Virtual Spreadsheets and Upsert Through SQL Interrow Calculations

Many of you may not be familiar with the SPREADSHEET XE "SPREADSHEET" functionality within Oracle. In Oracle Database 10g, Oracle provides the capability to do spreadsheet-like array calculations within the Oracle SQL domain.

The benefits of the SPREADSHEET (or MODEL Clause if you prefer) are many. Now, Oracle Database 10g queries and subqueries can include new syntax that provides highly expressive spreadsheet-like array computations with enterprise-level scalability. The computations treat relational tables as n-dimensional arrays, allowing complex computations while avoiding the performance problems of multiple joins and unions. You can use these spreadsheet computations on relational tables and also in Oracle OLAP analytic workspaces.

Benefits Of MODELs (SPREADSHEETS)
No one will argue that spreadsheets are a terrific personal productivity tool that can be used to build (sometimes overly) complex models. But we all know what happens when the number of formulas and the amount of data becomes large; the spreadsheet soon becomes unwieldy and impossible to use.

In addition, desktop spreadsheets have no access to the parallel processing abilities of advanced servers. Also, in a collaborative enterprise setting where many spreadsheets may be in use, it is difficult, if not impossible, to overview a business by querying and consolidating multiple spreadsheets.

The Oracle Database 10g server solves these problems by introducing spreadsheet-like array computations into SQL, using either the ANSI standard MODEL clause or Oracle's SPREADSHEET clause.

Using the SQL SPREADSHEET clause, you can perform spreadsheet computations directly in the SQL language. The SPREADSHEET clause offers the capabilities of:

· Symbolic cell addressing

· Symbolic array computation

· UPSERT/UPDATE per rule

· Looping constructs

· Ordered computations

· Reference spreadsheets

· Automatic rule ordering

· Recursive model solving

· Materialized view support

Now, let's look at the SQL syntax itself.

SQL SELECT Syntax Additions for Spreadsheets
The SQL interrow calculation feature is used within the spread_sheet XE "spread_sheet" clause of the SELECT statement. A very simplified syntax for the SELECT statement using the spread_sheet clause is:

SELECT <select list> FROM <table_reference>

[WHERE <where_clause>]

[<spreadsheet_clause>];

Expanded Spreadsheet Clause Syntax
In this section I will use the following syntax for the syntax diagrams:

· {} - Curly brackets isolate keywords or syntax-required objects, such as square brackets.

· [] - Square brackets denote optional sections of syntax, unless surrounded by curly brackets, then they are part of the syntax.

· < > - Used to surround clauses, variables, and expression statements, not a part of the syntax itself.

· Items of syntax not surrounded by square brackets are required.

· A clause followed by [,] means it can be repeated in a comma separated list.

The spreadsheet_clause XE "spreadsheet_clause" has the format:

SPREADSHEET|MODEL [<cell_reference_options>][<return_rows_clause XE "return_rows_clause" >]

[<reference spreadsheet>]

<main_spreadsheet>

Where:

cell_reference_options XE "cell_reference_options" :

[IGNORE|KEEP NAV]

[UNIQUE DIMENSION|SINGLE REFERENCE]

return_rows_clause XE "return_rows_clause" :

RETURN UPDATED|ALL ROWS

reference_spreadsheet XE "reference_spreadsheet" :

REFERENCE <reference spreadsheet name>

ON (<subquery>)

<spreadsheet_column_clauses> [<cell_reference_options>]

main_spreadsheet XE "main_spreadsheet" :

[MAIN <spreadsheet_name>]<spreadsheet_column_clauses>

[<cell_reference_options>]<spreadsheet_rules_clause>

spreadsheet_column_values XE "spreadsheet_column_values" :

[PARTITION BY (<spreadsheet_column(s)>)

DIMENSION BY (<spreadsheet_column(s)>)

MEASURES (<spreadsheet_column(s))

spreadsheet_column XE "spreadsheet_column" (s) (can be comma-separated list):

Expr [AS <c_alias>]

spreadsheet_rules_clause XE "spreadsheet_rules_clause" :

[RULES UPSERT|UPDATE [AUTOMATIC|SEQUENTIAL ORDER]

[ITERATE (number) [UNTIL(condition)]]

([UPDATE|UPSERT] <cell_assignment> [<order_by_clause>]

= expr [,])

cell_assignment XE "cell_assignment" :

<measure_column>

[{[}condition|expr|single_col_for_loop]|multi_col_for_loop [,]{]}]

single_col_for_loop XE "single_col_for_loop" :

FOR <dimension_column> IN <in_expr>|LIKE <like_expr>

in_expr XE "in_expr" :

IN (literal[,]|subquery)

like_expr XE "like_expr" :

[LIKE <paatern>] FROM <literal> TO <literal> INCREMENT|DECREMENT <literal>

multi_col_for_loop XE "multi_col_for_loop" :

FOR (<dimension_column>[,]) IN (<literal>[,])[,]|<subquery>)

order_by_clause XE "order_by_clause" :

ORDER [SIBLINGS] BY { expr|position|c_alias ASC|DESC {NULLS FIRST}|{NULLS LAST} }[,]

Don't you love syntax diagrams? Did you notice the UPSERT clauses in the spreadsheet_rules_clause? This is what the new features book is referring to, however, the entire concept of spreadsheets is new in Oracle Database 10g.

The spreadsheet_clause XE "spreadsheet_clause" enables interrow calculations within your SQL session. The clause creates a multi-dimensional array that you can randomly access. Within the clause, you specify a series of cell assignments called rules that invoke calculations in individual cells or ranges of cells. No base tables are updated, this is strictly a virtual construct. If you use a spreadsheet_clause in a query, the SELECT and ORDER BY clauses must refer only to those columns used in the spreadsheet_columns_clauses XE "spreadsheet_columns_clauses" .

The main_spreadsheet clause lays out how the specified rows will be displayed in the virtual multi-dimensional array and the rules that govern the cells in the array.

The spreadsheet_column_clauses are used to delineate whether a column is of the type partition, dimension, or measures.

The PARTITION BY clause tells the columns that will be used to divide the array into partition sets.

The dimension by clause tells the columns to determine the rows within a given partition. The values in the dimensions, along with those in the partitions, determine the array indices to reach the measure columns within a row.

The measures clause determines the columns upon which interrow calculations can be performed. These columns are treated as cells that can be referenced by their respective partition and dimension values. measure cells can also be updated.

A spreadsheet_column is used to identify the columns used to define the spreadsheet. An alias is required if the spreadsheet_column is an expression and not a single column reference.

The cell_reference_options XE "cell_reference_options" specify how null and absent values are treated by the spreadsheet rules and how column uniqueness is constrained.

The ignore nav XE "ignore nav" clause causes Oracle to return the following values when there are null or absent values for the datatype specified:

· Zero for numeric datatypes

· 01-Jan-2000 for datetime datatypes

· An empty string for character datatypes

· Null for all other datatypes

The keep nav XE "keep nav" clause causes Oracle to keep null for all null and absent values. This is the default clause if none is specified.

unique single reference XE "unique single reference" This clause causes Oracle to only check the single cell references on the right-hand side of the rule for uniqueness.

unique dimension XE "unique dimension" This clause checks that the partition by and dimension by columns form a unique key to the query. This is the default if nothing is specified.

The spreadsheet_rules_clause XE "spreadsheet_rules_clause" is used to specify the cells to be updated, the rules for updating those cells, and optionally, how the rules are to be applied and processed.

Each rule represents an assignment statement and consists of a left-hand side and right-hand side. The left-hand side of the rule identifies the cells that are updated by the right-hand side of the rule. The right-hand side of the rule will evaluate the value to be assigned to the cell specified on the left-hand side of the rule.

Right Hand Assignments:

UPDATE The use of the UPDATE clause in the rule clause tells Oracle to apply the rules to those cells referenced on the left-hand side of the rule that exist in the multi-dimensional array. If the cells do not exist, the assignment is ignored.

UPSERT The use of the UPSERT clause in the rules clause tells Oracle to apply the rules to those cells referenced on the left-hand side of the rule that exist in the multi-dimensional array, and inserts new rows for those that do not exist. This UPSERT behavior is only utilized if positional referencing is used on the left-hand side and a single cell is referenced. If neither is specified, UPSERT is the default.

UPDATE and UPSERT can be specified at the individual rule level as well. If either UPDATE or UPSERT is specified for a specific rule, it will take precedence over the option specified in the RULES clause.

The AUTOMATIC ORDER clause tells Oracle to evaluate the rules based on their dependency order. When AUTOMATIC ORDER is in effect, a cell can be assigned a value once only.

The SEQUENTIAL ORDER clause tells Oracle to evaluate the rules in the order they were written. Using SEQUENTIAL ORDER, a cell can be assigned a value more than once. SEQUENTIAL ORDER is the default if no ORDER clause is specified.

The ITERATE...[UNTIL] clause is used to specify the number of times to cycle through the rules and, optionally, allows an early termination condition to be specified. When you specify ITERATE...[UNTIL], the SEQUENTIAL ORDER is used by default. Oracle returns an error if both AUTOMATIC ORDER and ITERATE...[UNTIL] are specified in the spreadsheet_rules_clause.

The cell_assignment XE "cell_assignment" clause, which is the left-hand side of the rule, is used to specify the cell or cells to be updated. When a cell_assignment references a single cell, it is called a single-cell reference. When more than one cell is referenced, it is called a multiple-cell reference.

All dimension columns defined in the spreadsheet_clause must be qualified in the cell_assignment clause. A dimension can be qualified using either symbolic or positional referencing.

A symbolic reference specifies a single dimension column using an assignment statement like dimension_column=constant. A positional reference is one where the dimension column is implied by its position in the DIMENSION BY clause.

The treatment of nulls differentiates symbolic references and positional references. When you use a single-cell symbolic reference such as a[x=null,y=2003], no cells qualify because x=null will evaluate to FALSE. But, when using a single-cell positional reference such as a[null,2003], a cell where x is null and y is 2003 qualifies because null will evaluate to TRUE. With single-cell positional referencing, you can: reference and update cells, and insert rows, where dimension columns are null.

You use the ORDER BY clause to specify the order that cells on the left-hand side of the rule will be evaluated. The expr expression must resolve to a dimension or measure column. When the ORDER BY clause is not specified, the order defaults to the order of the columns as specified in the DIMENSION BY clause.

One restriction on the order_by clause is that you cannot specify SIBLINGS, position, or c_alias in the order_by_clause of the spreadsheet_clause.
In the single_column_for_loop XE "single_column_for_loop" clause you specify a range of cells to be updated within a single dimension column. The IN clause is used to specify the values of the dimension column as either a subquery or a list of values. If you use a subquery, it cannot:

· Return more than 10,000 rows

· Be a correlated query

· Be a query defined in the WITH clause

In the FROM you specify a range of values for a dimension column with discrete increments within the range. The FROM clause is only used for those columns with a datatype for which addition and subtraction is supported. The INCREMENT and DECREMENT values must be positive.

You can optionally specify the LIKE clause within the FROM clause. When using the LIKE clause, "pattern" is a character string containing a single pattern-matching character (%). This character is substituted during execution with the current incremented or decremented value in the FROM clause.

The multi_column_for_loop XE "multi_column_for_loop" clause lets you specify a range of cells to be updated across multiple dimension columns. The IN clause lets you specify the values of the dimension columns as either multiple lists of values or as a subquery.

When using subquery, it cannot:

· Return more than 10,000 rows

· Be a correlated query

· Be a query defined in the WITH clause

The return_rows_clause XE "return_rows_clause" allows you to specify whether to return all rows selected or only those rows updated by the spreadsheet rules. ALL is the default if no option is provided.

Use the reference_spreadsheet XE "reference_spreadsheet" clause if you need to access multiple virtual arrays from inside the spreadsheet_clause. This clause defines a read-only multi-dimensional array based on the results of a query.

The subclauses of the reference_spreadsheet clause have the same semantics as for the main_spreadsheet clause.

Restrictions on the reference_spreadsheet clause include:

· PARTITION BY columns cannot be specified for reference spreadsheets.

· The subquery of the reference spreadsheet cannot refer to columns in an outer subquery.

The SQL interrow calculation feature supports upsert operations, enabling easy INSERT and UPDATE of calculated model and forecast values. This entire section is actually discussing how to use the new SPREADSHEET clause of the SELECT statement. The interrow functions that can be used in spreadsheet_clause are:

CURRENTV - Used only for interrow calculations, CURRENTV can only be used in the spreadsheet_clause of a SELECT statement and then only on the right-hand side of a spreadsheet rule. Its purpose is to return the current value of a dimension column carried from the left-hand side to the right-hand side. This provides relative indexing with respect to the dimension column.

Syntax:

CURRENTV (<dimension_column>)

PRESENTNNV -- Used only for interrow calculations, PRESENTNNV can only be used in the spreadsheet_clause of a SELECT statement and then only on the right-hand side of a spreadsheet rule. Its function is to return expr1 only when cell_reference is present on not null. If cell_reference is not present or is null, it returns expr2.

Syntax:

PRESENTNNV (cell_reference, expr1, expr2)

PRESENTV -- Used only for interrow calculations, PRESENTV can only be used in the spreadsheet_clause of a SELECT statement and then only on the right-hand side of a spreadsheet rule. If the dimension_column exists prior to the execution of the spreadsheet_clause it returns expr1, otherwise it returns expr2.

Syntax:

PRESENTV (cell_reference, expr1, expr2)

With these explanations out of the way, let's examine some examples to see how this beast is used.

Examples of Using Spreadsheets

In order to use this new feature, you have to have a very good handle on how your data is laid out. You have to envision what a spreadsheet containing the result you want from the query will look like. The row labels are the partitions while the column headers are dimensions, and each intersection cell on the spreadsheet is a measure. The measures contain the required conversions or formulas that will be used to transform the data stored at that location. The spreadsheet rules tell Oracle how to treat missing or null data.

Let's begin with an easy example. Sometimes Oracle's examples are overly complex, performing multiple table joins, on multiple layers, in short, trying to show every conceivable use of a command with one example.

Let's say we want to see the overall effects of a salary raise plan such as:

· RESEARCH department gets a 10% raise

· ACCOUNTING department gets a 10% raise

· SALES department gets a 1000 dollar flat raise

· OPERATIONS department gets a 5% raise

First, we create a base view called sal_proj XE "sal_proj" based on the emp and dept tables:

SQL> desc dept

 Name Null? Type

 --- -------- ---------------

 DEPTNO NOT NULL NUMBER(2)

 DNAME VARCHAR2(14)

 LOC VARCHAR2(13)

SQL> desc emp

 Name Null? Type

 --- -------- ---------------

 EMPNO NUMBER(4)

 ENAME VARCHAR2(10)

 JOB VARCHAR2(9)

 MGR NUMBER(4)

 HIREDATE DATE

 SAL NUMBER(7,2)

 COMM NUMBER(7,2)

 DEPTNO NUMBER(2)

SQL> create view sal_proj as

 2 select d.dname,e.ename,d.loc,e.mgr,e.sal

 3 from dept d, emp e

 4* where d.deptno=e.deptno

SQL> /

View created.

Once we have a base view, we can proceed to create a spreadsheet using a SELECT command with the spreadsheet clause. In this case, we are applying the salary rules we defined above to the intersection of the dname and ename dimensions, where each dname is identified and the ename is wild-carded.

Notice that you can only select from the values that are used in the spreadsheet definition, even though you reference the view name.

SQL> select dname,ename,mgr,psal

 2 from sal_proj

 3 spreadsheet

 4 partition by (mgr)

 5 dimension by (dname,ename)

 6 measures (sal psal)

 7 ignore nav

 8 unique dimension

 9 rules update sequential order

 10 (

 11 psal['ACCOUNTING', FOR ename in (SELECT ename

 12 FROM sal_proj

 13 WHERE dname='ACCOUNTING')]=

 13 psal[dname='ACCOUNTING',CURRENTV(ename)]*1.1,

 14 psal['RESEARCH', FOR ename in (SELECT ename

 15 FROM sal_proj

 16 WHERE dname='RESEARCH')]=

 14 psal['RESEARCH',CURRENTV(ename)]*1.15,

 15 psal['SALES',FOR ename in (SELECT ename

 17 FROM sal_proj

 18 WHERE dname='SALES')]=

 19 psal['SALES',CURRENTV(ename)]+1000,

 20 psal['OPERATIONS',FOR ename in (SELECT ename

 21 FROM sal_proj

 22 WHERE dname='OPERATIONS')]=

 23 psal['OPERATIONS',CURRENTV(ename)]*1.05

 24)

 25* order by dname

SQL> /

DNAME ENAME MGR PSAL

-------------- ---------- ---------- ----------

ACCOUNTING CLARK 7839 2450

ACCOUNTING KING 5000

ACCOUNTING MILLER 7782 1300

RESEARCH SMITH 7902 800

RESEARCH ADAMS 7788 1100

RESEARCH FORD 7566 3000

RESEARCH SCOTT 7566 3000
RESEARCH JONES 7839 2975

SALES ALLEN 7698 1600

SALES BLAKE 7839 2850

SALES MARTIN 7698 1250

SALES JAMES 7698 950

SALES TURNER 7698 1500

SALES WARD 7698 1250

14 rows selected.
For the final example, we will demonstrate the use of the PRESENTV interrow function. We can use the same base view as before.

SQL> select dname,ename,mgr,psal

 2 from sal_proj

 3 spreadsheet

 4 partition by (mgr)

 5 dimension by (dname,ename)

 6 measures (sal psal)

 7 ignore nav

 8 unique dimension

 9 rules upsert sequential order

 10 (

 11 psal[dname='ACCOUNTING',ename='*']=

 12 presentv(psal[dname='ACCOUNTING',ename='*'], psal[dname='ACCOUNTING',ename='*'], 0)*1.1,

 13 psal[dname='RESEARCH',ename='*']=

 14 presentv(psal[dname='RESEARCH',ename='*'], psal[dname='RESEARCH',ename='*'], 0)*1.15,

 15 psal[dname='SALES',ename='*']=

 16 presentv(psal[dname='SALES',ename='*'], psal[dname='SALES',ename='*'], 0)+1000,

 17 psal[dname='OPERATIONS',ename='*']=

 18 presentv(psal[dname='OPERATIONS',ename='*'], psal[dname='OPERATIONS',ename='*'], 0)*1.05

 19)

 20 order by dname

 21 /

DNAME ENAME MGR PSAL

-------------- ---------- ---------- ----------

ACCOUNTING CLARK 7839 2695

ACCOUNTING KING 5500

ACCOUNTING MILLER 7782 1430

RESEARCH SMITH 7902 880

RESEARCH ADAMS 7788 1210

RESEARCH FORD 7566 3300

RESEARCH SCOTT 7566 3300

RESEARCH JONES 7839 3272.5

SALES ALLEN 7698 1760

SALES BLAKE 7839 3135

SALES MARTIN 7698 1375

SALES JAMES 7698 1045

SALES TURNER 7698 1650

SALES WARD 7698 1375

14 rows selected.
As you can see, the capability to generate these virtual datasets (spreadsheets) is a powerful new feature.

The above is an excerpt from the bestselling Oracle10g book Oracle Database 10g New Features by Mike Ault, Madhu Tumma and Daniel Liu, published by Rampant TechPress.

Mike Ault, one of the world's top Oracle experts, has finally consented to release his complete collection of more than 450 Oracle scripts, covering every possible area of Oracle administration and management.
This is the definitive collection of Oracle monitoring and tuning scripts, and it would take thousands of hours to re-create this vast arsenal of scripts from scratch.
Mike has priced his collection of 465 scripts at $39.95, less than a dime per script. You can download them immediately at this link:
http://www.rampant-books.com/download_adv_mon_tuning.htm
