 from employees

 3 where department_id = 30;

EMPLOYEE_ID LAST_NAME SALARY DEPARTMENT_ID

----------- ------------------------- ---------- -------------

 119 Colmenares 2500 30

 118 Himuro 2600 30

 117 Tobias 2800 30

 116 Baida 2900 30

 115 Khoo 3100 30

 114 Raphaely 11000 30

The result of applying the VPD policy is row-level access control and row level security (RLS). Users can only access the specific data determined by the policy function. The ability to specify relevant columns in VPD policies provides higher data security. No matter how users access data, they can no longer bypass security checks, since security policy is enforced by the database and not by applications. Furthermore, security can be built once in the database server, rather than in each application that accesses data. The Virtual Private Database results in lower total cost of ownership (TCO) in deploying applications.

New Types of VPD Policies

In Oracle9i, there is only one dynamic type of VPD policy.

Oracle 10g introduces the following new types of VPD policies:

	
	STATIC TYPES
	NON-STATIC TYPES

	Single Object
	Static
	Dynamic

Context_Sensitive

	Multiple Objects
	Shared_Static
	Shared_Context_Sensitive

Table 15.1 VPD Policy Types
Static Policy Type

When you use static policies, VPD always enforces the same predicate for access control, regardless of the runtime environment. This means that no matter which user access the objects, everyone gets the same predicate. Static policy functions are executed once and then cached in SGA memory. Statements accessing the same object do not re-execute the policy function. This makes the static policies very fast for each query execution.

There are two options in the Static type policy:

· static - If you set the policy_type parameter in the dbms_rls.add_policy procedure to static, the policy is applied to a single object.

· shared_static - However, if you set the policy_type parameter to shared_static, the policy is applied to multiple objects.

Non-Static Policy Type

When you use non-static (context sensitive) policies, the VPD security policy function is re-executed whenever the session context changes.

There are three options in the Non-Static policy types:

· context_sensitive - If the policy_type XE "policy_type" parameter is set to context_sensitive XE "context_sensitive" , the VPD re-evaluates the policy function at statement execution time, if it detects context changes since the last use of the cursor. However, when connect pooling is used where multiple clients share a database session, the middle tier must reset context during client switches.

· shared_context_sensitive - The shared_context_sensitive XE "shared_context_sensitive" option is the same as context_sensitive, except the security policy is applied to multiple objects.

· dynamic - The dynamic XE "dynamic" option executes the policy function every time a statement accesses the security-relevant columns of the object. The VPD assumes any system or session environment change at any time may affect the predicate. Therefore, it always re-executes the policy function on each statement parsing or execution. This is the default option in Oracle 10g and the only policy type in the Oracle9i database.

· The SYS user is free of any security policy.

Shared Policies Benefits

In Oracle 10g, you can apply both the static and non-static VPD policies to multiple objects. By applying a single policy to multiple objects, you can ease the administration overhead by reducing redundant policies.

The above is an excerpt from the bestselling Oracle10g book Oracle Database 10g New Features by Mike Ault, Madhu Tumma and Daniel Liu, published by Rampant TechPress.

Mike Ault, one of the world's top Oracle experts, has finally consented to release his complete collection of more than 450 Oracle scripts, covering every possible area of Oracle administration and management.
This is the definitive collection of Oracle monitoring and tuning scripts, and it would take thousands of hours to re-create this vast arsenal of scripts from scratch.
Mike has priced his collection of 465 scripts at $39.95, less than a dime per script. You can download them immediately at this link:
http://www.rampant-books.com/download_adv_mon_tuning.htm
_1125335555.vsd

