
CHAPTER
2

PL/SQL Basics

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6 / Blind folio: 25

25

ch02.indd 25ch02.indd 25 3/3/2008 9:45:24 AM3/3/2008 9:45:24 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

26 Oracle Database 11g PL/SQL Programming

common beginning place is a summary of language components. This chapter tours
PL/SQL features. Subsequent chapters develop details that explain why the PL/SQL
language is a robust tool with many options.

As an introduction to PL/SQL basics, this chapter introduces and briefly discusses

Oracle PL/SQL block structure

Variables, assignments, and operators

Control structures

Conditional structures

Iterative structures

Stored functions, procedures, and packages

Transaction scope

Database triggers

PL/SQL is a case-insensitive programming language, like SQL. While the language is case
insensitive, there are many conventions applied to how people write their code. Most choose
combinations of uppercase, lowercase, title case, or mixed case. Among these opinions there is
no standard approach to follow.

■

■

■

■

■

■

■

■

A

PL/SQL Standard Usage for This Book
The PL/SQL code in this book uses uppercase for command words and lowercase for
variables, column names, and stored program calls.

Oracle PL/SQL Block Structure
PL/SQL was developed by modeling concepts of structured programming, static data typing,
modularity, and exception management. It extends the ADA programming language. ADA
extended the Pascal programming language, including the assignment and comparison operators
and single-quote string delimiters.

PL/SQL supports two types of programs: one is an anonymous-block program, and the other
is a named-block program. Both types of programs have declaration, execution, and exception
handling sections or blocks. Anonymous blocks support batch scripting, and named blocks
deliver stored programming units.

The basic prototype for an anonymous-block PL/SQL programs is

[DECLARE]
 declaration_statements
 BEGIN
 execution_statements
[EXCEPTION]
 exception_handling_statements
END;
/

ch02.indd 26ch02.indd 26 3/3/2008 9:45:44 AM3/3/2008 9:45:44 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 27

As shown in the prototype, PL/SQL requires only the execution section for an anonymous-block
program. The execution section starts with a BEGIN statement and stops at the beginning of the
optional EXCEPTION block or the END statement of the program. A semicolon ends the anonymous
PL/SQL block, and the forward slash executes the block.

Declaration sections can contain variable definitions and declarations, user-defined PL/SQL
type definitions, cursor definitions, reference cursor definitions, and local function or procedure
definitions. Execution sections can contain variable assignments, object initializations, conditional
structures, iterative structures, nested anonymous PL/SQL blocks, or calls to local or stored named
PL/SQL blocks. Exception sections can contain error handling phrases that can use all of the same
items as the execution section.

The simplest PL/SQL block does nothing. You must have a minimum of one statement inside
any execution block, even if it’s a NULL statement. The forward slash executes an anonymous
PL/SQL block. The following illustrates the most basic anonymous-block program:

BEGIN
 NULL;
END;
/

You must enable the SQL*Plus SERVEROUTPUT variable to print content to the console. The
hello_world.sql print a message to the console:

-- This is found in hello_world.sql on the publisher's web site.
SET SERVEROUTPUT ON SIZE 1000000
BEGIN
 dbms_output.put_line('Hello World.');
END;
/

The SQL*Plus SERVEROUTPUT environment variable opens an output buffer, and the DBMS_
OUTPUT.PUT_LINE() function prints a line of output. All declarations, statements, and blocks
are terminated by a semicolon.

NOTE
Every PL/SQL block must contain something, at least a NULL;
statement, or it will fail run-time compilation, also known as parsing.

SQL*Plus supports the use of substitution variables in the interactive console, which are
prefaced by an ampersand, &. Substitution variables are variable-length strings or numbers.
You should never assign dynamic values in the declaration block, like substitution variables.

The following program defines a variable and assigns it a value:

-- This is found in substitution.sql on the publisher's web site.
DECLARE
 my_var VARCHAR2(30);
BEGIN
 my_var := '&input';
 dbms_output.put_line('Hello '|| my_var);
END;
/

ch02.indd 27ch02.indd 27 3/3/2008 9:45:44 AM3/3/2008 9:45:44 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

28 Oracle Database 11g PL/SQL Programming

The assignment operator in PL/SQL is a colon plus an equal sign (:=). PL/SQL string literals
are delimited by single quotes. Date, numeric, and string literals are covered in Chapter 3.

You run anonymous blocks by calling them from Oracle SQL*Plus. The @ symbol in Oracle
SQL*Plus loads and executes a script file. The default file extension is .sql, but you can override
it with another extension. This means you can call a filename without its .sql extension.

The following demonstrates calling the substitution.sql file:

SQL> @substitution.sql
Enter value for input: Henry Wadsworth Longfellow
old 3: my_var VARCHAR2(30) := '&input';
new 3: my_var VARCHAR2(30) := 'Henry Wadsworth Longfellow';
Hello Henry Wadsworth Longfellow
PL/SQL procedure successfully completed.

The line starting with old designates where your program accepts a substitution, and new
designates the run-time substitution. Assigning a string literal that is too large for the variable
fires an exception. Exception blocks manage raised errors. A generic exception handler manages
any raised error. You use a WHEN block to catch every raised exception with the generic error
handler—OTHERS.

TIP
You can suppress echoing the substitution by setting SQL*Plus
VERIFY off.

The following exception.sql program demonstrates how an exception block manages an
error when the string is too long for the variable:

-- This is found in exception.sql on the publisher's web site.
DECLARE
 my_var VARCHAR2(10);
BEGIN
 my_var := '&input';
 dbms_output.put_line('Hello '|| my_var);
EXCEPTION
 WHEN others THEN
 dbms_output.put_line(SQLERRM);
END;
/

The anonymous block changed the definition of the string from 30 characters to 10 characters.
The poet’s name is now too long to fit in the target variable. Assigning the variable raises an
exception. The console output shows the handled and raised exception:

SQL> @exception.sql
Enter value for input: Henry Wadsworth Longfellow
old 4: my_var := '&input';
new 4: my_var := 'Henry Wadsworth Longfellow';
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
PL/SQL procedure successfully completed.

ch02.indd 28ch02.indd 28 3/3/2008 9:45:44 AM3/3/2008 9:45:44 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 29

You can also have: (a) nested anonymous-block programs in the execution section of an
anonymous block; (b) named-block programs in the declaration section that can in turn contain
the same type of nested programs; and (c) calls to stored named-block programs.

The outermost programming block controls the total program flow, while nested programming
blocks control their subordinate programming flow. Each anonymous- or named-block
programming unit can contain an exception section. When a local exception handler fails
to manage an exception, it throws the exception to a containing block until it reaches the
SQL*Plus environment.

Error stack management is the same whether errors are thrown from called local or named
PL/SQL blocks. Error are raised and put in a first-in, last-out queue, which is also known as a stack.

You have explored the basic structure of PL/SQL block programs and error stack management.
The block structure is foundational knowledge to work in PL/SQL.

Variables, Assignments, and Operators
Datatypes in PL/SQL include all SQL datatypes and subtypes qualified in Table B-2 of Appendix B.
Chapter 3 covers PL/SQL-specific datatypes. PL/SQL also supports scalar and composite variables.
Scalar variables hold only one thing, while composite variables hold more than one thing. The
preceding programs have demonstrated how you declare and assign values to scalar variables.

Variable names begin with letters and can contain alphabetical characters, ordinal numbers
(0 to 9), the $, _, and # symbols. Variables have local scope only. This means they’re available
only in the scope of a given PL/SQL block. The exceptions to that rule are nested anonymous
blocks. Nested anonymous blocks operate inside the defining block. They can thereby access
variables from the containing block. That is, unless you’ve declared the same variable name as
something else inside the nested anonymous block.

A declaration of a number variable without an explicit assignment makes its initial value null.
The prototype shows that you can assign a value later in the execution block:

DECLARE
 variable_name NUMBER;
BEGIN
 variable_name := 1;
END;
/

An explicit assignment declares a variable with a not-null value. You can use the default
value or assign a new value in the execution block. Both are demonstrated next. You can use
an assignment operator or the DEFAULT reserved word interchangeably to assign initial values.
The following shows a prototype:

DECLARE
 variable_name NUMBER [:= | DEFAULT] 1;
BEGIN
 variable_name := 1;
END;
/

ch02.indd 29ch02.indd 29 3/3/2008 9:45:45 AM3/3/2008 9:45:45 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

30 Oracle Database 11g PL/SQL Programming

Oracle 11g performs many implicit casting operations. They fail to follow the common rule
of programming: implicitly cast when there is no loss of precision. This means you can assign a
complex number like 4.67 to an integer and lose the 0.67 portion of the number. Likewise, there
are a series of functions to let you explicitly cast when there is greater risk of losing precision.
You should choose carefully when you explicitly downcast variables. Appendix J covers explicit
casting functions.

There are also several product-specific datatypes. They support various component products
in Oracle 11g. You can find these datatypes in the Oracle Database PL/SQL Packages and Type
Reference.

The assignment operator is not the lone operator in the PL/SQL programming language.
Chapter 3 covers all the comparison, concatenation, logical, and mathematical operators. In
short, you use

The equal (=) symbol to check matching values

The standard greater or less than with or without an equal component (>, >=, <, or <=) as
comparison operators to check for inequalities

The negation (<>, !=, ~= or ^=) comparison operators to check for non-matching values

You define CURSOR statements in the declaration section. CURSOR statements let you bring
data from tables and views into your PL/SQL programs. A CURSOR statement can have zero or
many formal parameters. CURSOR parameters are pass-by-value, or IN mode–only variables.
Chapter 4 covers CURSOR statements.

You have now reviewed variables, assignments, and operators. You have also been exposed to
PL/SQL-specific user-defined types.

■

■

■

The Assignment Model and Language
All programming languages assign values to variables. They typically assign a value to a
variable on the left.

The prototype for generic assignment in any programming language is

left_operand assignment_operator right_operand statement_terminator

This assigns the right operand to the left operand, as shown here:

You implement it in PL/SQL as follows:

left_operand := right_operand;

The left operand must always be a variable. The right operand can be a value, variable, or
function. Functions must return a value when they’re right operands. This is convenient in
PL/SQL because all functions return values. Functions in this context are also known as
expressions.

The trick is that only functions returning a SQL datatype can be called in SQL
statements. Functions returning a PL/SQL datatype only work inside PL/SQL blocks.

ch02.indd 30ch02.indd 30 3/3/2008 9:45:45 AM3/3/2008 9:45:45 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 31

Control Structures
Control structures do two things. They check a logical condition and branch program execution,
or they iterate over a condition until it is met or they are instructed to exit. The conditional
structures section covers if, elsif, else, and case statements. The later section “Iterative Structures”
covers looping with for and while structures.

Conditional Structures
Conditional statements check whether a value meets a condition before taking action. There are
two types of conditional structures in PL/SQL. One is the IF statement, and the other is the CASE
statement. The IF statement that has two subtypes, if-then-else and if-then-elsif-then-else. The elsif
is not a typo but the correct reserved word in PL/SQL. This is another legacy from Pascal and ADA.

IF Statement
All IF statements are blocks in PL/SQL and end with the END IF phrase. CASE statements are
also blocks that end with END CASE phrase. Semicolons follow the ending phrases and terminate
all blocks in PL/SQL. The following is the basic prototype for an if-then-else PL/SQL block:

IF [NOT] left_operand1 = right_operand1 [[AND|OR]
 [NOT] left_operand2 = right_operand2 [[AND|OR]
 [NOT] boolean_operand]] THEN
 NULL;
ELSE
 NULL;
END IF;

The foregoing if-then-else block prototype uses an equality comparison, but you can substitute
any of the comparison operators for the equal symbol. You can also evaluate one or more conditions
by using AND or OR to join statements. Boolean outcomes then apply to the combination of
expressions. You can negate single or combined outcomes with the NOT operator.

Logical operators support conjoining and including operations. A conjoining operator, AND,
means that both statements must evaluate as true or false. An include operator, OR, means that
one or the other must be true. Include operators stop processing when one statement evaluates
as true. Conjoining operators check that all statements evaluate as true.

BOOLEAN variables are comparisons in and of themselves. Other operands can be any valid
datatype that works with the appropriate comparison operator, but remember variables must be
initialized. Problems occur when you fail to initialize or handle non-initialized variables in
statements.

TIP
You can check if a BOOLEAN value is true by using a comparison
operator and constant (like some_boolean = TRUE), but it isn’t
the best way to use a Boolean variable in a comparison operation.

For example, when you use an IF statement to evaluate a non-initialized BOOLEAN as true, it
fails and processes the ELSE block; however, when you use an IF NOT statement to evaluate a
non-initialized BOOLEAN as false, it also fails and processes the ELSE block. This happens because
a non-initialized BOOLEAN variable isn’t true or false.

ch02.indd 31ch02.indd 31 3/3/2008 9:45:45 AM3/3/2008 9:45:45 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

32 Oracle Database 11g PL/SQL Programming

The solution to this problem is to use the SQL NVL() function. It lets you substitute a value
for any null value variables. The NVL() function takes two parameters: the first is a variable, and
the second is a literal, which can be a numeric, string, or constant value. The two parameters
must share the same datatype. You can access all the standard SQL functions natively in your
PL/SQL programs. The following program demonstrates how you use the NVL() against a non-
initialized BOOLEAN variable:

-- This is found in if_then.sql on the publisher's web site.
DECLARE
 -- Define a Boolean variable.
 my_var BOOLEAN;
BEGIN
 -- Use an NVL function to substitute a value for evaluation.
 IF NOT NVL(my_var,FALSE) THEN
 dbms_output.put_line('This should happen!');
 ELSE
 dbms_output.put_line('This can''t happen!');
 END IF;
END;
/

The IF NOT statement would return false when the BOOLEAN variable isn’t initialized. The
preceding program finds the NVL() function value to be false, or NOT true, and it prints the
following message:

This should happen!

NOTE
The ELSE block contains a backquoted string. The single quote mark
is a reserved character for delimiting strings. You backquote an
apostrophe by using another apostrophe, or a single quote, inside
a delimited string. You can also substitute another backquoting
character, as covered in the Oracle 10g recent features section.

The if-then-elsif-then-else statement works like the if-then-else statement but lets you perform
multiple conditional evaluations in the same IF statement. The following is the basic prototype
for an if-then-elsif-then-else PL/SQL block:

IF [NOT] left_operand1 > right_operand2 [AND|OR]
 NULL;
ELSIF [NOT] left_operand1 = right_operand1 [[AND|OR]
 [NOT] left_operand2 = right_operand2 [[AND|OR]
 [NOT] boolean_operand]] THEN
 NULL;
ELSE
 NULL;
END IF;

CASE Statement
The other conditional statement is a CASE statement. A CASE statement works like the if-then-
elsif-then-else process. There are two types of CASE statements: one is a simple CASE, and the

ch02.indd 32ch02.indd 32 3/3/2008 9:45:45 AM3/3/2008 9:45:45 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 33

other is a searched CASE. A simple CASE statement takes a scalar variable as an expression and
then evaluates it against a list of like scalar results. A searched CASE statement takes a BOOLEAN
variable as an expression and then compares the Boolean state of the WHEN clause results as an
expression.

The following is the generic prototype of the CASE statement:

CASE [TRUE | [selector_variable]]
 WHEN [criterion1 | expression1] THEN
 criterion1_statements;
 WHEN [criterion2 | expression2] THEN
 criterion2_statements;
 WHEN [criterion(n+1) | expression(n+1)] THEN
 criterion(n+1)_statements;
 ELSE
 block_statements;
END CASE;

The next program demonstrates a searched CASE statement:

BEGIN
 CASE TRUE
 WHEN (1 > 3) THEN
 dbms_output.put_line('One is greater than three.');
 WHEN (3 < 5) THEN
 dbms_output.put_line('Three is less than five.');
 WHEN (1 = 2) THEN
 dbms_output.put_line('One equals two.');
 ELSE
 dbms_output.put_line('Nothing worked.');
 END CASE;
END;
/

TIP
You can leave TRUE out (because it is the default selector), but don’t.
Putting it in adds clarity.

The program evaluates WHEN clause results as expressions, finding that 3 is less than 5. It then
prints

Three is less than five.

You can find out more about CASE statements in Chapter 4. This subsection has demonstrated
the conditional expressions available to you in PL/SQL. It has also suggested an alternative to
non-initialized variables.

Iterative Structures
PL/SQL supports FOR, SIMPLE, and WHILE loops. There’s no syntax for a repeat until loop block,
but you can still perform one. Loops typically work in conjunction with cursors but can work to
solve other problems, like searching or managing Oracle collections.

ch02.indd 33ch02.indd 33 3/3/2008 9:45:46 AM3/3/2008 9:45:46 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

34 Oracle Database 11g PL/SQL Programming

FOR Loops
PL/SQL supports numeric and cursor FOR loops. The numeric FOR loop iterates across a defined
range, while the cursor FOR loop iterates across rows returned by a SELECT statement cursor.
FOR loops manage how they begin and end implicitly. You can override the implicit END LOOP
phrase by using an explicit CONTINUE or EXIT statement to respectively skip an iteration or force
a premature exit from the loop.

Numeric FOR loops take two implicit actions. They automatically declare and manager their
own loop index, and they create and manage their exit from the loop. A numeric FOR loop has
the following prototype:

FOR i IN starting_number..ending_number LOOP
 statement;
END LOOP;

The starting_number and ending_number must be integers. The loop index is the i variable,
and the loop index scope is limited to the FOR loop. The index variable is a PLS_INTEGER
datatype number. When you have previously defined or declared a variable i, the numeric loop
will ignore the externally scoped variable and create a new locally scoped variable.

The following sample program prints index values from 1 to 10:

BEGIN
 FOR i IN 1..10 LOOP
 dbms_output.put_line('The index value is ['||i||']');
 END LOOP;
END;
/

The cursor FOR loop requires a locally defined CURSOR. You cannot use a cursor FOR loop to
iterate across a reference cursor (REF CURSOR) because reference cursors can only be traversed
by using explicit loop structures, like simple and while loops. The cursor FOR loop can also use a
SELECT statement in lieu of a locally defined CURSOR, and has the following prototype:

FOR i IN {cursor_name[(parameter1,parameter(n+1))] | (sql_statement)} LOOP
 statement;
END LOOP;

The cursor_name can have an optional parameter list, which is enclosed in parentheses. A
cursor_name without optional parameters does not require parentheses. You are using an explicit
cursor when you call a cursor_name and an implicit cursor when you provide a SELECT statement.

The following demonstrates how you write an explicit cursor in a FOR loop and use the data
seeded by the downloadable scripts:

DECLARE
 CURSOR c IS SELECT item_title FROM item;
BEGIN
 FOR i IN c LOOP
 dbms_output.put_line('The title is ['||i.item_title||']');
 END LOOP;
END;
/

The following demonstrates how you write an implicit cursor in a FOR loop and use the data
seeded by the downloadable scripts:

ch02.indd 34ch02.indd 34 3/3/2008 9:45:46 AM3/3/2008 9:45:46 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 35

BEGIN
 FOR i IN (SELECT item_title FROM item) LOOP
 dbms_output.put_line('The title is ['||i.item_title||']');
 END LOOP;
END;
/

The index variable is not a PLS_INTEGER number in a cursor FOR loop. It is a reference to
the record structure returned by the cursor. You combine the cursor index variable and column
name with a dot, also known as the component selector. In this case, the cursor index is the
component. The component selector lets you select a column from the row returned by the cursor.

The statement must be a valid SELECT statement, but you can dynamically reference locally
scoped variable names without any special syntax in all clauses except the FROM clause. Unless
you override the exit criteria, the cursor FOR loop will run through all rows returned by the cursor
or statement.

Simple Loops
Simple loops are explicit structures. They require that you manage both loop index and exit
criteria. Typically, simple loops are used in conjunction with locally defined cursor statements
and reference cursors (REF CURSOR).

Oracle provides six cursor attributes that help you manage activities in loops. The four cursor
attributes are: %FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT. Two others support bulk
operations. They are all covered in Chapter 4.

The simple loops have a variety of uses. The following is the prototype for a simple loop,
using an explicit CURSOR:

OPEN cursor_name [(parameter1,parameter(n+1))];
LOOP
 FETCH cursor_name
 INTO row_structure_variable | column_variable1 [,column_variable(n+1)];
 EXIT WHEN cursor_name%NOTFOUND;
 statement;
END LOOP;
CLOSE cursor_name;

The prototype demonstrates that you OPEN a CURSOR before starting the simple loop, and
then you FETCH a row. While rows are returned you process them, but when a FETCH fails to
return a row, you exit the loop. Place the EXIT WHEN statement as the last statement in the loop
when you want the behavior of a repeat until loop. Repeat until loops typically process statements
in a loop at least once regardless of whether the CURSOR returns records.

The following mimics the cursor FOR loop against the ITEM table:

DECLARE
 title item.item_title%TYPE;
 CURSOR c IS SELECT item_title FROM item;
BEGIN
 OPEN c;
 LOOP
 FETCH c INTO title;
 EXIT WHEN c%NOTFOUND;
 dbms_output.put_line('The title is ['||title||']');

ch02.indd 35ch02.indd 35 3/3/2008 9:45:46 AM3/3/2008 9:45:46 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

36 Oracle Database 11g PL/SQL Programming

 END LOOP;
 CLOSE c;
END;
/

WHILE Loops
The WHILE loop differs from the simple loop because it guards entry to the loop, not exit. It sets
the entry guard as a precondition expression. The loop is only entered when the guard condition
is met. The basic syntax is

OPEN cursor_name [(parameter1,parameter(n+1))];
WHILE condition LOOP
 FETCH cursor_name
 INTO row_structure_variable | column_variable1 [,column_variable(n+1)];
 EXIT WHEN cursor_name%NOTFOUND;
 statement;
END LOOP;
CLOSE cursor_name;

When the condition checks for an opened CURSOR, then the WHILE condition would be
cursor_name%ISOPEN. There are many other possible condition values that you can use in
WHILE loops. The following code demonstrates how you can use a cursor %ISOPEN attribute as
the guard on entry condition:

DECLARE
 title item.item_title%TYPE;
 CURSOR c IS SELECT item_title FROM item;
BEGIN
 OPEN c;
 WHILE c%ISOPEN LOOP
 FETCH c INTO title;
 IF c%NOTFOUND THEN
 CLOSE c;
 END IF;
 dbms_output.put_line('The title is ['||title||']');
 END LOOP;
END;
/

The WHILE condition is true only until the IF statement closes the cursor inside the loop. You
should note that repeating instructions come after the IF statement.

This section has demonstrated how you can use implicit and explicit looping structures. It
has also introduced you to the management of the CURSOR statement in the execution section
of PL/SQL programs. Chapter 4 covers the CONTINUE and GOTO statements.

Stored Functions, Procedures, and Packages
PL/SQL stored programming units are typically functions, procedures, packages, and triggers. You
can also store object types, but that discussion is in Chapter 14.

ch02.indd 36ch02.indd 36 3/3/2008 9:45:46 AM3/3/2008 9:45:46 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 37

Oracle maintains a unique list of stored object names for tables, views, sequences, stored
programs, and types. This list is known as a namespace. Functions, procedures, packages, and
objects are in this namespace. Another namespace stores triggers.

Stored functions, procedures, and packages provide a way to hide implementation details in
a program unit. They also let you wrap the implementation from prying eyes on the server tier.

Stored Functions
Stored functions are convenient structures because you can call them directly from SQL
statements or PL/SQL programs. All stored functions must return a value. You can also use them as
right operands because they return a value. Functions are defined in local declaration blocks or
the database. You frequently implement them inside stored packages.

The prototype for a stored function is

FUNCTION function_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]]]
RETURN [sql_data_type | plsql_data_type]
[AUTHID [DEFINER | CURRENT_USER]]
[DETERMINISTIC | PARALLEL_ENABLED]
[PIPELINED]
[RESULT_CACHE [RELIES ON table_name]] IS
 declaration_statements
BEGIN
 execution_statements
 RETURN variable;
[EXCEPTION]
 exception_handling_statements
END [function_name];
/

Functions can be used as right operands in PL/SQL assignments. You can also call them
directly from SQL statements, provided they return a SQL datatype. Procedures cannot be right
operands. Nor can you call them from SQL statements.

You can query a function that returns a SQL datatype by using the following prototype from
the pseudotable DUAL:

SELECT some_function[(actual_parameter1, actual_parameter2)]
FROM dual;

You are no longer limited to passing actual parameters by positional order in SQL statements.
This means that you can used PL/SQL named notation in SQL. Chapter 6 covers how named,
positional, and mixed notation work.

The following is a named notation prototype for the same query of a PL/SQL function from the
pseudotable DUAL:

SELECT some_function[(formal_parameter => actual_parameter2)]
FROM dual;

ch02.indd 37ch02.indd 37 3/3/2008 9:45:47 AM3/3/2008 9:45:47 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

38 Oracle Database 11g PL/SQL Programming

Named positional calls work best when default values exist for other parameters. There isn’t
much purpose in calling only some of the parameters when the call would fail. Formal parameters
are optional parameters. Named positional calls work best with functions or procedures that have
optional parameters.

You can also use the CALL statement to capture a return value from a function into a bind
variable. The prototype for the CALL statement follows:

CALL some_function[(actual_parameter1, actual_parameter2)]
INTO some_session_bind_variable;

The following is a small sample case that concatenates two strings into one:

-- This is found in join_strings.sql on the publisher's web site.
CREATE OR REPLACE FUNCTION join_strings
(string1 VARCHAR2
, string2 VARCHAR2) RETURN VARCHAR2 IS
BEGIN
 RETURN string1 ||' '|| string2||'.';
END;
/

You can now query the function from SQL:

SELECT join_strings('Hello','World') FROM dual;

Likewise, you can define a session-level bind variable and then use the CALL statement to put
a variable into a session-level bind variable:

VARIABLE session_var VARCHAR2(30)
CALL join_strings('Hello','World') INTO :session_var;

The CALL statement uses an INTO clause when working with stored functions. You dispense with
the INTO clause when working with stored procedures.

Selecting the bind variable from the pseudo–DUAL table, like this

SELECT :session_var FROM dual;

you’ll see

Hello World.

Functions offer a great deal of power to database developers. They are callable in both SQL
statements and PL/SQL blocks.

Procedures
Procedures cannot be right operands. Nor can you use them in SQL statements. You move data
into and out of PL/SQL stored procedures through their formal parameter list. As with stored
functions, you can also define local named-block programs in the declaration section of procedures.

The prototype for a stored procedure is

PROCEDURE procedure_name
[(parameter1 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype
[, parameter2 [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype

ch02.indd 38ch02.indd 38 3/3/2008 9:45:47 AM3/3/2008 9:45:47 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 39

[, parameter(n+1) [IN][OUT] [NOCOPY] sql_datatype | plsql_datatype)]]]
[AUTHID DEFINER | CURRENT_USER] IS
 declaration_statements
BEGIN
 execution_statements
[EXCEPTION]
 exception_handling_statements
END [procedure_name];
/

You can define procedures with or without formal parameters. Formal parameters in procedures
can be either pass-by-value or pass-by-reference variables in stored procedures. Pass-by-reference
variables have both and IN and OUT modes. As in the case of functions, when you don’t provide
a parameter mode, the procedure creation assumes you want the mode to be a pass-by-value.

Procedures can’t be used as right operands in PL/SQL assignments, nor called directly from
SQL statements. The following implements a stored procedure that uses a pass-by-reference
semantic to enclose a string in square brackets:

-- This is found in format_string.sql on the publisher's web site.
CREATE OR REPLACE PROCEDURE format_string
(string_in IN OUT VARCHAR2) IS
BEGIN
 string_in := '['||string_in||']';
END;
/

You can also use the CALL statement to call and pass variables into and out of a procedure.
Like the earlier function example, this example uses the CALL statement and bind variable:

VARIABLE session_var VARCHAR2(30)
CALL join_strings('Hello','World') INTO :session_var;
CALL format_string(:session_var);

The first CALL statement calls the previously introduced function and populates the :session_var
variable. You should note that the second CALL statement does not use an INTO clause when
passing a variable into and out of a stored procedure. This differs from how it works with stored
functions.

You also can use the EXECUTE statement with stored procedures. The following works exactly
like the CALL statement:

EXECUTE format_string(:session_var);

When you select the bind variable from the pseudo–DUAL table,

SELECT :session_var FROM dual;

you’ll see

[Hello World.]

unless you ran both examples, which means you’ll see double brackets:

[[Hello World.]]

ch02.indd 39ch02.indd 39 3/3/2008 9:45:47 AM3/3/2008 9:45:47 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

40 Oracle Database 11g PL/SQL Programming

Procedures offer you the ability to use pass-by-value or pass-by-reference formal parameters.
As you’ll see in Chapters 6 and 16, stored procedures let you exchange values with external
applications.

Packages
Packages are the backbone of stored programs in Oracle 11g. They act like libraries and are
composed of functions and procedures. Unlike standalone functions and procedures, packages let
you create overloaded functions and procedures. Chapter 9 covers these features of packages.

Packages have a published specification. The specification avoids single parser limitations
because all functions and procedures are published. Publishing acts like forward referencing for
local functions and procedures. Package bodies contain the hidden details of the functions and
procedures rather than their defined signature.

Package bodies must mirror the function and procedure signatures provided in the package
specifications. Package bodies may also contain locally defined types, functions, and procedures.
These structures are only available inside the package body. They mimic the concept of private
access variables in other modern programming languages, like C++ and Java.

Transaction Scope
Transaction scope is a thread of execution—a process. You establish a session when you connect
to the Oracle 11g database. The session lets you set environment variables, like SERVEROUTPUT,
which lets you print from your PL/SQL programs. What you do during your session is visible only
to you until you commit the work. After you commit the changes, other sessions can see the changes
you’ve made.

During a session, you can run one or more PL/SQL programs. They execute serially, or in
sequence. The first program can alter the data or environment before the second runs, and so on.
This is true because your session is the main transaction. All activities potentially depend on all
the prior activities. You can commit work, making all changes permanent, or roll back to reject
work, repudiating all or some changes.

The power to control the session rests with three commands. They were once called
transaction control language (TCL) commands. Some documentation now speaks of them as data
control language (DCL) commands. The book uses DCL to represent these three commands. The
problem is trying to disambiguate this group of commands from Berkeley’s Tcl. The commands are

The COMMIT statement Commits all DML changes made from the beginning of the
session or since the last ROLLBACK statement.

The SAVEPOINT statement Divides two epochs. An epoch is defined by the
transactions between two relative points of time. A SAVEPOINT delimits two epochs.

The ROLLBACK statement Undoes all changes from now to an epoch or named
SAVEPOINT, or now to the beginning of a SQL*Plus session.

These commands let you control what happens in your session and program routines. The
beginning of a session is both the beginning of an epoch and an implicit SAVEPOINT statement.
Likewise, the ending of a session is the ending of an epoch and implicit COMMIT statement.

How you manage transaction scope differs between a single transaction scope and multiple
transaction scopes. You create multiple transaction scopes when a function or procedure is
designated as an autonomous stored program unit.

■

■

■

ch02.indd 40ch02.indd 40 3/3/2008 9:45:48 AM3/3/2008 9:45:48 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 41

Single Transaction Scope
A common business problem involves guaranteeing the sequential behavior of two or more DML
statements. The idea is that they all must either succeed or fail. Partial success is not an option. DCL
commands let you guarantee the behavior of sequential activities in a single transaction scope.

The following program uses DCL commands to guarantee both INSERT statements succeed
or fail:

-- This is found in transaction_scope.sql on the publisher's web site.
BEGIN
 -- Set savepoint.
 SAVEPOINT new_member;
 -- First insert.
 INSERT INTO member VALUES
 (member_s1.nextval, 1005,'D921-71998','4444-3333-3333-4444', 1006
 , 2, SYSDATE, 2, SYSDATE);

 -- Second insert.
 INSERT INTO contact VALUES
 (contact_s1.nextval, member_s1.currval + 1, 1003
 ,'Bodwin','Jordan',''
 , 2, SYSDATE, 2, SYSDATE);
 -- Print success message and commit records.
 dbms_output.put_line('Both succeeded.');
 COMMIT;
EXCEPTION
 WHEN others THEN
 -- Roll back to savepoint, and raise exception message.
 ROLLBACK TO new_member;
 dbms_output.put_line(SQLERRM);
END;
/

The second INSERT statement fails because the foreign key constraint on member_id in
the member table isn’t met. The failure triggers an Oracle exception and shifts control to the
exception block. The first thing the exception block does is roll back to the initial SAVEPOINT
statement set by the anonymous-block program.

Multiple Transaction Scopes
Some business problems require that programs work independently. Independent programs run
in discrete transaction scopes. When you call an autonomous program unit, it runs in another
transaction scope.

You can build autonomous programs with the AUTONOMOUS_TRANSACTION precomplier
instruction. A precompiler instruction is a PRAGMA and sets a specific behavior, like independent
transaction scope. Only the following types of programs can be designated as autonomous routines:

Top-level (not nested) anonymous blocks

Local, standalone, package subroutines—functions and procedures

Methods of the SQL object type

Database triggers

■

■

■

■

ch02.indd 41ch02.indd 41 3/3/2008 9:45:48 AM3/3/2008 9:45:48 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

42 Oracle Database 11g PL/SQL Programming

The beginning transaction scope is known as the main routine. It calls an autonomous
routine, which then spawns its own transaction scope. A failure in the main routine after calling
an autonomous program can only roll back changes made in the main transaction scope. The
autonomous transaction scope can succeed or fail independently of the main routine. However,
the main routine can also fail when an exception is raised in an autonomous transaction.

Chapter 5 includes an example of this type of parallel activity. The primary INSERT statement
fails because of activities in an autonomous database trigger. When the event fires the autonomous
trigger, it writes the attempt to an error table, commits the write, and then raises an exception. The
trigger exception causes the original INSERT statement to fail.

Multiple transaction scope programs are complex. You should be sure the benefits outweigh
the risk when using multiple transaction scope solutions.

Database Triggers
Database triggers are specialized stored programs that are triggered by events in the database.
They run between when you issue a command and when you perform the database management
system action. Because they come in between, you cannot use SQL Data Control Language in
triggers: SAVEPOINT, ROLLBACK, or COMMIT. You can define five types of triggers in the Oracle
Database 11g family of products:

Data Definition Language (DDL) triggers These triggers fire when you create, alter,
rename, or drop objects in a database schema. They are useful to monitor poor
programming practices, such as when programs create and drop temporary tables
rather than use Oracle collections effectively in memory. Temporary tables can fragment
disk space and over time degrade the database performance.

Data Manipulation Language (DML) or row-level triggers These triggers fire when you
insert, update, or delete data from a table. You can use these types of triggers to audit,
check, save, and replace values before they are changed. Automatic numbering of
pseudonumeric primary keys is frequently done by using a DML trigger.

Compound triggers These triggers act as both statement- and row-level triggers when
you insert, update, or delete data from a table. These triggers let you capture information
at four timing points: (a) before the firing statement; (b) before each row change from
the firing statement; (c) after each row change from the firing statement; and (d) after the
firing statement. You can use these types of triggers to audit, check, save, and replace
values before they are changed when you need to take action at both the statement and
row event levels.

Instead of triggers These triggers enable you to stop performance of a DML statement
and redirect the DML statement. INSTEAD OF triggers are often used to manage how
you write to views that disable a direct write because they’re not updatable views. The
INSTEAD OF triggers apply business rules and directly insert, update, or delete rows in
appropriate tables related to these updatable views.

■

■

■

■

ch02.indd 42ch02.indd 42 3/3/2008 9:45:48 AM3/3/2008 9:45:48 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6

Chapter 2: PL/SQL Basics 43

System or database event triggers These triggers fire when a system activity occurs in
the database, like the logon and logoff event triggers used in Chapter 13. These triggers
enable you to track system events and map them to users.

We will cover all five trigger types in Chapter 10.

Summary
This chapter has reviewed the Procedural Language/Structured Query Language (PL/SQL) basics
and explained how to jump-start your PL/SQL skills. The coverage should serve to whet your
appetite for more.

■

ch02.indd 43ch02.indd 43 3/3/2008 9:45:48 AM3/3/2008 9:45:48 AM

Oracle TIGHT / Oracle Database 11g PL/SQL Programming/ McLaughlin / 149 445-6 / Blind folio: 44

ch02.indd 44ch02.indd 44 3/3/2008 9:45:48 AM3/3/2008 9:45:48 AM

