Enhancement Areas

In this chapter, we will highlight the new features and enhancements related to Oracle Streams. Streams-based data sharing methodology is gaining ground steadily as the Oracle user community begins to look seriously at this new Oracle technology.

Introduced in the Oracle 9.2 database release, Oracle Streams has combined the advance queuing technique, replication methodology, data warehousing, and the event management system in one, unified technology.

Oracle has added many new useful features to the streams method involving replication, as well as the messaging methodology. It also improved the configuration and management aspects. The main areas of enhancements are:

Configuration Changes – Many configuration issues are simplified. They include simplified methods to set up the streams administrator and to set up the default tablespace of LogMiner to the sysaux tablespace.

Down Stream Capture – Now it becomes possible to set up the capture process on a database other than the source database.

Asynchronous Change Data Capture – A-CDC is very interesting for delta-extracts of information to a staging area, where a windowing concept helps subscribers get the necessary information.

Rules Set Changes – The Streams clients, which include capture, apply, and propagation, can utilize both the positive rule set and a negative rule set. With the newly introduced negative rule set, specific changes can be discarded. You can also have subset rules for the capture, propagation and apply process.

Streams Pool – A new pool of memory within the SGA, called Streams Pool, is dedicated to the use of streams buffers.

Simplified rule-based transformations – Transformation of data en-route to destination increases control. The method is simplified.

Pre-Commit Handlers - This is a user-defined procedure that is called just before committing an applied transaction.

Support for RAC – Now it is possible to do ‘hot mining’ of redo logs for RAC databases.

Additional Instantiation methods – RMAN and Transportable Tablespace can be used to instantiate the database or schema.

Extra attributes to the LCR – these features help to get extra information for auditing or record keeping operations.

Migrate from Advanced Replication to Streams – a script can be generated from the existing replication groups.

Messaging Mechanism - Improvements include Simplified Enqueue and Dequeue of messages, Message Notification, and Streams Message Client.

New Procedures and Dynamic Performance Views – Many new procedures, functions and views are introduced to aid management.

There are many more minor changes and improvements, which we will cover in the appropriate sections.

Streams Overview

Oracle Streams is an enabling technology for data sharing. Data sharing among the different databases and among different application environments is a very common practice. A variety of measures, such as data replication, data loading, data movement to heterogeneous database environments and message routing, involve some sort of data sharing. Even building the summarized data, such as data warehousing, is another form of data sharing.

Oracle Streams is a method to control and conduct the data flow. Typically, the changes in a database are captured by the Capture Process, and are then routed or propagated to a destination database. At the destination database, the Apply Process applies the changes. The method of streams can also create or capture events and then stage and send the events to different destinations. Figure 14.1 shows a typical data flow.

[image: image1.emf]STAGE CONSUME CAPTURE

Streams Information Flow

Figure 14.1 Data Flow
Thus, the Streams Methodology allows users to enqueue messages, propagate messages to subscribing queues, and dequeue messages. When the Streams method is utilized for data replication, it captures the DML and DDL changes made to the database objects and then replicates those changes to one or more destination databases, the so called consumers or subscribers.

When applied to the event management and notification mechanism, the Streams Methodology provides a powerful communication infrastructure. Applications can enqueue an event explicitly or a database event can be captured implicitly. Such events, being dequeued at a destination environment, may very well serve as a notification mechanism. For instance, events pushed to a queue may be dequeued by a messaging application and then used to generate e-mail notification or a wireless message, based on the type of event content.

Maintaining a data warehouse involves periodic data refreshing and summarizing or analyzing loads of data. Operational data is fed into a data warehouse by a typical ETL (Extract, Transform, and Load) mechanism.

Streams-based feed mechanisms can capture the necessary data changes from the operational database and send it to the destination data warehouse. The use of redo information by the Streams capture process avoids unnecessary overhead on the production database. As the apply process allows transformation or selection of data at the consumer end, data loading gets additional flexibility to reformat and update the data warehouses with the received information.

Another allied utility is data protection. Streams-based data movement can easily feed a remote database with change information from the production database in order to audit all sorts of changes.

The facility of Streams was introduced in Oracle Database 9i release 9.2, and now in Oracle Database 10g, it has been enhanced quite a lot. Next, we will see the improvements and new features in detail. We will discuss this in six sections:

· Configuration and management enhancement

· Down Streams Capture

· Rules Interface enhancements

· Streams-based replication improvements

· Migration to Streams from Advanced Replication

· Messaging Improvements

Configuration and Management

Oracle Database 10g brought in many configuration and manageability enhancements. Many of the minor issues have been rectified and many facilities to make administration easier have been achieved.

Streams Administrator

In prior releases of the database, we used to create a user to administer and grant a variety of privileges. Missing any of the essential privileges used to cause unnecessary delays and warranted extra database administration effort.

Now, there is a single package that can achieve all of the previous objectives. The dbms_streams_auth XE "dbms_streams_auth" package can be used to grant and revoke the needed Streams privileges. The grant_admin_privilege XE "grant_admin_privilege" procedure enables a user to perform all the setup operation such as capture, apply, propagation, queue, rules, etc. for the streams environment. And it also enables the user to monitor the system performance.

When you execute the grant_admin_privilege procedure in the dbms_streams_auth package, based on the parameter settings for this procedure, it either grants the privileges needed to be a streams administrator directly, or it generates a script that you can edit and then run to grant these privileges.

For example, to use the grant_admin_privilege procedure to grant privileges directly:

BEGIN

DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(

grantee => 'strmadmin',

grant_privileges => true);

END;

In another example, use the grant_admin_privilege procedure to generate a script:

1. First, with the help of the SQL command CREATE DIRECTORY, create a directory object where you want to generate the script. To create a directory object called admin_dir for the /app/oracle/scripts directory, run the following statement:

CREATE DIRECTORY admin_dir AS '/app/oracle/scripts';

2. Execute the grant_admin_privilege procedure to generate a script named give_strm_priv.sql and place this script in the /app/oracle/scripts directory on your host system:

BEGIN

DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(

grantee => 'strmadmin',

grant_privileges => false,

file_name => 'give_strm_priv.sql',

directory_name => 'admin_dir');

END;

Then, execute the give_strm_priv.sql to assign all the required privileges to manage and administer.

As you notice from the above example, when the grant_privileges XE "grant_privileges" parameter is set for TRUE, the user is granted all the privileges automatically.

There is a new view, dba_streams_administrator, that shows all the streams in the database.

SQL>SELECT * FROM DBA_STREAMS_ADMINISTRATOR;

USERNAME LOCAL_PRIVILEGES ACCESS_FROM_REMOTE

-------------- ---------------- ------------------

STRMADMIN YES NO

SYSAUX tablespace usage

Now, with Oracle Database 10g, a new tablespace called sysaux is configured. The default tablespace for LogMiner has been changed from the system tablespace to the sysaux tablespace. Therefore, when configuring a new database to run a capture process, you no longer need to relocate the LogMiner tables to a non-system tablespace.

Streams-related dictionary tables such as streams$_apply_progress XE "streams$_apply_progress" have been relocated to the sysaux tablespace.

As an example, to query the objects present in the sysaux tablespace, use the statement:

SQL> select OWNER, SEGMENT_NAME, SEGMENT_TYPE

 2 from dba_segments where TABLESPACE_NAME = 'SYSAUX'

 3 and SEGMENT_NAME like 'STREAM%' ;

OWNER SEGMENT_NAME SEGMENT_TYPE

--------- ------------------------ --------------------

SYS STREAMS$_APPLY_PROGRESS TABLE

SYS STREAMS$_APPLY_ERROR_UNQ INDEX

Streams Pool in the SGA

Unlike a persistent AQ queue, which stages all events in a queue table on disk, a Streams queue has a queue buffer to stage captured events in shared memory. A queue buffer is memory associated with a sys.anydata queue that contains only the captured events. The queue buffering mechanism enables the database to optimize captured events by buffering them in the System Global Area (SGA), instead of always storing them in a queue table on disk.

In prior releases of the database, by default, the memory used by Streams was allocated from the shared pool, but was limited to 10% of the shared pool, which was controlled by the parameter shared_pool_size XE "shared_pool_size" .

The buffer often overflowed on account of speedier capture activity. A queue buffer would normally overflow if there were not enough shared_pool_size available to hold captured events. Captured events that overflow a queue buffer are stored in the appropriate aq$_<queue_table_name>_p table on disk.

Even when you increased the number of capture processes or introduced parallelism for capture or apply processes, there was a need for additional buffers. Since the size of the SGA that can be used by the streams was limited to 10%, in order to enhance the buffer capacity needed for streams, you had to increase the total shared pool size quite a lot.

Oracle provides a great relief by allowing you to configure a separate streams pool, which is controlled by the streams_pool_size XE "streams_pool_size" initialization parameter

If the size of the Streams pool is greater than zero, then any SGA memory used by Streams is allocated from the Streams pool. If the size of the Stream pool is zero at the time of instance startup, then the memory used by Streams is allocated from the Shared pool.

[image: image2.emf]Shared Pool

Java Pool

Large Pool

Oracle Instance Memory Structures

Block Buffers

(DB Cache)

DICTIONARY

CACHE

LIBRARY

CACHE

Streams Pool

REDO Log

Buffer

LogMiner

Figure 14.2 Oracle Instance Memory Structures

The streams_pool_size parameter is dynamic. However, if this parameter is set to zero when an instance starts, then increasing it beyond zero has no effect on the current instance because the instance is already using the shared pool for streams allocations. In other words, if the streams_pool_size is set greater than zero at the start of the instance, then the dynamic adjustment becomes meaningful.
· If the streams_pool_size parameter is set to a value greater than zero when an instance starts and is then reduced to zero while the instance is running, Streams will not revert to allocating memory from the Shared pool. Instead, the Streams processes and jobs will cease to run.

The memory required by persistent LogMiner sessions, such as those used by Data Guard SQL Apply, is also now automatically allocated from the Streams pool, if the Streams pool is configured.

Oracle provides a new dynamic performance view, called v$streams_pool_advice XE "v$streams_pool_advice" , that gives information on sizing the Streams pool. The view is shown below:

SQL> desc V$STREAMS_POOL_ADVICE

 Name Null? Type

 ------------------------ ----- ---------

 SIZE_FOR_ESTIMATE NUMBER

 SIZE_FACTOR NUMBER

 ESTD_DEQUEUE_OPS NUMBER

 ESTD_DEQUEUE_OPS_FACTOR NUMBER

Buffered Queues in the SGA

A queue buffer is located in the System Global Area (SGA) memory, and associated with a sys.anydata queue that contains only captured LCR events. A queue buffer helps to optimize captured LCR events by buffering the events in the SGA, instead of always storing them in a queue table.

This buffering of captured LCR events happens in any database where LCR events are pushed to a sys.anydata queue, such as a source database, downstream database, or a destination database.

· The User-enqueued LCR events and user-enqueued non-LCR events are always staged in queue tables, not in queue buffers.

The newly introduced view v$buffered_queues XE "v$buffered_queues" , gives information about the events in the queue buffers, such as:

· the number of messages currently in the queue (num_msgs)

· the number of messages currently in the queue which have spilled to disk (spill_msgs) for each queue and schema

· the cumulative number of messages that have been enqueued (cnum_msgs)

· the cumulative number of messages that have spilled to disk (cspill_msgs)

The queue_id is unique for each queue buffer, and can be used to obtain additional statistics about the queue buffer.

Use the following statement to view details of the buffers.

SELECT queue_id, queue_schema, queue_name,

num_msgs, spill_msgs, cnum_msgs, cspill_msgs

FROM V$BUFFERED_QUEUES;

There are two more useful views for displaying publisher and subscriber information. They are

· v$buffered_subscribers XE "v$buffered_subscribers" which gives information of subscribers for a buffer view

· v$buffered_publishers XE "v$buffered_publishers" which gives information about the capture processes which place events in a particular queue buffer.

For example, if a subscriber has a high count for total_spilled_msg, then that subscriber is not dequeuing messages fast enough from the queue buffer. Spilling messages to disk has a negative impact on the performance of your Streams environment.

To view the subscriber’s information, use the statement:

SELECT subscriber_id,subscriber_name,protocol,

last_browsed_num,last_dequeued_num,num_msgs,

total_dequeued_msg, total_spilled_msg

FROM V$BUFFERED_SUBSCRIBERS

WHERE queue_id in (SELECT queue_id

FROM V$BUFFERED_QUEUES

WHERE queue_name = 'SALES_Q');

To view the publisher information, use the statement:

SELECT queue_id, queue_schema, queue_name,

sender_name, sender_address, cnum_msgs,

last_enqueued_msg

FROM V$BUFFERED_PUBLISHERS;

Purge Streams Queues

In version 9.2 of the Oracle database, there was no easy method to purge the queue tables or queues, other than writing an application that performed multiple dequeue operations until all the messages were drained. And we often used to notice that when the queue tables grew to a large size, queue performance (enqueue, dequeue, propagation, and so on) was affected.

In Oracle 10g, there is a new API for executing the purge, offering a more convenient, flexible, and efficient manner to clean up queue tables. Using the purge API provided, you can perform various kinds of purge operations on both single-consumer and multi-consumer queue tables. dbms_aqadm.purge_queue_table can be used for purging persistent queues.

Here is an example showing the purge operation.

BEGIN

DBMS_AQADM.PURGE_QUEUE_TABLE (

queue_table => 'STRMADMIN.STREAMS_QUEUE',

purge_condition => 'consumer_name=''SALES_APPLY'' ',

block => FALSE);

END;

As we notice in the above example, while purging events from a queue, you can specify,

· A purge condition

· Whether an exclusive lock is obtained during the purge operation with the block parameter.

New and Modified Views

Oracle 10g introduces many new views which help to query and develop monitoring strategy.

A few new columns have been added to the views dba_capture XE "dba_capture" : They are shown below:

use_database_link

first_scn

source_database

source_dbid

source_resetlogs_scn

source_resetlogs_time

logminer_id

negative_rule_set_name

negative_rule_set_owner

safe_purge_scn

logfile_assignment

status_change_time

error_number

error_message

version

There are new columns in the dba_apply XE "dba_apply" view. They are shown below:

status_change_time

error_number

error_message

precommit_handler

negative_rule_set_owner

negative_rule_set_name

The v$streams_apply_reader XE "v$streams_apply_reader" view has been modified to contain new columns. These columns give additional details on the events of the apply reader process. They are as follows:

· last_browse_num

· oldest_scn_num

· last_browse_seq

· last_deq_seq
In addition, there are new statistics added for the v$streams_* views.

Also, a new column, AVERAGE LATENCY has been added to the v$streams_apply_server XE "v$streams_apply_server" view.
There are two new views which contain information relevant to schema-level or database-level instantiations. They are:

DBA_APPLY_INSTANTIATED_SCHEMAS

DBA_APPLY_INSTANTIATED_GLOBAL
There is a new view dba_streams_transform_function XE "dba_streams_transform_function" that provides an easy method of displaying all the rule-based transformations defined in a database, and the rules they are associated with.

Downstream Capture

With Oracle database 10g, it is possible to configure the capture process on a database other than the source database. The database where the capture process is configured is called the ‘downstream database’. In such cases, the capture process is referred to as a Downstream Capture. This new Oracle feature is aimed at alleviating the possible performance issues that may arise on the source database if the source system should also generate the delta changes.

Overview

Typically, the Streams capture process captures the changes from the redo log files and places them in a staging queue. In case of the downstream capture scenario, the capture process and the associated objects are placed in a downstream database. Thus, this method effectively separates the location of database change activities and the capture process activities on two different databases.

The redo log files from the source database are copied to the downstream database, and the capture process captures changes in these redo log files. Thus, the overhead of the capture process is removed from the source database.

[image: image3.emf]Source Database

Redologs Redologs

Object

Changes

DB Link

Capture

Process

Staging

Queue

LCR(s)

Downstream Database

Destination

Database

Destination

Database

Configuration of DownStream Capture

Transport

Figure 14.3 DownStream Capture

As shown in Fig 14.3, you can copy the redo logs from the source database to the downstream database by either a FTP method or by another log transport method. You can also copy redo log files from multiple source databases and configure multiple capture processes to capture changes in these redo log files at a single downstream database. Thus, the downstream database can act as a common capture engine location for various source databases and can then transmit or propagate information to the various destination databases for apply.

Advantages of Downstream Capture

Downstream capture has many advantages, as shown below:

· Fewer resources are used at the source database for the capture purpose.

· When handling multiple source database changes, a unified Capture process is much easier to manage and administer. One database can be dedicated to handle many capture process sources. Adequate SGA resources can be configured to support multiple capture processes and can also support parallelization of capture processes.

· As the downstream method involves copying of redo files to the downstream database location, you do end up with additional sets of redo files. They increase protection in case of a host failure at the source database location.

However, there are some constraints or operational requirements with this method. They are summarized below:

· Both the source database and the downstream database must be running Oracle Database 10g.

· The operating system on the source and downstream sites must be the same, but the operating system release does not need to be the same.

· The hardware and operating system architecture on the source and downstream sites must be the same. For example, a source database on a 32-bit Sun system must have a downstream database that is configured on a 32-bit Sun system.

· The source database and downstream database must have their own control files.

· After the downstream capture process has been created, changing the database name or the database ID of the source database is not supported.

Downstream Capture Method

To implement downstream capture, the capture process must be created using dbms_capture_adm.create_capture, prior to invoking the add_*_rules procedures.

· The add_*_rules procedures of dbms_streams_adm cannot be used to create a downstream capture process.

Steps to Configure:

3. To populate the Streams dictionary at the downstream database, the dictionary information must be obtained from the source database.

The first time the downstream capture process is started at the downstream database, Oracle uses data dictionary information in the redo log to create a LogMiner data dictionary at the downstream database. The dbms_capture_adm.build procedure is run at the source database to extract the source data dictionary information to the redo log at the source database.

4. Configure supplemental logging and prepare for instantiation at the source database.

5. Create a database link from the downstream capture site to the source database. Though it is an optional step, it is very useful, as it helps to translate Object id’s to proper names.

6. Configure Log Transport Services for Streams - Use the existing database initialization parameters such as:

LOG_ARCHIVE_DEST_n

LOG_ARCHIVE_DEST_STATE_n

LOG_ARCHIVE_FORMAT

REMOTE_ARCHIVE_ENABLE

For example, as shown below, log_archive_dest_2 XE "log_archive_dest_2" is used on the source database to configure the downstream database as a remote destination.

ALTER SYSTEM SET log_archive_dest_2 = 'SERVICE=DBSITE2.world ARCH MANDATORY NOREGNETISTER REOPEN=120 TEMPLATE=/oracle/arch/SITE2_%t_%s_%r.arc';

Notes on the above example are as follows:

· The ARCH attribute specifies that the archiver process is responsible for transmitting online redo logs to the remote archival destination.

· The MANDATORY attribute specifies that if the archival operation of a mandatory destination fails, online redo logs are not overwritten. (Ensure that all changes from the source site make it to the downstream.)

· The NOREGISTER attribute must be set to indicate that the location of the archived redo log should not be recorded at the corresponding destination. If this attribute is not specified, you will get: ora-16009: remote archive log destination must be a standby database

· The TEMPLATE attribute should be set to the directory specification and formatted for archived redo logs at the downstream database.

7. Create the downstream capture process with a database link. For example, with the source database pointed to by dbsite1.world:

CONNECT strmadmin/pwd@DBSITE2.world

BEGIN

DBMS_CAPTURE_ADM.CREATE_CAPTURE(

queue_name => 'STREAMS_QUEUE',

capture_name => 'CAPTURE_DOWNSTREAM',

use_database_link => TRUE,

source_database => 'DBSITE1.world');

END;

/

8. Create capture rules at the downstream database. You can create rules and associate them with the newly created capture process automatically by using the add_*_rules procedures in dbms_streams_adm XE "dbms_streams_adm" , or manually with procedures in the dbms_rule_adm XE "dbms_rule_adm" package. When a capture rule is created at the downstream database using procedures in the dbms_streams_adm package, the database link is used to automatically prepare those objects for instantiation.

9. In the last step, instantiate the replicated objects at the downstream database, or manually set the instantiation SCN for any existing replicated objects with the set_*_instantiation_scn procedures of dbms_apply_adm XE "dbms_apply_adm" .

However, when the database link is not created for some reason, the configuration steps are different. It calls for some additional steps.

The above is an excerpt from the bestselling Oracle10g book Oracle Database 10g New Features by Mike Ault, Madhu Tumma and Daniel Liu, published by Rampant TechPress.

Mike Ault, one of the world's top Oracle experts, has finally consented to release his complete collection of more than 450 Oracle scripts, covering every possible area of Oracle administration and management.
This is the definitive collection of Oracle monitoring and tuning scripts, and it would take thousands of hours to re-create this vast arsenal of scripts from scratch.
Mike has priced his collection of 465 scripts at $39.95, less than a dime per script. You can download them immediately at this link:
http://www.rampant-books.com/download_adv_mon_tuning.htm
_1126822619.vsd

_1126823996.vsd

_1126821913.vsd

