
147

8Business Intelligence

Business intelligence has become a buzzword in recent years. The data-
base tools found under the heading of business intelligence include data
warehousing, online analytical processing (OLAP), and data mining. The
functionalities of these tools are complementary and interrelated. Data
warehousing provides for the efficient storage, maintenance, and retrieval
of historical data. OLAP is a service that provides quick answers to ad hoc
queries against the data warehouse. Data mining algorithms find patterns
in the data and report models back to the user. All three tools are related
to the way data in a data warehouse are logically organized, and perfor-
mance is highly sensitive to the database design techniques used [Bar-
quin and Edelstein, 1997]. The encompassing goal for business intelli-
gence technologies is to provide useful information for decision support.

Each of the major DBMS vendors is marketing the tools for data
warehousing, OLAP, and data mining as business intelligence. This chap-
ter covers each of these technologies in turn. We take a close look at the
requirements for a data warehouse; its basic components and principles
of operation; the critical issues in its design; and the important logical
database design elements in its environment. We then investigate the
basic elements of OLAP and data mining as special query techniques
applied to data warehousing. We cover data warehousing in Section 8.1,
OLAP in Section 8.2, and data mining in Section 8.3.

148 CHAPTER 8 Business Intelligence

8.1 Data Warehousing

A data warehouse is a large repository of historical data that can be inte-
grated for decision support. The use of a data warehouse is markedly dif-
ferent from the use of operational systems. Operational systems contain
the data required for the day-to-day operations of an organization. This
operational data tends to change quickly and constantly. The table sizes
in operational systems are kept manageably small by periodically purg-
ing old data. The data warehouse, by contrast, periodically receives his-
torical data in batches, and grows over time. The vast size of data ware-
houses can run to hundreds of gigabytes, or even terabytes. The problem
that drives data warehouse design is the need for quick results to queries
posed against huge amounts of data. The contrasting aspects of data
warehouses and operational systems result in a distinctive design
approach for data warehousing.

8.1.1 Overview of Data Warehousing

A data warehouse contains a collection of tools for decision support
associated with very large historical databases, which enables the end
user to make quick and sound decisions. Data warehousing grew out of
the technology for decision support systems (DSS) and executive infor-
mation systems (EIS). DSSs are used to analyze data from commonly
available databases with multiple sources, and to create reports. The
report data is not time critical in the sense that a real-time system is, but
it must be timely for decision making. EISs are like DSSs, but more pow-
erful, easier to use, and more business specific. EISs were designed to pro-
vide an alternative to the classical online transaction processing (OLTP)
systems common to most commercially available database systems.
OLTP systems are often used to create common applications, including
those with mission-critical deadlines or response times. Table 8.1 sum-
marizes the basic differences between OLTP and data warehouse systems.

The basic architecture for a data warehouse environment is shown in
Figure 8.1. The diagram shows that the data warehouse is stocked by a
variety of source databases from possibly different geographical loca-
tions. Each source database serves its own applications, and the data
warehouse serves a DSS/EIS with its informational requests. Each feeder
system database must be reconciled with the data warehouse data
model; this is accomplished during the process of extracting the
required data from the feeder database system, transforming the data

8.1 Data Warehousing 149

from the feeder system to the data warehouse, and loading the data into
the data warehouse [Cataldo, 1997].

Core Requirements for Data Warehousing

Let us now take a look at the core requirements and principles that guide
the design of data warehouses (DWs) [Simon, 1995; Barquin and Edel-
stein, 1997; Chaudhuri and Dayal, 1997; Gray and Watson, 1998]:

1. DWs are organized around subject areas. Subject areas are analo-
gous to the concept of functional areas, such as sales, project
management, or employees, as discussed in the context of ER dia-
gram clustering in Section 4.5. Each subject area has its own con-
ceptual schema and can be represented using one or more entities
in the ER data model or by one or more object classes in the
object-oriented data model. Subject areas are typically indepen-
dent of individual transactions involving data creation or manip-
ulation. Metadata repositories are needed to describe source
databases, DW objects, and ways of transforming data from the
sources to the DW.

2. DWs should have some integration capability. A common data
representation should be designed so that all the different indi-
vidual representations can be mapped to it. This is particularly

Table 8.1 Comparison between OLTP and Data Warehouse Databases

OLTP Data Warehouse

Transaction oriented Business process oriented

Thousands of users Few users (typically under 100)

Generally small (MB up to several GB) Large (from hundreds of GB to several TB)

Current data Historical data

Normalized data
(many tables, few columns per table)

Denormalized data
(few tables, many columns per table)

Continuous updates Batch updates*

Simple to complex queries Usually very complex queries

* There is currently a push in the industry towards “active warehousing,” in which the
warehouse receives data in continuous updates. See Section 8.2.5 for further discussion.

150 CHAPTER 8 Business Intelligence

useful if the warehouse is implemented as a multidatabase or fed-
erated database.

3. The data is considered to be nonvolatile and should be mass
loaded. Data extraction from current databases to the DW
requires that a decision should be made whether to extract the
data using standard relational database (RDB) techniques at the
row or column level or specialized techniques for mass extraction.
Data cleaning tools are required to maintain data quality—for
example, to detect missing data, inconsistent data, homonyms,
synonyms, and data with different units. Data migration, data
scrubbing, and data auditing tools handle specialized problems in
data cleaning and transformation. Such tools are similar to those
used for conventional relational database schema (view) integra-
tion. Load utilities take cleaned data and load it into the DW,
using batch processing techniques. Refresh techniques propagate
updates on the source data to base data and derived data in the
DW. The decision of when and how to refresh is made by the DW

Figure 8.1 Basic data warehouse architecture

feeder
DB1

Operational
Applications

Operational
Applications

Operational
Applications

feeder
DB2

feeder
DB3

Data
Warehouse

Extract

Report Generators

Ad Hoc Query Tools

OLAP

Datamining

Extract Extract

Staging Area
Transform

Load

8.1 Data Warehousing 151

administrator and depends on user needs (e.g., OLAP needs) and
existing traffic to the DW.

4. Data tends to exist at multiple levels of granularity. Most impor-
tant, the data tends to be of a historical nature, with potentially
high time variance. In general, however, granularity can vary
according to many different dimensions, not only by time frame
but also by geographic region, type of product manufactured or
sold, type of store, and so on. The sheer size of the databases is a
major problem in the design and implementation of DWs, espe-
cially for certain queries, updates, and sequential backups. This
necessitates a critical decision between using a relational database
(RDB) or a multidimensional database (MDD) for the implemen-
tation of a DW.

5. The DW should be flexible enough to meet changing require-
ments rapidly. Data definitions (schemas) must be broad enough
to anticipate the addition of new types of data. For rapidly chang-
ing data retrieval requirements, the types of data and levels of
granularity actually implemented must be chosen carefully.

6. The DW should have a capability for rewriting history, that is,
allowing for “what-if” analysis. The DW should allow the admin-
istrator to update historical data temporarily for the purpose of
“what-if” analysis. Once the analysis is completed, the data must
be correctly rolled back. This condition assumes that the data are
at the proper level of granularity in the first place.

7. A usable DW user interface should be selected. The leading
choices today are SQL, multidimensional views of relational data,
or a special-purpose user interface. The user interface language
must have tools for retrieving, formatting, and analyzing data.

8. Data should be either centralized or distributed physically. The
DW should have the capability to handle distributed data over a
network. This requirement will become more critical as the use of
DWs grows and the sources of data expand.

The Life Cycle of Data Warehouses

Entire books have been written about select portions of the data ware-
house life cycle. Our purpose in this section is to present some of the
basics and give the flavor of data warehousing. We strongly encourage
those who wish to pursue data warehousing to continue learning
through other books dedicated to data warehousing. Kimball and Ross

152 CHAPTER 8 Business Intelligence

[1998, 2002] have a series of excellent books covering the details of data
warehousing activities.

Figure 8.2 outlines the activities of the data warehouse life cycle,
based heavily on Kimball and Ross’s Figure 16.1 [2002]. The life cycle
begins with a dialog to determine the project plan and the business
requirements. When the plan and the requirements are aligned, design
and implementation can proceed. The process forks into three threads
that follow independent timelines, meeting up before deployment (see
Figure 8.2). Platform issues are covered in one thread, including techni-
cal architectural design, followed by product selection and installation.
Data issues are covered in a second thread, including dimensional mod-
eling and then physical design, followed by data staging design and
development. The special analytical needs of the users are pursued in the
third thread, including analytic application specification followed by
analytic application development. These three threads join before
deployment. Deployment is followed by maintenance and growth, and
changes in the requirements must be detected. If adjustments are
needed, the cycle repeats. If the system becomes defunct, then the life
cycle terminates.

The remainder of our data warehouse section focuses on the dimen-
sional modeling activity. More comprehensive material can be found in
Kimball and Ross [1998, 2002] and Kimball and Caserta [2004].

8.1.2 Logical Design

We discuss the logical design of data warehouses in this section; the
physical design issues are covered in volume two. The logical design of
data warehouses is defined by the dimensional data modeling approach.
We cover the schema types typically encountered in dimensional model-
ing, including the star schema and the snowflake schema. We outline
the dimensional design process, adhering to the methodology described
by Kimball and Ross [2002]. Then we walk through an example, cover-
ing some of the crucial concepts of dimensional data modeling.

Dimensional Data Modeling

The dimensional modeling approach is quite different from the normaliza-
tion approach typically followed when designing a database for daily oper-
ations. The context of data warehousing compels a different approach to
meeting the needs of the user. The need for dimensional modeling will be

8.1 Data Warehousing 153

Figure 8.2 Data warehouse life cycle (based heavily on Kimball and Ross [2002],
Figure 16.1)

Project Planning

Business Requirements
Definition

Dimensional
Modeling

Physical Design

Data Staging Design
and Development

Deployment

Maintenance and Growth,
detect requirement changes

Technical
Architecture

Design

Product Selection
and Installation

Analytic
Application
Specification

Analytic
Application

Development

[plan aligned with business requirements]

[more dialog needed]

[adjustment needed] [system defunct]

154 CHAPTER 8 Business Intelligence

discussed further as we proceed. If you haven’t been exposed to data ware-
housing before, be prepared for some new paradigms.

The Star Schema

Data warehouses are commonly organized with one large central fact
table, and many smaller dimension tables. This configuration is termed a
star schema; an example is shown in Figure 8.3. The fact table is com-
posed of two types of attributes: dimension attributes and measures. The
dimension attributes in Figure 8.3 are CustID, ShipDateID, BindID, and
JobId. Most dimension attributes have foreign key/primary key relation-
ships with dimension tables. The dimension tables in Figure 8.3 are Cus-
tomer, Ship Calendar, and Bind Style. Occasionally, a dimension
attribute exists without a related dimension table. Kimball and Ross refer
to these as degenerate dimensions. The JobId attribute in Figure 8.3 is a
degenerate dimension (more on this shortly). We indicate the dimen-
sion attributes that act as foreign keys using the stereotype «fk». The pri-
mary keys of the dimension tables are indicated with the stereotype
«pk». Any degenerate dimensions in the fact table are indicated with the
stereotype «dd». The fact table also contains measures, which contain
values to be aggregated when queries group rows together. The measures
in Figure 8.3 are Cost and Sell.

Queries against the star schema typically use attributes in the dimen-
sion tables to select the pertinent rows from the fact table. For example,
the user may want to see cost and sell for all jobs where the Ship Month

Figure 8.3 Example of a star schema for a data warehouse

Ship Calendar

«pk» ShipDateID
Ship Date
Ship Month
Ship Quarter
Ship Year
Ship Day of Week

Fact Table

«fk» CustID
«fk» ShipDateID
«fk» BindID
«dd» JobID
Cost
Sell

Customer

«pk» CustID
Name
CustType
City
State Province
Country

Bind Style

«pk» BindID
Bind Desc
Bind Category

*

*

1

1

1
*

8.1 Data Warehousing 155

is January 2005. The dimension table attributes are also typically used to
group the rows in useful ways when exploring summary information.
For example, the user may wish to see the total cost and sell for each
Ship Month in the Ship Year 2005. Notice that dimension tables can
allow different levels of detail the user can examine. For example, the
Figure 8.3 schema allows the fact table rows to be grouped by Ship Date,
Month, Quarter or Year. These dimension levels form a hierachy. There is
also a second hierarchy in the Ship Calendar dimension that allows the
user to group fact table rows by the day of the week. The user can move
up or down a hierarchy when exploring the data. Moving down a hierar-
chy to examine more detailed data is a drill-down operation. Moving up a
hierarchy to summarize details is a roll-up operation.

Together, the dimension attributes compose a candidate key of the
fact table. The level of detail defined by the dimension attributes is the
granularity of the fact table. When designing a fact table, the granularity
should be the most detailed level available that any user would wish to
examine. This requirement sometimes means that a degenerate dimen-
sion, such as JobId in Figure 8.3, must be included. The JobId in this star
schema is not used to select or group rows, so there is no related dimen-
sion table. The purpose of the JobId attribute is to distinguish rows at
the correct level of granularity. Without the JobId attribute, the fact
table would group together similar jobs, prohibiting the user from exam-
ining the cost and sell values of individual jobs.

Normalization is not the guiding principle in data warehouse design.
The purpose of data warehousing is to provide quick answers to queries
against a large set of historical data. Star schema organization facilitates
quick response to queries in the context of the data warehouse. The core
detailed data are centralized in the fact table. Dimensional information
and hierarchies are kept in dimension tables, a single join away from the
fact table. The hierarchical levels of data contained in the dimension
tables of Figure 8.3 violate 3NF, but these violations to the principles of
normalization are justified. The normalization process would break each
dimension table in Figure 8.3 into multiple tables. The resulting normal-
ized schema would require more join processing for most queries. The
dimension tables are small in comparison to the fact table, and typically
slow changing. The bulk of operations in the data warehouse are read
operations. The benefits of normalization are low when most operations
are read only. The benefits of minimizing join operations overwhelm the
benefits of normalization in the context of data warehousing. The
marked differences between the data warehouse environment and the

156 CHAPTER 8 Business Intelligence

operational system environment lead to distinct design approaches.
Dimensional modeling is the guiding principle in data warehouse
design.

Snowflake Schema

The data warehouse literature often refers to a variation of the star
schema known as the snowflake schema. Normalizing the dimension
tables in a star schema leads to a snowflake schema. Figure 8.4 shows the
snowflake schema analogous to the star schema of Figure 8.3. Notice
that each hierarchical level becomes its own table. The snowflake
schema is generally losing favor. Kimball and Ross strongly prefer the
star schema, due to its speed and simplicity. Not only does the star
schema yield quicker query response, it is also easier for the user to
understand when building queries. We include the snowflake schema
here for completeness.

Dimensional Design Process

We adhere to the four-step dimensional design process promoted by Kim-
ball and Ross. Figure 8.5 outlines the activities in the four-step process.

Dimensional Modeling Example

Congratulations, you are now the owner of the ACME Data Mart Com-
pany! Your company builds data warehouses. You consult with other
companies, design and deploy data warehouses to meet their needs, and
support them in their efforts.

Your first customer is XYZ Widget, Inc. XYZ Widget is a manufactur-
ing company with information systems in place. These are operational
systems that track the current and recent state of the various business
processes. Older records that are no longer needed for operating the
plant are purged. This keeps the operational systems running efficiently.

XYZ Widget is now ten years old, and growing fast. The management
realizes that information is valuable. The CIO has been saving data
before they are purged from the operational system. There are tens of
millions of historical records, but there is no easy way to access the data
in a meaningful way. ACME Data Mart has been called in to design and
build a DSS to access the historical data.

Discussions with XYZ Widget commence. There are many questions
they want to have answered by analyzing the historical data. You begin
by making a list of what XYZ wants to know.

8.1 Data Warehousing 157

Figure 8.4 Example of a snowflake schema for a data warehouse

Figure 8.5 Four step dimensional design process [Kimball and Ross, 2002]

Fact TableShip Date

Bind Style

Customer

Ship Day of Week

Ship Month

Ship Quarter

Ship Year

Bind Category

City

State Province

Country

Cust Type

Select a Business Process

Choose Dimensions

Identify Measures

Determine Granularity

[more business processes] [else]

158 CHAPTER 8 Business Intelligence

XYZ Widget Company Wish List

1. What are the trends of our various products in terms of sales dol-
lars, unit volume, and profit margin?

2. For those products that are not profitable, can we drill down and
determine why they are not profitable?

3. How accurately do our estimated costs match our actual costs?

4. When we change our estimating calculations, how are sales and
profitability affected?

5. What are the trends in the percentage of jobs that ship on time?

6. What are the trends in productivity by department, for each
machine, and for each employee?

7. What are the trends in meeting the scheduled dates for each
department, and for each machine?

8. How effective was the upgrade on machine 123?

9. Which customers bring the most profitable jobs?

10. How do our promotional bulk discounts affect sales and profit-
ability?

Looking over the wish list, you begin picking out the business pro-
cesses involved. The following list is sufficient to satisfy the items on the
wish list.

Business Processes

1. Estimating

2. Scheduling

3. Productivity Tracking

4. Job Costing

These four business processes are interlinked in the XYZ Widget Com-
pany. Let’s briefly walk through the business processes and the organiza-
tion of information in the operational systems, so we have an idea what
information is available for analysis. For each business process, we’ll
design a star schema for storing the data.

The estimating process begins by entering widget specifications. The
type of widget determines which machines are used to manufacture the
widget. The estimating software then calculates estimated time on each

8.1 Data Warehousing 159

machine used to produce that particular type of widget. Each machine is
modeled with a standard setup time and running speed. If a particular
type of widget is difficult to process on a particular machine, the times
are adjusted accordingly. Each machine has an hourly rate. The esti-
mated time is multiplied by the rate to give labor cost. Each estimate
stores widget specifications, a breakdown of the manufacturing costs,
the markup and discount applied (if any), and the price. The quote is
sent to the customer. If the customer accepts the quote, then the quote
is associated with a job number, the specifications are printed as a job
ticket, and the job ticket moves to scheduling.

We need to determine the grain before designing a schema for the
estimating data mart. The grain should be at the most detailed level, giv-
ing the greatest flexibility for drill-down operations when users are
exploring the data. The most granular level in the estimating process is
the estimating detail. Each estimating detail record specifies information
for an individual cost center for a given estimate. This is the finest gran-
ularity of estimating data in the operational system, and this level of
detail is also potentially valuable for the data warehouse users.

The next design step is to determine the dimensions. Looking at the
estimating detail, we see that the associated attributes are the job specifi-
cations, the estimate number and date, the job number and win date if
the estimate becomes a job, the customer, the promotion, the cost cen-
ter, the widget quantity, estimated hours, hourly rate, estimated cost,
markup, discount, and price. Dimensions are those attributes that the
users want to group by when exploring the data. The users are interested
in grouping by the various job specifications and by the cost center. The
users also need to be able to group by date ranges. The estimate date and
the win date are both of interest. Grouping by customer and promotion
are also of interest to the users. These become the dimensions of the star
schema for the estimating process.

Next, we identify the measures. Measures are the columns that con-
tain values to be aggregated when rows are grouped together. The mea-
sures in the estimating process are estimated hours, hourly rate, esti-
mated cost, markup, discount, and price.

The star schema resulting from the analysis of the estimating process
is shown in Figure 8.6. There are five widget qualities of interest: shape,
color, texture, density, and size. For example, a given widget might be a
medium round red fuzzy fluffy widget. The estimate and job numbers
are included as degenerate dimensions. The rest of the dimensions and
measures are as outlined in the previous two paragraphs.

160 CHAPTER 8 Business Intelligence

Dimension values are categorical in nature. For example, a given
widget might have a density of fluffy or heavy. The values for the size
dimension include small, medium, and large. Measures tend to be
numeric, since they are typically aggregated using functions such as sum
or average.

The dimension tables should include any hierarchies that may be
useful for analysis. For example, widgets are offered in many colors. The
colors fall into categories by hue (e.g., pink, blue) and intensity (e.g.,
pastel, hot). Some even glow in the dark! The user may wish to examine
all the pastel widgets as a group, or compare pink versus blue widgets.
Including these attributes in the dimension table as shown in Figure 8.7
can accommodate this need.

Figure 8.6 Star schema for estimating process

Figure 8.7 Color dimension showing attributes

«fk» shape id
«fk» color id
«fk» texture id
«fk» density id
«fk» size id
«fk» estimate date id
«dd» estimate number
«fk» win date id
«dd» job number
«fk» customer id
«fk» promotion id
«fk» cost center id
widget quantity
estimated hours
hourly rate
estimated cost
markup
discount
price

Estimating DetailShape Color

Texture Density

Size Estimate Date

Customer

Promotion Cost Center

Win Date

Color

«pk» color id
color description
hue
intensity
glows in dark

8.1 Data Warehousing 161

Dates can also form hierarchies. For example, the user may wish to
group by month, quarter, year or the day of the week. Date dimensions
are very common. The estimating process has two date dimensions: the
estimate date and the win date. Typically, the date dimensions have
analogous attributes. There is an advantage in standardizing the date
dimensions across the company. Kimball and Ross [2002] recommend
establishing a single standard date dimension, and then creating views
of the date dimension for use in multiple dimensions. The use of views
provides for standardization, while at the same time allowing the
attributes to be named with aliases for intuitive use when multiple date
dimensions are present. Figure 8.8 illustrates this concept with a date
dimension and two views named Estimate Date and Win Date.

Let’s move on to the scheduling process. Scheduling uses the times
calculated by the estimating process to plan the workload on each
required machine. Target dates are assigned to each manufacturing step.
The job ticket moves into production after the scheduling process com-
pletes.

XYZ Widget, Inc. has a shop floor automatic data collection (ADC)
system. Each job ticket has a bar code for the assigned job number. Each
machine has a sheet with bar codes representing the various operations
of that machine. Each employee has a badge with a bar code represent-
ing that employee. When an employee starts an operation, the job bar
code is scanned, the operation bar code is scanned, and the employee
bar code is scanned. The computer pulls in the current system time as
the start time. When one operation starts, the previous operation for
that employee is automatically stopped (an employee is unable do more
than one operation at once). When the work on the widget job is com-
plete on that machine, the employee marks the job complete via the
ADC system. The information gathered through the ADC system is used
to update scheduling, track the employee’s work hours and productivity,
and also track the machine’s productivity.

Figure 8.8 Date dimensions showing attributes

Date

«pk» date id
date description
month
quarter
year
day of week

Win Date

«pk» win date id
win date description
win month
win quarter
win year
win day of week

Estimate Date

«pk» estimate date id
estimate date description
estimate month
estimate quarter
estimate year
estimate day of week

162 CHAPTER 8 Business Intelligence

The design of a star schema for the scheduling process begins by
determining the granularity. The most detailed scheduling table in the
operational system has a record for each cost center applicable to manu-
facturing each job. The users in the scheduling department are inter-
ested in drilling down to this level of detail in the data warehouse. The
proper level of granularity in the star schema for scheduling is deter-
mined by the job number and the cost center.

Next we determine the dimensions in the star schema for the sched-
uling process. The operational scheduling system tracks the scheduled
start and finish date and times, as well as the actual start and finish date
and times. The estimated and actual hours are also stored in the opera-
tional scheduling details table, along with a flag indicating whether the
operation completed on time. The scheduling team must have the abil-
ity to group records by the scheduled and actual start and finish times.
Also critical is the ability to group by cost center. The dimensions of the
star schema for scheduling are the scheduled and actual start and finish
date and times, and the cost center. The job number must also be
included as a degenerate dimension to maintain the proper granularity
in the fact table. Figure 8.9 reflects the decisions on the dimensions
appropriate for the scheduling process.

The scheduling team is interested in aggregating the estimated hours
and, also, the actual hours. They are also very interested in examining
trends in on-time performance. The appropriate measures for the sched-
uling star schema include the estimated and actual hours and a flag indi-
cating whether the operation was finished on time. The appropriate
measures for scheduling are reflected in Figure 8.9.

Figure 8.9 Star schema for the scheduling process

«dd» job number
«fk» cost center id
«fk» sched start date id
«fk» sched start time id
«fk» sched finish date id
«fk» sched finish time id
«fk» actual start date id
«fk» actual start time id
«fk» actual finish date id
«fk» actual finish time id
finished on time
estimated hours
actual hours

Scheduling DetailCost Center

Sched Start Date

Actual Start Date
Sched Start Time

Actual Start Time

Actual Finish Date
Sched Finish Time

Actual Finish Time

Sched Finish Date

8.1 Data Warehousing 163

There are several standardization principles in play in Figure 8.9.
Note that there are multiple time dimensions. These should be standard-
ized with a single time dimension, along with views filling the different
roles, similar to the approach used for the date dimensions. Also, notice
the Cost Center dimension is present both in the estimating and the
scheduling processes. These are actually the same, and should be
designed as a single dimension. Dimensions can be shared between mul-
tiple star schemas. One last point: the estimated hours are carried from
estimating into scheduling in the operational systems. These numbers
feed into the star schemas for both the estimating and the scheduling
processes. The meaning is the same between the two attributes; there-
fore, they are both named “estimated hours.” The rule of thumb is that
if two attributes carry the same meaning, they should be named the
same, and if two attributes are named the same, they carry the same
meaning. This consistency allows discussion and comparison of infor-
mation between business processes across the company.

The next process we examine is productivity tracking. The granular-
ity is determined by the level of detail available in the ADC system. The
detail includes the job number, cost center, employee number, and the
start and finish date and time. The department managers need to be able
to group rows by cost center, employee, and start and finish date and
times. These attributes therefore become the dimensions of the star
schema for the productivity process, shown in Figure 8.10. The manag-
ers are interested in aggregating productivity numbers, including the
widget quantity produced, the percentage finished on time and the esti-
mated and actual hours. Since these attributes are to be aggregated, they
become the measures shown in Figure 8.10.

Figure 8.10 Star schema for the productivity tracking process

«dd» job number
«fk» cost center id
«fk» employee id
«fk» actual start date id
«fk» actual start time id
«fk» actual finish date id
«fk» actual finish time id
widget quantity
finished on time
estimated hours
actual hours

Productivity DetailCost Center

Employee Actual Start Date

Actual Start Time

Actual Finish Date

Actual Finish Time

164 CHAPTER 8 Business Intelligence

There are often dimensions in common between star schemas in a
data warehouse, because business processes are usually interlinked. A
useful tool for tracking the commonality and differences of dimensions
across multiple business processes is the data warehouse bus [Kimball
and Ross, 2002]. Table 8.2 shows a data warehouse bus for the four busi-
ness processes in our dimensional design example. Each row represents a
business process. Each column represents a dimension. Each X in the
body of the table represents the use of the given dimension in the given
business process. The data warehouse bus is a handy means of present-
ing the organization of a data warehouse at a high level. The dimensions
common between multiple business processes need to be standardized
or “conformed” in Kimball and Ross’s terminology. A dimension is con-
formed if there exists a most detailed version of that dimension, and all
other uses of that dimension utilize a subset of the attributes and a sub-
set of the rows from that most detailed version. Conforming dimensions
ensures that whenever data are related or compared across business pro-
cesses, the result is meaningful.

The data warehouse bus also makes some design decisions more
obvious. We have taken the liberty of choosing the dimensions for the
job-costing process. Table 8.2 includes a row for the job-costing process.
When you compare the rows for estimating and job costing, it quickly
becomes clear that the two processes have most of the same dimensions.
It probably makes sense to combine these two processes into one star

Table 8.2 Data Warehouse Bus for Widget Example

Sh
ap

e

C
ol

or

Te
xt

ur
e

D
en

si
ty

Si
ze

Es
ti

m
at

e
D

at
e

W
in

 D
at

e

C
us

to
m

er

Pr
om

ot
io

n

C
os

t
C

en
te

r

Sc
he

d
St

ar
t

D
at

e

Sc
he

d
St

ar
t

Ti
m

e

Sc
he

d
Fi

ni
sh

 D
at

e

Sc
he

d
Fi

ni
sh

 T
im

e

A
ct

ua
l S

ta
rt

 D
at

e

A
ct

ua
l S

ta
rt

 T
im

e

A
ct

ua
l F

in
is

h
D

at
e

A
ct

ua
l F

in
is

h
Ti

m
e

Em
pl

oy
ee

In
vo

ic
e

D
at

e

Estimating X X X X X X X X X X

Scheduling X X X X X X X X X

Productivity
Tracking

X X X X X X

Job Costing X X X X X X X X X

8.1 Data Warehousing 165

schema. This is especially true since job-costing analysis requires com-
paring estimated and actual values. Figure 8.11 is the result of combin-
ing the estimating and job costing processes into one star schema.

Summarizing Data

The star schemas we have covered so far are excellent for capturing the
pertinent details. Having fine granularity available in the fact table
allows the users to examine data down to that level of granularity. How-
ever, the users will often want summaries. For example, the managers
may often query for a daily snapshot of the job-costing data. Every
query the user may wish to pose against a given star schema can be
answered from the detailed fact table. The summary could be aggregated
on the fly from the fact table. There is an obvious drawback to this strat-
egy. The fact table contains many millions of rows, due to the detailed
nature of the data. Producing a summary on the fly can be expensive in
terms of computer resources, resulting in a very slow response. If a sum-
mary table were available to answer the queries for the job costing daily
snapshot, then the answer could be presented to the user blazingly fast.

Figure 8.11 Star schema for the job costing process

«fk» shape id
«fk» color id
«fk» texture id
«fk» density id
«fk» size id
«fk» estimate date id
«dd» estimate number
«fk» win date id
«dd» job number
«fk» customer id
«fk» promotion id
«fk» cost center id
«fk» invoice date id
widget quantity
estimated hours
hourly rate
estimated cost
markup
discount
price
actual hours
actual cost

Job Costing DetailShape Color

Texture Density

Size Estimate Date

Customer

Promotion Cost Center

Win Date

Invoice Date

166 CHAPTER 8 Business Intelligence

The schema for the job costing daily snapshot is shown in Figure 8.12.
Notice that most of the dimensions used in the job-costing detail are not
used in the snapshot. Summarizing the data has eliminated the need for
most dimensions in this context. The daily snapshot contains one row
for each day that jobs have been invoiced. The number of rows in the
snapshot would be in the thousands. The small size of the snapshot
allows very quick response when a user requests the job costing daily
snapshot. When there are a small number of summary queries that
occur frequently, it is a good strategy to materialize the summary data
needed to answer the queries quickly.

The daily snapshot schema in Figure 8.12 also allows the user to
group by month, quarter, or year. Materializing summary data is useful
for quick response to any query that can be answered by aggregating the
data further.

8.2 Online Analytical Processing (OLAP)

Designing and implementing strategic summary tables is a good
approach when there is a small set of frequent queries for summary data.
However, there may be a need for some users to explore the data in an ad
hoc fashion. For example, a user who is looking for types of jobs that
have not been profitable needs to be able to roll up and drill down vari-
ous dimensions of the data. The ad hoc nature of the process makes pre-
dicting the queries impossible. Designing a strategic set of summary
tables to answer these ad hoc explorations of the data is a daunting task.
OLAP provides an alternative. OLAP is a service that overlays the data
warehouse. The OLAP system automatically selects a strategic set of sum-
mary views, and saves the automatic summary tables (AST) to disk as
materialized views. The OLAP system also maintains these views, keep-

Figure 8.12 Schema for the job costing daily snapshot

«fk» invoice date id
widget quantity
estimated hours
estimated cost
price
actual hours
actual cost

Job Costing Daily Snapshot

Invoice Date

8.2 Online Analytical Processing (OLAP) 167

ing them in step with the fact tables as new data arrives. When a user
requests summary data, the OLAP system figures out which AST can be
used for a quick response to the given query. OLAP systems are a good
solution when there is a need for ad hoc exploration of summary infor-
mation based on large amounts of data residing in a data warehouse.

OLAP systems automatically select, maintain, and use the ASTs.
Thus, an OLAP system effectively does some of the design work auto-
matically. This section covers some of the issues that arise in building an
OLAP engine, and some of the possible solutions. If you use an OLAP
system, the vendor delivers the OLAP engine to you. The issues and solu-
tions discussed here are not items that you need to resolve. Our goal
here is to remove some of the mystery about what an OLAP system is
and how it works.

8.2.1 The Exponential Explosion of Views

Materialized views aggregated from a fact table can be uniquely identi-
fied by the aggregation level for each dimension. Given a hierarchy
along a dimension, let 0 represent no aggregation, 1 represent the first
level of aggregation, and so on. For example, if the Invoice Date dimen-
sion has a hierarchy consisting of date id, month, quarter, year and “all”
(i.e., complete aggregation), then date id is level 0, month is level 1,
quarter is level 2, year is level 3, and “all” is level 4. If a dimension does
not explicitly have a hierarchy, then level 0 is no aggregation, and level
1 is “all.” The scales so defined along each dimension define a coordi-
nate system for uniquely identifying each view in a product graph. Fig-
ure 8.13 illustrates a product graph in two dimensions. Product graphs
are a generalization of the hypercube lattice structure introduced by
Harinarayan, Rajaraman, and Ullman [1996], where dimensions may
have associated hierarchies. The top node, labeled (0, 0) in Figure 8.13,
represents the fact table. Each node represents a view with aggregation
levels as indicated by the coordinate. The relationships descending the
product graph indicate aggregation relationships. The five shaded nodes
indicate that these views have been materialized. A view can be aggre-
gated from any materialized ancestor view. For example, if a user issues a
query for rows grouped by year and state, that query would naturally be
answered by the view labeled (3, 2). View (3, 2) is not materialized, but
the query can be answered from the materialized view (2, 1) since (2, 1)
is an ancestor of (3, 2). Quarters can be aggregated into years, and cities
can be aggregated into states.

168 CHAPTER 8 Business Intelligence

The central issue challenging the design of OLAP systems is the
exponential explosion of possible views as the number of dimensions
increases. The Calendar dimension in Figure 8.13 has five levels of hier-
archy, and the Customer dimension has four levels of hierarchy. The
user may choose any level of aggregation along each dimension. The
number of possible views is the product of the number of hierarchical
levels along each dimension. The number of possible views for the
example in Figure 8.13 is 5 × 4 = 20. Let d be the number of dimensions
in a data warehouse. Let hi be the number of hierarchical levels in
dimension i. The general equation for calculating the number of possi-
ble views is given by Equation 8.1.

Possible views = 8.1

If we express Equation 8.1 in different terms, the problem of expo-
nential explosion becomes more apparent. Let g be the geometric mean

Figure 8.13 Product graph labeled with aggregation level coordinates

Calendar Dimension
(first dimension)

0: date id
1: month
2: quarter
3: year
4: all

Customer Dimension
(second dimension)

0: cust id
1: city
2: state
3: all

(0, 0)

(1, 0) (0, 1)

(1, 1) (0, 2)

(1, 2) (0, 3)

(1, 3)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

Fact Table

hi

i 1=

d

∏

8.2 Online Analytical Processing (OLAP) 169

of the number of hierarchical levels in the dimensions. Then Equation
8.1 becomes Equation 8.2.

Possible views = gd 8.2

As dimensionality increases linearly, the number of possible views
explodes exponentially. If g = 5 and d = 5, there are 55 = 3,125 possible
views. Thus if d = 10, then there are 510 = 9,765,625 possible views.
OLAP administrators need the freedom to scale up the dimensionality of
their data warehouses. Clearly the OLAP system cannot create and main-
tain all possible views as dimensionality increases. The design of OLAP
systems must deliver quick response while maintaining a system within
the resource limitations. Typically, a strategic subset of views must be
selected for materialization.

8.2.2 Overview of OLAP

There are many approaches to implementing OLAP systems presented in
the literature. Figure 8.14 maps out one possible approach, which will
serve for discussion. The larger problem of OLAP optimization is broken
into four subproblems: view size estimation, materialized view selection,
materialized view maintenance, and query optimization with material-
ized views. This division is generally true of the OLAP literature, and is
reflected in the OLAP system plan shown in Figure 8.14.

We describe how the OLAP processes interact in Figure 8.14, and
then explore each process in greater detail. The plan for OLAP optimiza-
tion shows Sample Data moving from the Fact Table into View Size Esti-
mation. View Selection makes an Estimate Request for the view size of each
view it considers for materialization. View Size Estimation queries the
Sample Data, examines it, and models the distribution. The distribution
observed in the sample is used to estimate the expected number of rows
in the view for the full dataset. The Estimated View Size is passed to View
Selection, which uses the estimates to evaluate the relative benefits of
materializing the various views under consideration. View Selection picks
Strategically Selected Views for materialization with the goal of minimiz-
ing total query costs. View Maintenance builds the original views from
the Initial Data from the Fact Table, and maintains the views as Incremen-
tal Data arrives from Updates. View Maintenance sends statistics on View
Costs back to View Selection, allowing costly views to be discarded
dynamically. View Maintenance offers Current Views for use by Query Opti-
mization. Query Optimization must consider which of the Current Views

170 CHAPTER 8 Business Intelligence

can be utilized to most efficiently answer Queries from Users, giving
Quick Responses to the Users. View Usage feeds back into View Selection,
allowing the system to dynamically adapt to changes in query work-
loads.

8.2.3 View Size Estimation

OLAP systems selectively materialize strategic views with high benefits
to achieve quick response to queries, while remaining within the
resource limits of the computer system. The size of a view affects how
much disk space is required to store the view. More importantly, the size
of the view determines in part how much disk input/output will be con-
sumed when querying and maintaining the view. Calculating the exact
size of a given view requires calculating the view from the base data.
Reading the base data and calculating the view is the majority of the
work necessary to materialize the view. Since the objective of view mate-
rialization is to conserve resources, it becomes necessary to estimate the
size of the views under consideration for materialization.

Cardenas’ formula [Cardenas, 1975] is a simple equation (Equation
8.3) that is applicable to estimating the number of rows in a view:

Figure 8.14 A plan for OLAP optimization

Fact Table

Updates

Sample Data

Estimated
View Size

Strategically
Selected Views

Current Views

Incremental Data

Queries
Quick Responses

Estimate
Request

View Size Estimation

View Selection

View Maintenance

Initial Data

View Usage

Users Query Optimization

View Costs

8.2 Online Analytical Processing (OLAP) 171

Let n be the number of rows in the fact table.

Let v be the number of possible keys in the data space of the view.

Expected distinct values = v(1 – (1 – 1/v)n) 8.3

Cardenas’ formula assumes a uniform data distribution. However,
many data distributions exist. The data distribution in the fact table
affects the number of rows in a view. Cardenas’ formula is very quick,
but the assumption of a uniform data distribution leads to gross overesti-
mates of the view size when the data is actually clustered. Other meth-
ods have been developed to model the effect of data distribution on the
number of rows in a view.

Faloutsos, Matias, and Silberschatz [1996] present a sampling
approach based on the binomial multifractal distribution. Parameters of
the distribution are estimated from a sample. The number of rows in the
aggregated view for the full data set is then estimated using the parame-
ter values determined from the sample. Equations 8.4 and 8.5 [Faloutsos,
Matias, and Silberschatz, 1996] are presented for this purpose.

Expected distinct values = 8.4

Pa = Pk–a(1 – P)a 8.5

Figure 8.15 illustrates an example. Order k is the decision tree depth.
Ck

a is the number of bins in the set reachable by taking some combina-
tion of a left hand edges and k – a right hand edges in the decision tree.
Pa is the probability of reaching a given bin whose path contains a left
hand edges. n is the number of rows in the data set. Bias P is the proba-
bility of selecting the right hand edge at a choice point in the tree.

The calculations of Equation 8.4 are illustrated with a small example.
An actual database would yield much larger numbers, but the concepts
and the equations are the same. These calculations can be done with log-
arithms, resulting in very good scalability. Based on Figure 8.15, given
five rows, calculate the expected distinct values using Equation 8.4:

Expected distinct values =

1 ⋅ (1 – (1 – 0.729)5) + 3 ⋅ (1 – (1 – 0.081)5) +

3 ⋅ (1 – (1 – 0.009)5) + 1 ⋅ (1 – (1 – 0.001)5) ≈1.965 8.6

Ca
k 1 1 Pa–()n

–()
a 0=

k

∑

172 CHAPTER 8 Business Intelligence

The values of P and k can be estimated based on sample data. The
algorithm used in [Faloutsos, Matias, and Silberschatz, 1996] has three
inputs: the number of rows in the sample, the frequency of the most
commonly occurring value, and the number of distinct aggregate rows
in the sample. The value of P is calculated based on the frequency of the
most commonly occurring value. They begin with:

k = ⎡Log2(Distinct rows in sample)⎤ 8.7

and then adjust k upwards, recalculating P until a good fit to the number
of distinct rows in the sample is found.

Other distribution models can be utilized to predict the size of a view
based on sample data. For example, the use of the Pareto distribution
model has been explored [Nadeau and Teorey, 2003]. Another possibility
is to find the best fit to the sample data for multiple distribution models,
calculate which model is most likely to produce the given sample data,
and then use that model to predict the number of rows for the full data
set. This would require calculation for each distribution model consid-
ered, but should generally result in more accurate estimates.

Figure 8.15 Example of a binomial multifractal distribution tree

P = 0.9

0.9 0.9

0.9 0.9 0.9 0.9

0.1

0.1

0.1

0.1

0.1 0.1 0.1

0.7290.0810.081 0.0810.0090.009 0.0090.001

a = 2 lefts
P2 = 0.009

a = 1 left
P1 = 0.081

a = 0 lefts
P0 = 0.729

C = 1 binC = 3 bins3
2

C = 3 bins3
1

3
0

a = 3 lefts
P3 = 0.001

C = 1 bin3
3

8.2 Online Analytical Processing (OLAP) 173

8.2.4 Selection of Materialized Views

Most of the published works on the problem of materialized view selec-
tion are based on the hypercube lattice structure [Harinarayan, Rajara-
man, and Ullman, 1996]. The hypercube lattice structure is a special case
of the product graph structure, where the number of hierarchical levels
for each dimension is two. Each dimension can either be included or
excluded from a given view. Thus, the nodes in a hypercube lattice struc-
ture represent the power set of the dimensions.

Figure 8.16 illustrates the hypercube lattice structure with an exam-
ple [Harinarayan, Rajaraman, and Ullman, 1996]. Each node of the lat-
tice structure represents a possible view. Each node is labeled with the set
of dimensions in the “group by” list for that view. The numbers associ-
ated with the nodes represent the number of rows in the view. These
numbers are normally derived from a view size estimation algorithm, as
discussed in Section 8.2.3. However, the numbers in Figure 8.16 follow
the example as given by Harinarayan et al. [1996]. The relationships
between nodes indicate which views can be aggregated from other
views. A given view can be calculated from any materialized ancestor
view.

We refer to the algorithm for selecting materialized views introduced
by Harinarayan et al. [1996] as HRU. The initial state for HRU has only
the fact table materialized. HRU calculates the benefit of each possible
view during each iteration, and selects the most beneficial view for
materialization. Processing continues until a predetermined number of
materialized views is reached.

Figure 8.16 Example of a hypercube lattice structure [Harinarayan et al. 1996]

c = Customer
p = Part
s = Supplier

{p, s} 0.8M {c, s} 6M {c, p} 6M

{s} 0.01M {p} 0.2M {c} 0.1M

{ } 1

Fact Table

{c, p, s} 6M

174 CHAPTER 8 Business Intelligence

Table 8.3 shows the calculations for the first two iterations of HRU.
Materializing {p, s} saves 6M – 0.8M = 5.2M rows for each of four views:
{p, s} and its three descendants: {p}, {s}, and {}. The view {c, s} yields no
benefit materialized, since any query that can be answered by reading
6M rows from {c, s} can also be answered by reading 6M rows from the
fact table {c, p, s}. HRU calculates the benefits of each possible view mate-
rialization. The view {p, s} is selected for materialization in the first itera-
tion. The view {c} is selected in the second iteration.

HRU is a greedy algorithm that does not guarantee an optimal solu-
tion, although testing has shown that it usually produces a good solu-
tion. Further research has built upon HRU, accounting for the presence
of index structures, update costs, and query frequencies.

HRU evaluates every unselected node during each iteration, and
each evaluation considers the effect on every descendant. The algorithm
consumes O(kn2) time, where k = |views to select| and n = |nodes|. This
order of complexity looks very good; it is polynomial time. However, the
result is misleading. The nodes of the hypercube lattice structure consti-
tute a power set. The number of possible views is therefore 2d where d =
|dimensions|. Thus, n = 2d, and the time complexity of HRU is O(k22d).
HRU runs in time exponentially relative to the number of dimensions in
the database.

The Polynomial Greedy Algorithm (PGA) [Nadeau and Teorey, 2002]
offers a more scalable alternative to HRU. PGA, like HRU, also selects one
view for materialization with each iteration. However, PGA divides each
iteration into a nomination phase and a selection phase. The first phase
nominates promising views into a candidate set. The second phase esti-
mates the benefits of materializing each candidate, and selects the view
with the highest evaluation for materialization.

Table 8.3 Two Iterations of HRU, Based on Figure 8.16

Iteration 1 Benefit Iteration 2 Benefit

{p, s}

{c, s}

{c, p}

{s}

{p}

{c}

{}

5.2M × 4 = 20.8M

0 × 4 = 0

0 × 4 = 0

5.99M × 2 = 11.98M

5.8M × 2 = 11.6M

5.9M × 2 = 11.8M

6M – 1

0 × 2 = 0

0 × 2 = 0

0.79M × 2 = 1.58M

0.6M × 2 = 1.2M

5.9M × 2 = 11.8M

0.8M – 1

8.2 Online Analytical Processing (OLAP) 175

The nomination phase begins at the top of the lattice; in Figure 8.16,
this is the node {c, p, s}. PGA nominates the smallest node from amongst
the children. The candidate set is now {{p, s}}. PGA then examines the
children of {p, s} and nominates the smallest child, {s}. The process
repeats until the bottom of the lattice is reached. The candidate set is
then {{p, s}, {s}, {}}. Once a path of candidate views has been nominated,
the algorithm enters the selection phase. The resulting calculations are
shown in Tables 8.4 and 8.5.

Compare Tables 8.4 and 8.5 with Table 8.3. Notice PGA does fewer
calculations than HRU, and yet in this example reaches the same deci-
sions as HRU. PGA usually picks a set of views nearly as beneficial as
those chosen by HRU, and yet PGA is able to function when HRU fails
due to the exponential complexity. PGA is polynomial relative to the
number of dimensions. When HRU fails, PGA extends the usefulness of
the OLAP system.

The materialized view selection algorithms discussed so far are static;
that is, the views are picked once and then materialized. An entirely dif-
ferent approach to the selection of materialized views is to treat the
problem similar to memory management [Kotidis and Roussopoulos,
1999]. The materialized views constitute a view pool. Metadata is tracked
on usage of the views. The system monitors both space and update win-
dow constraints. The contents of the view pool are adjusted dynami-
cally. As queries are posed, views are added appropriately. Whenever a
constraint is violated, the system selects a view for eviction. Thus the

Table 8.4 First Iteration of PGA, Based on Figure 8.16

Candidates Iteration 1 Benefit

{p, s}

{s}

{}

5.2M × 4 = 20.8M

5.99M × 2 = 11.98M

6M – 1

Table 8.5 Second Iteration of PGA, Based on Figure 8.16

Candidates Iteration 2 Benefit

{c, s}

{s}

{c}

{}

0 × 2 = 0

0.79M × 2 = 1.58M

5.9M × 2 = 11.8M

6M – 1

176 CHAPTER 8 Business Intelligence

view pool can improve as more usage statistics are gathered. This is a
self-tuning system that adjusts to changing query patterns.

The static and dynamic approaches complement each other and
should be integrated. Static approaches run fast from the beginning, but
do not adapt. Dynamic view selection begins with an empty view pool,
and therefore yields slow response times when a data warehouse is first
loaded; however, it is adaptable and improves over time. The comple-
mentary nature of these two approaches has influenced our design plan
in Figure 8.14, as indicated by Queries feeding back into View Selection.

8.2.5 View Maintenance

Once a view is selected for materialization, it must be computed and
stored. When the base data is updated, the aggregated view must also be
updated to maintain consistency between views. The original view mate-
rialization and the incremental updates are both considered as view
maintenance in Figure 8.14. The efficiency of view maintenance is
greatly affected by the data structures implementing the view. OLAP sys-
tems are multidimensional, and fact tables contain large numbers of
rows. The access methods implementing the OLAP system must meet
the challenges of high dimensionality in combination with large row
counts. The physical structures used are deferred to volume two, which
covers physical design.

Most of the research papers in the area of view maintenance assume
that new data is periodically loaded with incremental data during desig-
nated update windows. Typically, the OLAP system is made unavailable
to the users while the incremental data is loaded in bulk, taking advan-
tage of the efficiencies of bulk operations. There is a down side to defer-
ring the loading of incremental data until the next update window. If
the data warehouse receives incremental data once a day, then there is a
one-day latency period.

There is currently a push in the industry to accommodate data
updates close to real time, keeping the data warehouse in step with the
operational systems. This is sometimes referred to as “active warehous-
ing” and “real-time analytics.” The need for data latency of only a few
minutes presents new problems. How can very large data structures be
maintained efficiently with a trickle feed? One solution is to have a sec-
ond set of data structures with the same schema as the data warehouse.
This second set of data structures acts as a holding tank for incremental
data, and is referred to as a delta cube in OLAP terminology. The opera-
tional systems feed into the delta cube, which is small and efficient for

8.2 Online Analytical Processing (OLAP) 177

quick incremental changes. The data cube is updated periodically from
the delta cube, taking advantage of bulk operation efficiencies. When
the user queries the OLAP system, the query can be issued against both
the data cube and the delta cube to obtain an up-to-date result. The delta
cube is hidden from the user. What the user sees is an OLAP system that
is nearly current with the operational systems.

8.2.6 Query Optimization

When a query is posed to an OLAP system, there may be multiple mate-
rialized views available that could be used to compute the result. For
example, if we have the situation represented in Figure 8.13, and a user
issues a query to group rows by month and state, that query is naturally
answered from the view labeled (1, 2). However, since (1, 2) is not mate-
rialized, we need to find a materialized ancestor to obtain the data.
There are three such nodes in the product graph of Figure 8.13. The
query can be answered from nodes (0, 0), (1, 0), or (0, 2). With the possi-
bility of answering queries from alternative sources, the optimization
issue arises as to which source is the most efficient for the given query.
Most existing research focuses on syntactic approaches. The possible
query translations are carried out, alternative query costs are estimated,
and what appears to be the best plan is executed. Another approach is to
query a metadata table containing information on the materialized
views to determine the best view to query against, and then translate the
original SQL query to use the best view.

Database systems contain metadata tables that hold data about the
tables and other structures used by the system. The metadata tables facil-
itate the system in its operations. Here’s an example where a metadata

Table 8.6 Example of Materialized View Metadata

Dimensions

Calendar Customer Blocks ViewID

0 0 10,000,000 1

0 2 50,000 3

0 3 1,000 5

1 0 300,000 2

2 1 10,000 4

178 CHAPTER 8 Business Intelligence

table can facilitate the process of finding the best view to answer a query
in an OLAP system. The coordinate system defined by the aggregation
levels forms the basis for organizing the metadata for tracking the mate-
rialized views. Table 8.6 displays the metadata for the materialized views
shaded in Figure 8.13. The two dimensions labeled Calendar and Cus-
tomer form the composite key. The Blocks column tracks the actual num-
ber of blocks in each materialized view. The ViewID column is used to
identify the associated materialized view. The implementation stores
materialized views as tables where the value of the ViewID forms part of
the table name. For example, the row with ViewID = 3 contains informa-
tion on the aggregated view that is materialized as table AST3 (short for
automatic summary table 3).

Observe the general pattern in the coordinates of the views in the
product graph with regard to ancestor relationships. Let Value(V, d) rep-
resent a function that returns the aggregation level for view V along
dimension d. For any two views Vi and Vj where Vi ≠ Vj, Vi is an ancestor
of Vj if and only if for every dimension d of the composite key, Value(Vi,
d) ≤ Value(Vj, d). This pattern in the keys can be utilized to identify
ancestors of a given view by querying the metadata. The semantics of
the product graph are captured by the metadata, permitting the OLAP
system to search semantically for the best materialized ancestor view by
querying the metadata table. After the best materialized view is deter-
mined, the OLAP system can rewrite the original query to utilize the best
materialized view, and proceed.

8.3 Data Mining

Two general approaches are used to extract knowledge from a database.
First, a user may have a hypothesis to verify or disprove. This type of
analysis is done with standard database queries and statistical analysis.
The second approach to extracting knowledge is to have the computer
search for correlations in the data, and present promising hypotheses to
the user for consideration. The methods included here are data mining
techniques developed in the fields of Machine Learning and Knowledge
Discovery.

Data mining algorithms attempt to solve a number of common
problems. One general problem is categorization: given a set of cases
with known values for some parameters, classify the cases. For example,
given observations of patients, suggest a diagnosis. Another general
problem type is clustering: given a set of cases, find natural groupings of
the cases. Clustering is useful, for example, in identifying market seg-

8.3 Data Mining 179

ments. Association rules, also known as market basket analyses, are
another common problem. Businesses sometimes want to know what
items are frequently purchased together. This knowledge is useful, for
example, when decisions are made about how to lay out a grocery store.
There are many types of data mining available. Han and Kamber [2001]
cover data mining in the context of data warehouses and OLAP systems.
Mitchell [1997] is a rich resource, written from the machine learning
perspective. Witten and Frank [2000] give a survey of data mining, along
with freeware written in Java available from the Weka Web site [http://
www.cs.waikato.ac.nz/ml/weka]. The Weka Web site is a good option for
those who wish to experiment with and modify existing algorithms. The
major database vendors also offer data mining packages that function
with their databases.

Due to the large scope of data mining, we focus on two forms of data
mining: forecasting and text mining.

8.3.1 Forecasting

Forecasting is a form of data mining in which trends are modeled over
time using known data, and future trends are predicted based on the
model. There are many different prediction models with varying levels
of sophistication. Perhaps the simplest model is the least squares line
model. The best fit line is calculated from known data points using the
method of least squares. The line is projected into the future to deter-
mine predictions. Figure 8.17 shows a least squares line for an actual
data set. The crossed (jagged) points represent actual known data. The
circular (dots) points represent the least squares line. When the least
squares line projects beyond the known points, this region represents
predictions. The intervals associated with the predictions in our figures
represent a 90% prediction interval. That is, given an interval, there is a
90% probability that the actual value, when known, will lie in that
interval.

The least squares line approach weights each known data point
equally when building the model. The predicted upward trend in Figure
8.17 does not give any special consideration to the recent downturn.

Exponential smoothing is an approach that weights recent history
more heavily than distant history. Double exponential smoothing mod-
els two components: level and trend (hence “double” exponential
smoothing). As the known values change in level and trend, the model
adapts. Figure 8.18 shows the predictions made using double exponen-

180 CHAPTER 8 Business Intelligence

tial smoothing, based on the same data set used to compute Figure 8.17.
Notice the prediction is now more tightly bound to recent history.

Triple exponential smoothing models three components: level,
trend, and seasonality. This is more sophisticated than double exponen-
tial smoothing, and gives better predictions when the data does indeed
exhibit seasonal behavior. Figure 8.19 shows the predictions made by tri-
ple exponential smoothing, based on the same data used to compute
Figures 8.17 and 8.18. Notice the prediction intervals are tighter than in
Figures 8.17 and 8.18. This is a sign that the data varies seasonally; triple
exponential smoothing is a good model for the given type of data.

Exactly how reliable are these predictions? If we revisit the predic-
tions after time has passed and compare the predictions with the actual
values, are they accurate? Figure 8.20 shows the actual data overlaid
with the predictions made in Figure 8.19. Most of the actual data points
do indeed lie within the prediction intervals. The prediction intervals
look very reasonable. Why don’t we use these forecast models to make
our millions on Wall Street? Take a look at Figure 8.21, a cautionary tale.
Figure 8.21 is also based on the triple exponential smoothing model,
using four years of known data for training, compared with five years of
data used in constructing the model for Figure 8.20. The resulting pre-

Figure 8.17 Least squares line (courtesy of Ubiquiti, Inc.)

8.3 Data Mining 181

dictions match for four months, and then diverge greatly from reality.
The problem is that forecast models are built on known data, with the
assumption that known data forms a good basis for predicting the
future. This may be true most of the time; however, forecast models can
be unreliable when the market is changing or about to change drasti-
cally. Forecasting can be a useful tool, but the predictions must be taken
only as indicators.

The details of the forecast models discussed here, as well as many
others, can be found in Makridakis et al. [1998].

8.3.2 Text Mining

Most of the work on data processing over the past few decades has used
structured data. The vast majority of systems in use today read and store
data in relational databases. The schemas are organized neatly in rows
and columns. However, there are large amounts of data that reside in
freeform text. Descriptions of warranty claims are written in text. Medi-
cal records are written in text. Text is everywhere. Only recently has the
work in text analysis made significant headway. Companies are now
marketing products that focus on text analysis.

Figure 8.18 Double exponential smoothing (courtesy of Ubiquiti, Inc.)

182 CHAPTER 8 Business Intelligence

Figure 8.19 Triple exponential smoothing (courtesy of Ubiquiti, Inc.)

Figure 8.20 Triple exponential smoothing with actual values overlaying forecast val-
ues, based on five years of training data (courtesy of Ubiquiti, Inc.)

8.3 Data Mining 183

Let’s look at a few of the possibilities for analyzing text and their
potential impact. We’ll take the area of automotive warranty claims as
an example. When something goes wrong with your car, you bring it
to an automotive shop for repairs. You describe to a shop representa-
tive what you’ve observed going wrong with your car. Your description
is typed into a computer. A mechanic works on your car, and then
types in observations about your car and the actions taken to remedy
the problem. This is valuable information for the automotive compa-
nies and the parts manufacturers. If the information can be analyzed,
they can catch problems early and build better cars. They can reduce
breakdowns, saving themselves money, and saving their customers
frustration.

The data typed into the computer is often entered in a hurry. The
language includes abbreviations, jargon, misspelled words, and incorrect
grammar. Figure 8.22 shows an example entry from an actual warranty
claim database.

As you can see, the raw information entered on the shop floor is
barely English. Figure 8.23 shows a cleaned up version of the same text.

Figure 8.21 Triple exponential smoothing with actual values overlaying forecast val-
ues, based on four years of training data (courtesy of Ubiquiti, Inc.)

184 CHAPTER 8 Business Intelligence

Even the cleaned up version is difficult to read. The companies pay-
ing out warranty claims want each claim categorized in various ways, to
track what problems are occurring. One option is to hire many people to
read the claims and determine how each claim should be categorized.
Categorizing the claims manually is tedious work. A more viable option,
developed in the last few years, is to apply a software solution. Figure
8.24 shows some of the information that can be gleaned automatically
from the text in Figure 8.22.

The software processes the text and determines the concepts likely
represented in the text. This is not a simple word search. Synonyms map

Figure 8.22 Example of a verbatim description in a warranty claim (courtesy of
Ubiquiti, Inc.)

Figure 8.23 Cleaned up version of description in warranty claim (courtesy of
Ubiquiti, Inc.)

Figure 8.24 Useful information extracted from verbatim description in warranty
claim (courtesy of Ubiquiti, Inc.)

7 DD40 BASC 54566 CK OUT AC INOP PREFORM PID CK CK PCM
PID ACC CK OK OPERATING ON AND OFF PREFORM POWER AND
GRONED CK AT COMPRESOR FONED NO GRONED PREFORM
PINPONT DIAG AND TRACE GRONED FONED BAD CO NECTION
AT S778 REPAIR AND RETEST OK CK AC OPERATION

7 DD40 Basic 54566 Check Out Air Conditioning Inoperable Perform PID
Check Check Power Control Module PID Accessory Check OK Operating
On And Off Perform Power And Ground Check At Compressor Found No
Ground Perform Pinpoint Diagnosis And Trace Ground Found Bad
Connection At Splice 778 Repair And Retest OK Check Air Conditioning
Operation.

Primary Group: Electrical
Subgroup: Climate Control
Part: Connector 1008
Problem: Bad Connection
Repair: Reconnect
Location: Engin. Cmprt.

90 %
85 %
93 %
72 %
75 %
90 %

Automated Coding Confidence

8.4 Summary 185

to the same concept. Some words map to different concepts depending
on the context. The software uses an ontology that relates words and
concepts to each other. After each warranty is categorized in various
ways, it becomes possible to obtain useful aggregate information, as
shown in Figure 8.25.

8.4 Summary

Data warehousing, OLAP, and data mining are three areas of computer
science that are tightly interlinked and marketed under the heading of
business intelligence. The functionalities of these three areas comple-
ment each other. Data warehousing provides an infrastructure for stor-
ing and accessing large amounts of data in an efficient and user-friendly
manner. Dimensional data modeling is the approach best suited for
designing data warehouses. OLAP is a service that overlays the data
warehouse. The purpose of OLAP is to provide quick response to ad hoc
queries, typically involving grouping rows and aggregating values. Roll-
up and drill-down operations are typical. OLAP systems automatically
perform some design tasks, such as selecting which views to materialize
in order to provide quick response times. OLAP is a good tool for explor-
ing the data in a human-driven fashion, when the person has a clear
question in mind. Data mining is usually computer driven, involving
analysis of the data to create likely hypotheses that might be of interest
to users. Data mining can bring to the forefront valuable and interesting
structure in the data that would otherwise have gone unnoticed.

Figure 8.25 Aggregate data from warranty claims (courtesy of Ubiquiti, Inc.)

0

20

40

60

80

100

Electrical Seating Exterior Engine

Cars
Trucks
Other

186 CHAPTER 8 Business Intelligence

8.5 Literature Summary

The evolution and principles of data warehouses can be found in Bar-
quin and Edelstein [1997], Cataldo [1997], Chaudhuri and Dayal [1997],
Gray and Watson [1998], Kimball and Ross [1998, 2002], and Kimball
and Caserta [2004]. OLAP is discussed in Barquin and Edelstein [1997],
Faloutsos, Matia, and Silberschatz [1996], Harinarayan, Rajaraman, and
Ullman [1996], Kotidis and Roussopoulos [1999], Nadeau and Teorey
[2002 2003], Thomsen [1997], and data mining principles and tools can
be found in Han and Kamber [2001], Makridakis, Wheelwright, and
Hyndman [1998], Mitchell [1997], The University of Waikato [2005],
Witten and Frank [2000], among many others.

