SQL Regular Expressions
Oracle Database 10g supports POSIX-compliant regular expressions to enhance search and replace capability in programming environments such as Unix and Java. In SQL, this new functionality is implemented through new functions that are regular expression extensions to existing functions, such as LIKE, REPLACE, and INSTR. This implementation supports multilingual queries and is locale sensitive.

Let's look at the additions to INSTR, LIKE, and REPLACE so you can see what we mean.

Changes to INSTR
The function INSTR has been extended with the new function regexp_instr.

regexp_instr XE "regexp_instr" extends the functionality of the INSTR function by letting you search a string for a POSIX regular expression pattern. The function evaluates strings using characters, as defined by the input character set. It returns an integer indicating the beginning or ending position of the matched substring, depending on the value of the return_option argument. If no match is found, the function returns 0.

An example query using regexp_instr would look like:

SQL> SELECT

 2 REGEXP_INSTR('5035 Forest Run Trace, Alpharetta, GA',

 3 '[^]+', 1, 6] "Test"

 4 FROM dual;

 TEST

 36

In this example, we are telling Oracle to examine the string, looking for occurrences of one or more non-blank characters and to return the sixth occurrence of one or more non-blank character.

Changes to LIKE
In versions of Oracle prior to Oracle Database 10g, LIKE was the only expression. Now, there is regexp_like.

regexp_like resembles the LIKE condition, except regexp_like performs regular POSIX and Unicode expression matching, instead of the simple pattern matching performed by LIKE. This condition evaluates strings using characters, as defined by the input character set.

An example query using regexp_like would look like:

SQL> SELECT ename FROM emp

 2 WHERE

 3 REGEXP_LIKE (ename, '^J.(N|M),S$');

ENAME

JONES

JAMES

In this example, we tell Oracle to retrieve any values that start with J, followed by any letter, then N or M, then any letter, then S

Changes to REPLACE
In Oracle Database 10g, the REPLACE function has been extended with the regexp_replace function.

regexp_replace extends the functionality of the REPLACE function by letting you search a string for a regular expression pattern. By default, the function returns the supplied source_string variable with every occurrence of the regular expression pattern replaced by the supplied replace_string variable. The string returned is either VARCHAR2 or CLOB, and in the same character set as the source_string supplied.

Let's look at an example of regexp_replace (note: in this example we added a column to the emp table to allow for emp_phone):

SQL> SELECT

 2 REGEXP_REPLACE(emp_phone,

 3 '([[:digit:]]{3})\.([[:digit:]]{3})\.([[:digit:]]{4})',

 4 '(\1) \2-\3') "Test"

 5 FROM emp;

Test

(404) 444-4321

(404) 555-5432

(404) 666-6543

In this eample we search for a pattern of numbers that looks like a European phone number listing such as 111.222.3333 and convert it to a normal USA format listing of (111) 222-3333.

Changes to SUBSTR
The SUBSTR function has been extended by the regexp_substr function provided in Oracle Database 10g.

The regexp_substr function extends the functionality of the SUBSTR function by letting you search a string for a POSIX or Unicode compliant regular expression pattern. It is also similar to regexp_instr, but instead of returning the position of the substring, it returns the substring itself.

The regexp_substr function is useful if you need the contents of a match string, but not its position in the source string. The function returns the string as VARCHAR2 or CLOB data in the same character set as the supplied source_string.

Here is an example use of the regexp_substr:

SQL> SELECT

 2 REGEXP_SUPSTR('5035 Forest Run Trace, Alpharetta, GA',

 3 ',[^,]+,') "Test"

 4 FROM dual;

Test

, Alpharetta,

In this example we search for a comma, followed by one or more characters immediately followed by a comma.

Let's look at the multi-lingual regular expression syntax used in these new functions.

Multilingual Regular Expression Syntax
The next table lists the full set of operators defined in the POSIX standard Extended Regular Expression (ERE) syntax. Oracle follows the exact syntax and matching semantics for these operators, as defined in the POSIX standard for matching ASCII (English language) data. The notes following the table provide more complete descriptions of the operators and their functions, as well as Oracle multilingual enhancements of the operators. The table following the notes summarizes Oracle support for and Multilingual enhancement of the POSIX operators.

	OPERATOR
	DESCRIPTION

	\ (1)
	The backslash character can have four different meanings, depending on the context. It can: Stand for itself, Quote the next character, Introduce an operator, Do nothing

	*
	Matches zero or more occurrences

	+
	Matches one or more occurrences

	?
	Matches zero or one occurrence

	|
	Alternation operator for specifying alternative matches

	^ (2)
	Matches the beginning-of-line character

	$ (2)
	Matches the end-of-line character

	. (3)
	Matches any character in the supported character set except NULL

	[] (4)
	Bracket expression for specifying a matching list that should match any one of the expressions represented in the list. A non-matching list expression begins with a circumflex (^) and specifies a list that matches any character except for the expressions represented in the list.

	()
	Grouping expression, treated as a single subexpression

	{m}
	Matches exactly m times

	{m,}
	Matches at least m times

	{m,n}
	Matches at least m times but no more than n times

Table 6.5 Regular Expression Operators and Metasymbols

Notes on the POSIX operators and Oracle enhancements:

· ’\’: The backslash operator is used to make the character following it normal, if it is an operator. For example, ’*’ is interpreted as the asterisk string literal.

· ’^’ and ’$’: The characters ’^’ and ’$’ are the POSIX anchoring operators. By default, they match only the beginning or end of an entire string. Oracle lets you specify ’^’ and ’$’ to match the start or end of any line anywhere within the source string. This in turn lets you treat the source string as multiple lines.

· ’.’: In the POSIX standard, the "match any character" operator (’.’) is defined to match any English character, except NULL and the newline character. In the Oracle implementation, the ’.’ operator can match any character in the database character set, including the newline character.

· ’[]’: In the POSIX standard, a range in a regular expression includes all collation elements between the start and end points of the range in the linguistic definition of the current locale. Therefore, ranges in regular expressions are linguistic ranges, rather than byte values ranges, and the semantics of the range expression are independent of character set. Oracle implements this independence by interpreting range expressions according to the linguistic definition determined by the nls_sort initialization parameter.

· ’\n’: The back-reference expression ’\n’ matches the same string of characters as was matched by the nth subexpression. The character n must be a digit from 1 to 9, designating the nth subexpression, numbered from left to right. The expression is invalid if the source string contains fewer than n subexpressions preceding the \n.

For example, the regular expression ^(.*)\1$ matches a line consisting of two adjacent appearances of the same string. Oracle supports the backreference \n e The backreference expression (n is a digit between 1 and 9) matches the nth subexpression enclosed between ’(’ and ’)’ preceding the \n.

· [..] Specifies one collation element, and can be a multi-character element (for example, [.ch.] in Spanish).

· [: :] Specifies character classes (for example, [:alpha:]). It matches any character within the character class.

· [==] Specifies equivalence classes. For example, [=o=] matches all characters having base letter ’o’ expression in the regular expression pattern and the replacement string of the REGEXP_REPLACE function.

· ’[..]’: A collating element is a unit of collation and is equal to one character in most cases, but may comprise two or more characters in some languages.

In the past, regular expression syntax did not support ranges containing multi-character collation elements, such as the range ’a’ through ’ch’. The POSIX standard introduces the collation element delimiter ’[..]’, which lets you delimit multi-character collection elements, such as : ’[a-[.ch.]]’. The collation elements supported by Oracle are determined by the setting of the nls_sort initialization parameter. The collation element is valid only inside the bracketed expression.

· ’[::]’: In English regular expressions, range expressions often indicate a character class. For example, ’[a-z]’ indicates any lowercase character. This convention is ambiguous in many multilingual environments where the first and last character of a given character class might not be the same in all languages. The POSIX standard introduces a portable character class syntax, ’[::]’.

This character class syntax lets you make better use of NLS character definitions to write flexible regular expressions. These character classes are valid only inside the bracketed expression.

· ’[==]’: Oracle supports the equivalence classes through the POSIX ’[==]’ syntax.

A base letter and all of its accented versions constitute an equivalence class. For example, the equivalence class ’[=a=]’ matches ä and â. The equivalence classes are valid only inside the bracketed expression.

	CHARACTER
	CLASS SYNTAX MEANING

	[:alnum:]
	All alphanumeric characters

	[:alpha:]
	All alphabetic characters

	[:cntrl:]
	All control characters (nonprinting)

	[:digit:]
	All numeric digits

	[:lower:]
	All lowercase alphabetic characters

	[:print:]
	All printable characters

	[:punct:]
	All punctuation characters

	[:space:]
	All space characters (nonprinting)

	[:upper:]
	All uppercase alphabetic characters

Restriction on equivalence classes: Composed and decomposed versions of the same equivalence class do not match. For example, "ä" does not match "a" followed by umlaut.

Regular Expression Operator Multilingual Enhancements

When applied to multilingual data, Oracle’s implementation of the POSIX operators extend the matching capabilities specified in the POSIX standard.

The table below shows the relationship of the Oracle implementation of the operators in the context of the POSIX standard.

The first column in the table lists the supported operators.

The second and third columns in the table indicate whether the POSIX standard (Basic Regular Expression--BRE and Extended Regular Expression--ERE, respectively) defines the operator.

The fourth column in the table indicates whether Oracle’s implementation extends the operator’s semantics for handling multilingual data.

If you have a direct input capability, Oracle allows you to enter multi-byte characters directly. If you don't have direct input capability you can use functions to compose the multi-byte characters. However, you can't use the Unicode hexadecimal encoding value of the form ’\xxxx’. Oracle evaluates the characters based on the byte values used to encode the character, not the graphical representation of the character.

	OPERATOR
	POSIX BRE SYNTAX
	POSIX ERE SYNTAX
	MULTI-LINGUAL ENHANCEMENT

	\
	Yes
	Yes
	—

	*
	Yes
	Yes
	—

	+
	—
	Yes
	—

	?
	—
	Yes
	—

	|
	—
	Yes
	—

	^
	Yes
	Yes
	Yes

	$
	Yes
	Yes
	Yes

	.
	Yes
	Yes
	Yes

	[]
	Yes
	Yes
	Yes

	()
	Yes
	Yes
	—

	{m}
	Yes
	Yes
	—

	{m,}
	Yes
	Yes
	—

	{m,n}
	Yes
	Yes
	—

	\n
	Yes
	Yes
	Yes

	[..]
	Yes
	Yes
	Yes

	[::]
	Yes
	Yes
	Yes

	[==]
	Yes
	Yes
	Yes

Table 6.6 POSIX and Multilingual Operator Relationships
Row Timestamp
Oracle Database 10g provides a new pseudo-column, consisting of the committed timestamp or SCN that provides applications and users the ability to efficiently implement optimistic locking. In previous releases, when posting updates to the database, applications had to read in all column values or user-specified indicator columns, compare them with those previously fetched, and update those with identical values. With this feature, only the row SCN needs to be retrieved and compared to verify that the row has not changed from the time of the select to the update.

The pseudo-column for the committed SCN is called ora_rowscn XE "ora_rowscn" and is one of the version query pseudo-columns.

The ora_rowscn pseudo-column returns, for each version of each row, the system change number (SCN) of the row. You cannot use this pseudo-column in a query to a view.

However, you can use it to refer to the underlying table when creating a view. You can also use this pseudo-column in the WHERE clause of an UPDATE or DELETE statement.

Even though this pseudo-column is grouped with the restricted version query pseudo-columns, this pseudo-column can be used like any other pseudo-column. For example:

SQL> SELECT ora_rowscn FROM used_boats:

ORA_ROWSCN

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

13 rows selected.

The above query shows us that all of the records in used_boats were committed in the same transaction. Let's update some of the rows and see what happens.

SQL> UPDATE used_boats SET price=price*1.1 WHERE seller_id=1;

3 rows updated.

SQL> commit;

Commit complete

SQL> SELECT ora_rowscn FROM used_boats:
ORA_ROWSCN

 816673
 816673

 816673

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

 791744

13 rows selected.

Another convenient function allows you to retrieve the actual time that the row was last altered through a conversion function called scn_to_timestamp XE "scn_to_timestamp" . Let's look at an example usage of this function.

SQL> select scn_to_timestamp(ora_rowscn) from used_boats;

SCN_TO_TIMESTAMP(ORA_ROWSCN)

30-AUG-03 11.06.08.000000000 PM

30-AUG-03 11.06.08.000000000 PM

30-AUG-03 11.06.08.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

30-AUG-03 04.33.19.000000000 PM

13 rows selected.

The ora_rowscn XE "ora_rowscn" has the following restrictions: This pseudo-column is not supported for external tables or when directly querying views.

The data from the SCN and timestamp pseudo-columns could prove invaluable in a flashback situation. For more coverage of flashback see chapter 12.

The above is an excerpt from the bestselling Oracle10g book Oracle Database 10g New Features by Mike Ault, Madhu Tumma and Daniel Liu, published by Rampant TechPress.

Mike Ault, one of the world's top Oracle experts, has finally consented to release his complete collection of more than 450 Oracle scripts, covering every possible area of Oracle administration and management.
This is the definitive collection of Oracle monitoring and tuning scripts, and it would take thousands of hours to re-create this vast arsenal of scripts from scratch.
Mike has priced his collection of 465 scripts at $39.95, less than a dime per script. You can download them immediately at this link:
http://www.rampant-books.com/download_adv_mon_tuning.htm
