
8
W3C XML Schemas and Reuse

165

Reuse is one of the most misunderstood concepts in information tech-
nology. Many technology executives assume that anything in their inven-
tory (e.g., models, designs, application programs, databases, interfaces,
and transactions) can be reused to advantage. They desire the economic
benefits intuitive to the concept of reuse but may be unaware of the
tactical costs required to achieve these benefits. Technology managers
are challenged with aggressive deadlines and limited budgets and often
avoid the modifications to their development methodology that are
required to achieve effective reuse. Technology practitioners are
rewarded for rapid delivery and the number of tested lines of code they
develop. In other words, the goals that drive development of new appli-
cations are different from those that support reuse. However, all is not
lost. The syntactical and functional capabilities afforded by W3C XML
Schemas provide tremendous support and opportunities for metadata
reuse. The first challenge is to develop a fundamental understanding of
what reuse is all about.

From the perspective of information technology, reuse is a two-part
process that first targets the engineering of information assets with the
intent of being able to use these assets more than once and then har-
vesting these reusable technology assets:

� Reuse engineering

� Reuse harvesting

XML8 5/2/03 8:28 PM Page 165

Reuse engineering is the set of practices and tech-
niques required to construct, engineer, and describe a tech-
nology asset with the specific intent to be reused. To
engineer something for reuse, the data architect must con-
sider how the information asset will be used initially as
well as in the future. Reuse engineering includes an archi-
tectural approach in which development is not limited to
meeting the initial objectives and requirements of a
project. Also of importance is the determination whether
there is a repeatable pattern exhibited by the technology
asset that would support reuse in its current context (also

known as within-domain or domain-specific reuse) and in other contexts
(also known as cross-domain reuse).1

Both within-domain and cross-domain reuse are of value. The ben-
efits of within-domain reuse are generally observed with the number of
repeated reuse instances within that specific context. As a representative
vocabulary, a W3C XML Schema provides a context (e.g., schemas rep-
resenting a customer order transaction, a purchase order transaction, or
a human resources payroll transaction). Within-domain reuse tends to
limit the scope of the technology asset and therefore results in a some-
what less significant development effort. An example would be the initial
use and then the further reuse of a defined data type for monetary
amounts within a single W3C XML Schema vocabulary (Fig. 8.1).

Cross-domain reuse considers greater degrees of abstraction and
generalization to allow for broad scale reuse and can result in a more
significant development effort. Given that cross-domain reuse implies
reuse opportunities in other contexts, the potential benefits can be
greater than those of within-domain reuse. Cross-domain reuse of a

W3C XML Schema also infers that the schema is defined
as an external subschema that can then be referenced by
and from within other W3C XML Schemas. Each of the
referencing schemas represents a specific context (Fig.
8.2).

Reuse harvesting is a set of processes that focus on
identifying opportunities for reuse, finding an information
asset that is a candidate for reuse, validating the fit of that
asset to the reuse opportunity (i.e., similar to pattern
matching), and incorporating or referencing the reusable

166 Chapter 8 W3C XML Schemas and Reuse

Fact:

XML schema reuse engineering
is the set of practices,
techniques, and activities
required to engineer a W3C XML
Schema or schema component
with the specific intent of reuse.

Fact:

XML schema reuse harvesting is
a process that includes activities
for identification, validation, and
implementation of reusable W3C
XML Schemas, subschemas, or
schema components.

1 Karlsson, E-V. Software Reuse—A Holistic Approach. John Wiley & Sons, New York, 1995.

XML8 5/2/03 8:28 PM Page 166

Chapter 8 W3C XML Schemas and Reuse 167

HR Transaction.xsd

• Monetary Amount Data Type
 is not exposed outside the
 context of the HR Transaction
 schema.

• Therefore, it cannot be directly
 reused outside the given context
 provided by the HR Transaction
 vocabulary.

Human Resources Payroll Transaction

Payroll Gross Amount
Payroll State Tax Amount
Payroll Federal Tax Amount
Payroll FICA Amount
Payroll Net Amount

Monetary Amount Definition
Data Type:
Total Digits:
Fraction Digits:

Decimal
7
2

Figure 8.1

Within-domain reuse
(internal to a schema).

HR Transaction.xsd Customer Order.xsd

Purchase Order.xsd

Enterprise Standard TYPES.xsd

• Monetary Amount Data Type
 is defined to an enterprise
 standard subschema.

• This subschema and its
 contents are then reused by
 reference from within other
 schemas.

Human Resources Payroll Transaction

Payroll Gross Amount
Payroll State Tax Amount
Payroll Federal Tax Amount
Payroll FICA Amount
Payroll Net Amount

Customer Order Transaction

Item Unit Price
Item Total Price
Order Total Price

Purchase Order Transaction

Item Unit Cost
Item Total Cost
Purchase Order Total Cost

Enterprise Standard Types

Monetary Amount Definition
Data Type:
Total Digits:
Fraction Digits:

Decimal
7
2

Figure 8.2

Cross-domain reuse
(external to a schema).

XML8 5/2/03 8:28 PM Page 167

information asset (e.g., engineering via reference and assembly rather
than new development). The majority of initial reuse costs are attrib-
uted to reuse engineering. However, there are also some additional costs
associated with reuse harvesting processes. Reuse harvesting costs are
attributed to the additional effort required to identify a reusable asset,
validating that the asset meets the project requirements, and imple-
menting the reusable asset.

With each repeated instance of a harvested information asset the
benefits of reuse become evident. The costs associated with the devel-
opment and unit testing of the reusable information asset are to some
degree offset by each reuse instance (e.g., future development cost avoid-
ance as a result of reusing an information asset avoids having to rede-
velop and unit test a “new” asset many times). Reuse engineering is the
initial part of the reuse process and where most development costs are
incurred. Reuse harvesting is where reuse benefits are exploited and
measured.

W3C XML Schemas present several types of reuse opportunities.
The most fundamental reuse opportunities are aligned with the concept
of within-domain reuse. A domain is a particular application system, set
of related business functions, or a defined context. A W3C XML
Schema-based vocabulary is a set of containers that represent a domain
or some part of a domain. Containers (e.g., XML elements and attrib-
utes), groups of containers, and types (e.g., metadata characteristics and
custom data types) can also be defined for reuse within a single W3C
XML Schema vocabulary. Enterprise standard containers, structures,
and metadata definitions can be engineered as subschemas. W3C XML
Schemas can also be engineered as assemblies of other externally defined
W3C XML Schemas and schema components. A data architect can
engineer a W3C XML Schema vocabulary to reference the standard sub-
schemas, rather than individually coding them.

Internal W3C XML Schema Reuse

Reuse within a W3C XML Schema can take several forms. Within a
W3C XML Schema, elements can be either locally or globally defined.
Locally defined element containers are defined by name at the point in
the schema where they are declared (Fig. 8.3). These locally defined ele-
ments and attributes are generally not reusable outside of their point of
declaration. Alternatively, globally defined elements represent a funda-

168 Chapter 8 W3C XML Schemas and Reuse

XML8 5/2/03 8:28 PM Page 168

mental form of reuse. They are defined to the overall schema rather than
at a specific point of occurrence. Globally defined elements are con-
tainers that can be defined with the intent of being reused by reference
from other places in the schema (Fig. 8.4).

It may be advantageous or necessary to define and reference a col-
lection of similar or related elements rather than individual elements.
This can be accomplished using the W3C XML Schemas syntax for

Internal W3C XML Schema Reuse 169

W3C XML Schema

XML Instance

Example of a W3C XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AmountCost" type="xs:decimal"/>
 <xs:element name="AmountPrice" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Example of an XML Transaction

<?xml version="1.0" encoding="UTF-8"?>
<Transaction xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Fig-8-3.xsd">

 <AmountCost>654.32</AmountCost>
 <AmountPrice>876.54</AmountPrice>

</Transaction>

This example of an XML
document representing
a simple transaction
is constrained by the
referenced W3C XML
Schema.

• The <Transaction> element is a parent element container of other
elements defined by name as <AmountCost> and
<AmountPrice>.

• Both elements are locally defined at their point of occurrence,
which is within the parent <Transaction>.

• As a result, these two elements could not be reused again by
reference from elsewhere within this schema.

• If <AmountCost> and <AmountPrice> elements were also
required elsewhere, they would need to be defined again.

Figure 8.3

Local W3C XML Schema element definitions.

XML8 5/2/03 8:28 PM Page 169

either a “complexType” or a “group.” A complexType is a defined set of
element containers that when named may be reused by reference (using
the “extension” syntax within an element). Similarly, a W3C XML
Schema group is a defined set of containers (also known as an element
model group) that are specifically defined with intent of being reused.

170 Chapter 8 W3C XML Schemas and Reuse

W3C XML Schema

Example of a W3C XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="AmountCost"/>
 <xs:element ref="AmountPrice"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="AmountCost" type="xs:decimal"/>
 <xs:element name="AmountPrice" type="xs:decimal"/>

</xs:schema>

Example of an XML Transaction

<?xml version="1.0" encoding="UTF-8"?>
<Transaction xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Fig-8-4.xsd">

 <AmountCost>654.32</AmountCost>
 <AmountPrice>876.54</AmountPrice>

</Transaction>

This example of an XML
document representing
a simple transaction is
constrained by the
referenced W3C XML
Schema.

• The <Transaction> element is a parent element container of other
elements referenced as <AmountCost> and <AmountPrice>.

• Both elements are globally defined to the schema (i.e., outside
their point of occurrence).

• As a result, these two elements are reusable by reference from
elsewhere within this schema.

• If <AmountCost> and <AmountPrice> elements were also
required elsewhere, they would not need to be defined again.

XML Instance

Figure 8.4

Global W3C XML Schema element definitions.

XML8 5/2/03 8:28 PM Page 170

The previous example of two globally defined amount
elements could be defined and reused as a single collec-
tion of elements rather than as two individual element
references. A complexType can be defined globally to the
schema and then referenced by name as the extension of
an element (Fig. 8.5).

Like a complexType, a group is also a collection of
element containers. The concept of a group is similar to
that of a complexType, but a slightly different syntax is
used. A group is defined with the specific intent of being
reused by reference. While a complexType can be defined
to be reused as an extension, it can also be defined locally
and excluded from reuse. The content of a group can
include a list of elements or complexTypes (Fig. 8.6).

Both a complexType and a group allow for a com-
positor. A compositor specifies the sequence and selective
occurrence of the containers defined within a complex-
Type or a group. Compositors include sequence, all, and
choice (Table 8.1). The sequence compositor declares that
the individual elements defined within a complexType or
a group must occur in the same order in the correspond-

ing XML document. The all compositor declares that all of the elements
contained within the complexType or group must be present in the cor-
responding XML document, but may occur in any order. The choice
compositor states that only one of the elements defined to a complex-
Type or group may occur in the corresponding XML document.

In addition to a compositor, most elements defined or referenced by
complexTypes and groups may repeat. The degree of cardinality can be
specified for repeating elements using the minOccurs and maxOccurs
attributes. The minOccurs attribute defines the minimum degree of car-
dinality or the minimum number of occurrences for a referenced repeat-
ing element. A minOccurs attribute with a value of zero (i.e., “0”)
denotes that the element is optional. The maxOccurs attribute defines
the maximum degree of cardinality or the maximum number of occur-
rences for the referenced element. Both the minimum and maximum
degree of cardinality can be specific (e.g., a specific value such as “3” or
“200”). The maximum degree of cardinality may also be defined as infi-
nite (i.e., a value of “unbounded”). It is important to note that in some
cases, the rules of the compositor may constrain cardinality and repeat-
ing elements (e.g., the “all” compositor does not allow for repeating
elements).

Internal W3C XML Schema Reuse 171

Recommendation:

Unless intentionally prohibited
from being reused, all XML
element containers should be
defined globally, allowing for
reuse by reference.

Recommendation:

Unless there are obvious
advantages to using global
“complexTypes,” collections of
related element containers
intentionally targeted for reuse
should be globally defined as
“groups.”

XML8 5/2/03 8:28 PM Page 171

As described in Chapter 4 (W3C XML Schema Types vs Database
Data Types), W3C XML Schemas provide extensive data type support,
including numerous built-in and derived data types that can be applied
as a constraint to any element or attribute. Custom data types can
also be defined by creating a simpleType with one of the supported

172 Chapter 8 W3C XML Schemas and Reuse

Example of a W3C XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="AmountGroup" />
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="AmountGroup">
 <xs:sequence>
 <xs:element name="AmountCost" type="xs:decimal"/>
 <xs:element name="AmountPrice" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>

</xs:schema>

Example of an XML Transaction

<?xml version="1.0" encoding="UTF-8"?>
<Transaction xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Fig-8-5.xsd">

 <AmountCost>654.32</AmountCost>
 <AmountPrice>876.54</AmountPrice>

</Transaction>

• The <Transaction> element is a parent element container of a
complexType that references the AmountGroup complexType.

• The complexType is defined globally to the schema (i.e., outside its
point of occurrence).

• As a result, this complexType, which also contains two elements, is
reusable by reference from elsewhere within this schema.

XML Instance

W3C XML Schema

This example of an XML
document representing
a simple transaction is
constrained by the
referenced W3C XML
Schema.

Figure 8.5

Global W3C XML Schema complexType definition.

XML8 5/2/03 8:28 PM Page 172

Internal W3C XML Schema Reuse 173

Example of a W3C XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="AmountGroup"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:group name="AmountGroup">
 <xs:sequence>
 <xs:element name="AmountCost" type="xs:decimal"/>
 <xs:element name="AmountPrice" type="xs:decimal"/>
 </xs:sequence>
 </xs:group>

</xs:schema>

Example of an XML Transaction

<?xml version="1.0" encoding="UTF-8"?>
<Transaction xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Fig-8-6.xsd">

 <AmountCost>654.32</AmountCost>
 <AmountPrice>876.54</AmountPrice>

</Transaction>

• The <Transaction> element is a parent element container
of complexType that includes an element group.

• The element group AmountGroup contains two elements
referenced as <AmountCost> and <AmountPrice>.

• The group and its contents are reusable by reference from
elsewhere within this schema.

• If <AmountCost> and <AmountPrice> elements were also
required elsewhere as a group of elements, they would not
need to be defined again.

XML Instance

W3C XML Schema

This example of an XML
document representing
a simple transaction is
constrained by the
referenced W3C XML
Schema.

Figure 8.6

Global W3C XML Schema group definition.

XML8 5/2/03 8:28 PM Page 173

data types as a base and adding constraining facets. The
ability to define custom data types is a powerful form of
reuse. Many organizations have a set of enterprise stan-
dard data element definitions. When new data elements of
the same type are defined, the data architect is required to
apply the enterprise standard metadata characteristics
(e.g., data type, length, decimalization, and allowable
values).

Common examples of enterprise standard data ele-
ments include those for monetary amounts, identifiers
(e.g., as in primary key or unique identifiers), text descrip-

tions, and standard code values. These same enterprise standards can be
defined as custom data types and implemented as W3C XML Schema
simpleTypes. Similar to an element, a simpleType can be defined locally
and referenced by an element or attribute, or it can be defined globally
to the schema with the intent of being reused by reference. When a
custom data type is defined using a simpleType, it will include a declared
W3C XML Schema data type and any applicable facets (Fig. 8.7). The
examples of monetary amount custom data types are defined as a
decimal data type, with totalDigits and fractionDigits facets. A simple-
Type is not limited to monetary amounts or decimal data types. Any of
the supported W3C XML Schema data types and facets can be applied.

Reuse of elements, groups of elements, and data types within a
single W3C XML Schema is a powerful capability. However, reuse of
these internal constructs outside the context of the defining W3C XML

174 Chapter 8 W3C XML Schemas and Reuse

Table 8.1 Compositors

Compositor
type Description

sequence Child elements must occur in the corresponding XML document in the listed order. Specified
cardinality of child elements may determine whether a specific child element must occur or
may occur and the degree to which it repeats.

all All child elements must occur in the corresponding XML document. They may occur in any
order but cannot repeat (i.e., a degree of cardinality of maxOccurs greater than one cannot
be specified).

Choice Any one (but only one) of the child elements may occur.

Technique:

W3C XML Schema simpleTypes
present a powerful method for
defining enterprise standard
data types and allowable value
constraints for element and
attribute containers.

XML8 5/2/03 8:28 PM Page 174

Internal W3C XML Schema Reuse 175

Example of a W3C XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Transaction">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AmountCost" type="AmountCostTYPE"/>
 <xs:element name="AmountPrice" type="AmountPriceTYPE"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name="AmountCostTYPE">
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="5"/>
 <xs:fractionDigits value="2"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="AmountPriceTYPE">
 <xs:restriction base="xs:decimal">
 <xs:totalDigits value="7"/>
 <xs:fractionDigits value="2"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Example of an XML Transaction

<?xml version="1.0" encoding="UTF-8"?>
<Transaction xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="Fig-8-7.xsd">

 <AmountCost>654.32</AmountCost>
 <AmountPrice>876.54</AmountPrice>

</Transaction>

• The enterprise standards for cost and price monetary amounts
include data types, total length, and decimal scale.

• The <AmountCost> and <AmountPrice> elements reference
the enterprise standard types (simpleTypes).

• These simpleTypes are globally defined and may be reused by
reference elsewhere in the schema.

XML Instance

W3C XML Schema

This example of an XML
document representing
a simple transaction is
constrained by the
referenced W3C XML
Schema.

Figure 8.7

Global W3C XML Schema simpleType definitions.

XML8 5/2/03 8:28 PM Page 175

Schema may be complex and in some cases not possible. An attempt to
reuse these same elements, groups, and types within other schemas
would probably require repetition of the W3C XML Schema syntax in
each of the other schemas (as a form of copy and paste). Although there
is some advantage to this approach, there are also increased costs and
risks. The obvious advantage is that enterprise standard elements and
data types are to some degree proliferated and reused. However, the cost
of maintaining each of these schemas will escalate. Also, the potential
for errors resulting from future modifications that are not synchronized
to all copies increases over time. Reuse of externally defined W3C XML
Schemas presents a more effective approach.

External W3C XML Schema Reuse
(Component Subschemas)

From the perspective of reuse harvesting, W3C XML Schemas also
provide extensive capabilities in the area of cross-domain reuse. Lever-
aging W3C XML Schemas for cross-domain reuse implies that a schema
(or subschema) can represent a repeatable pattern, and it can be used in
different contexts and by different applications. The method of imple-
mentation is to define modular W3C XML Schemas as external sub-
schemas. Other W3C XML Schemas (potentially of varying contexts)
can then reference and reuse the elements, groups, and data types of the
subschemas. The referencing schema vocabularies only need to define
the containers, structures, and types exclusive to their specific context.
As a form of development by assembly, reused elements, groups, and

data types defined to the subschemas are then “refer-
enced” (Fig. 8.8).

Schema reuse engineering is the process of developing
W3C XML Schemas (or subschemas) with the intent of
reuse. Each of the external subschemas must be defined in
a manner that promotes broad-scale reuse, yet ensures
adherence to enterprise structures and metadata stan-
dards, which is where the data architect plays a significant
role. The identification of candidate data elements, struc-
tures, and data types is similar to traditional data archi-
tecture practices. The most common opportunities for
engineering reusable subschemas include the following
patterns:

176 Chapter 8 W3C XML Schemas and Reuse

Fact:

Reuse of a W3C XML Schema or
subschema is a conceptual form
of development by assembly.
The primary W3C XML Schema is
assembled by including
references to the contents of
other externally defined W3C
XML subschemas.

XML8 5/2/03 8:28 PM Page 176

External W3C XML Schema Reuse (Component Subschemas) 177

� Highly standardized data structures (e.g., person name,
postal address, telephone number, product family structures,
and geographic structures)

� Standard codes and allowable values

� Enumeration lists of internal enterprise standard code
values

� Enumeration lists of international and industry-related
encoding standards (e.g., U.S. state abbreviations, country
codes, and currency codes)

� Standard data types (e.g., enterprise standard data types for
monetary amounts, text descriptions, and identifiers)

W3C XML Schema

HR Transaction.xsd

Human Resources Payroll Transaction <xs:group name=“PersonName”>
<xs:include schemaLocation=“STDPersonName.xsd”>
<xs:include schemaLocation=“STDAddress.xsd”>
<xs:include schemaLocation=“STDTelephone.xsd”>

<xs:element name=“EmployeeName”>

 <xs:group ref=“PersonName”>

<xs:element name=“EmployeeAddress”>

 <xs:element name=“AddressTo”>

 <xs:group ref=“PersonName”>

 <xs:group ref=“Address”>

<xs:element name=“EmployeeTelephone”>

 <xs:group ref=“Telephone”>

...

STDPersonName.xsd

- Name Type
- Complete Name
- Name Parts
 - Name Part Type
 - Name Part Sequence
 - Name Part

In this example, the
HR Transaction schema
would only describe data
exclusive to its context
and references to external
subschemas.

H
yb

rid
 M

od
el

H
yb

rid
 F

or
m

<xs:group name=“Telephone”>

STDTelephone.xsd

- Telephone Type
- Complete Telephone
- Telephone Parts
 - Telephone Part Type
 - Telephone PartH

yb
rid

 M
od

el
H

yb
rid

 F
or

m

<xs:group name=“Address”>

STDAddress.xsd

- Address Type
- Address Lines (1-6)
- City
- Postal Code
- Country
- Regional Sub-Divisions
 - Regional Sub-Division Type
 - Regional Sub-Division Name

H
yb

rid
 M

od
el

H
yb

rid
 F

or
m

Figure 8.8

W3C XML Schema reuse by reference (e.g., “assembly”).

XML8 5/2/03 8:28 PM Page 177

The W3C XML Schema syntax allows for subschemas to
define elements, groups, complexTypes, and simpleTypes
that can be included and referenced by other W3C XML
Schemas. The concept is roughly analogous to the concept
of a COBOL Copybook “include,” in which data struc-
tures and file definitions are defined according to enter-
prise standards and are then included by reference from
within other COBOL source programs. This helps to
ensure that not only is there a high degree of reuse (result-

ing in development cost avoidance) but also enterprise structures and
metadata standards are supported.

One of the greatest challenges for today’s business enterprise is the
diversity of data resulting from global e-commerce. When varied inter-
national cultures and locales are considered, a customer’s name presents
an interesting problem. As an integration transaction technology, XML
can be used to exchange person name information between tactical
enterprise systems such as human resources, order processing, and cus-
tomer service. Similar name information can be exchanged with and
imported into strategic systems such as marketing, customer relation-
ship management, and the data warehouse. Functional uses of person
name data imply repeatable patterns. However, the granularity and data
formats for person name can vary from system to system. Cultural vari-
ations of person name introduce even greater complexity.

In the United States, a common format for person name is simply
the combination of first, middle, and last names. However, these name
parts support international and cultural variations minimally (if at all).
In many countries the descriptive data element names of first, middle,
and last are not applicable. Variations may include given name, sur-
name, family name, and additional name.2 Also, the order or sequence
of name parts may differ (e.g., in some cultures the family or last name
precedes the given or first name). Also, many person names are not
limited to three name parts and may also include connectives (e.g., “von”
or “de”).

Another important aspect of a person’s name is how it will be used
or processed. Application programs that generate correspondence, mail-
ings, and delivery labels may only require a single complete name that
is composed of all name parts in the desired sequence of the individual.

178 Chapter 8 W3C XML Schemas and Reuse

Fact:

The most common types of
reusable subschemas include
standard structures, standard
codes and allowable values, and
custom data types.

2 Bean J. XML Globalization and Best Practices. Active Education, Colorado, U.S., 2001.

XML8 5/2/03 8:28 PM Page 178

An Architectural Approach to Reuse Engineering 179

Alternatively, other applications such as marketing, global customer
relationship management, and data warehousing may require the gran-
ular parts of an individual’s name for the purposes of sorting and group-
ing. A highly reusable name structure will support multiple uses of
person name data.3

A W3C XML Schema describing the structure and format of a
person name can be engineered with the intent of broad scale reuse.
Other W3C XML Schemas can then reference and reuse the person
name schema as a subschema, rather than including individually coded
name structures parochial to their own processing. Strategic applications
such as global customer relationship management (G-CRM) often act
as a point of integration for customer information. In this case, the
ability to accept, validate, import, and process international customer
names and name parts becomes critical to success. Engineering a
modular person name subschema requires that the structure can support
varied processing and multiple data formats and still apply standards
and constraints as necessary (Fig. 8.9).

A person name schema designed for broad scale, cross-domain reuse
must support different forms of processing, as well as different struc-
tural formats (Fig. 8.10). When XML is used to describe data that will
be imported into a database structure, the format, granularity, and
taxonomy of that structure become important. If the data will be
exchanged between systems that have different functions and purposes
or the structure, form, and content of the data are variable, a flexible
architecture is of value. Determination of the intended use, potential
future use, variability, and granularity of the data requires an architec-
tural perspective. To engineer a reusable schema for person name, the
data architect must determine how the data will be used, structured,
identified, and described.

An Architectural Approach to Reuse Engineering

W3C XML Schema reuse engineering includes activities specific to the
design and development of highly reusable schemas. In this regard, the
data architect can play a significant role. To ensure that a W3C XML

3 Bean J. Engineering Global E-Commerce Sites. Morgan Kaufmann, San Francisco, 2003.

XML8 5/2/03 8:28 PM Page 179

Schema is intended for broad-scale, cross-domain reuse, the data archi-
tect must apply an architectural perspective. This perspective must
include several important architecture requirements:

� Schema identification (a file name allowing for later “reuse
harvesting”)

180 Chapter 8 W3C XML Schemas and Reuse

W3C XML Schema

HRTransaction.xsd

Tactical Systems

Human Resources Payroll Transaction

<xs:group name=“PersonName”>

<xs:element name=“EmployeeName”>
 <xs:group ref=“PersonName”>
…

W3C XML Schema

CustomerOrder.xsd

Customer Order Process Transaction
<xs:element name=“CustomerName”>
 <xs:group ref=“PersonName”>
…

W3C XML Schema

CustomerService.xsd

Customer Service Inquiry Transaction
<xs:element name=“CustomerName”>
 <xs:group ref=“PersonName”>
…

W3C XML Schema

Marketing.xsd

Strategic Systems

Marketing Target Mailing Transaction
<xs:element name=“ProspectName”>
 <xs:group ref=“PersonName”>
…

W3C XML Schema

CRM.xsd

Customer Relationship Management
<xs:element name=“CustomerName”>
 <xs:group ref=“PersonName”>
…

W3C XML Schema

DataWarehouse.xsd

DW Customer/Prospect Load
Transaction

<xs:element name=“CustomerName”>
 <xs:group ref=“PersonName”>
…
<xs:element name=“ProspectName”>
 <xs:group ref=“PersonName”>
…

STDPersonName.xsd

- Name Type
- Complete Name
- Name Parts
 - Name Part Type
 - Name Part Sequence
 - Name PartH

yb
rid

 M
od

el
H

yb
rid

 F
or

m

Figure 8.9

Varying use of an enterprise standard subschema for person name.

XML8 5/2/03 8:28 PM Page 180

An Architectural Approach to Reuse Engineering 181

� Version management

� Variable use and processing (e.g., how the XML document
and content will be “consumed”)

� Application of structure models

� Adaptation of architecture container forms

Identification and naming of a schema is critical to
reuse. The externally defined W3C XML Schema must be
named in a manner that is intuitive and simplifies the
identification and harvesting of reusable schemas. The
name should also align with enterprise naming standards.
Similar to the taxonomy techniques applied to individual
XML container names (e.g., elements and attributes), the
external file name of the entire W3C XML Schema is
important. Even though the schema name might be
descriptive, if it is too specific or limited to a particular
system, application, or process, reuse potential will be
limited. Alternatively, a schema name that is too abstract
can be misleading and result in inaccurate identification of

reuse candidates. A schema name of “Name” is far too abstract. Name

Tactical Strategic

Enterprise Standard Subschema
for Person Name

D
ata W

arehouse

M
arketing

C
ustom

er S
ervice

C
ustom

er O
rder P

rocessing

H
um

an R
esources

C
ustom

er R
elationship

M
anagem

ent
(G

-C
R

M
)

Cross-Domain Reuse

Figure 8.10

Broad-scale, cross-
domain reuse of
subschema for person
name.

Recommendation:

The external file name of a
reusable W3C XML Schema (or
subschema) should be intuitive,
be of reasonable specificity, be
of mixed character case or
camel case, eliminate spaces,
and be a maximum of 32
characters in length.

XML8 5/2/03 8:28 PM Page 181

might imply a person’s name or might imply a business name, place
name, trade name, or a similar form of naming. However, a schema
name of “PersonName” is descriptive, depicts a context, and is gener-
ally intuitive.

At the physical level, a W3C XML Schema is a Unicode-encoded
text file (most often as UTF-8 or an ASCII text file). The external name
of that file must conform to the constraints of the file management and
operating system (e.g., maximum character length, exclusion of special
characters, character case, and support for white space). As a general
guideline, file names should be no longer than 32 characters. Although
somewhat arbitrary, a file name length of 32 characters is supported by
most server-based operating systems (such as Windows). If the platform
on which the subschema will be stored has a more restrictive maximum
length, it should be used.

As to white space, some operating systems allow blanks or spaces
within a file name. However, it is recommended that all white space
should be removed. Also, where possible the file name should use mixed-
case characters (e.g., applied in the form of camel case as described for
element and attribute taxonomy). When combined, these naming tech-
niques will result in descriptive and intuitive file names for W3C XML
Schemas.

Version management is rarely the responsibility of the
data architect. However, it plays a significant role in reuse
engineering as part of the schema name (the external file
name). As with any technology asset, evolution and
change will be experienced. Although the intent of reuse
engineering is to develop a reusable schema structure that
is also an enterprise standard, over time, modifications will
be required. Being able to identify different versions from
the external file name becomes critical. During the reuse
harvesting process the developer or data architect will
need to easily determine the current version of a candi-
date schema. Including version identification as part of
the external schema name is of significant value. The
scheme used for versioning (e.g., numbers, characters, and
combinations of version and release) should adhere to
enterprise standards. The version should be included as
part of the external file name (usually as a prefix or suffix).

In addition to the version and the schema name, it
may be valuable to describe the schema by a classification
or type. The most common types of reusable W3C XML

182 Chapter 8 W3C XML Schemas and Reuse

Recommendation:

The external file name of a
reusable W3C XML Schema
(subschema) should include a
version. The version may be
prefixed or suffixed depending
upon enterprise standards.

Recommendation:

Reusable W3C XML subschemas
should include some form of
classification or type in the
name (e.g., “STD,” “CODES,” or
“TYPES”).

XML8 5/2/03 8:28 PM Page 182

An Architectural Approach to Reuse Engineering 183

Schemas are either standard structures, sets of code values, or data
types. The ability to identify the type of reusable schema can simplify
the reuse harvesting process. As examples, each of the different schema
types could be classified as one of the following:

� STD—representing enterprise standard structures

� CODES—representing enumeration lists of standard code
values

� TYPES—representing enterprise standard data types

The classification for each schema type should be included in the
schema external file name. When developers or data architects are
searching for reusable schemas, they can limit their search to a specific
type. Terminating the W3C XML Schema file name is the file type or
extension (when supported by the file management and operating
system). The recommended file type or extension for a W3C XML
Schema is “xsd” (Fig. 8.11).

Unlike traditional data modeling, XML transactions used for data
exchanges between systems can include denormalized data, abstract
data element names, and even duplicate data. When the objectives of the
transaction are a combination of data exchange between disparate
systems and enterprise integration, the ability to describe the transac-
tion content in different forms, by different names, and with a structure

External XML Schema File Name
• Maximum of 32 Characters in Length
• Version (usually as a prefix or suffix)
• Schema Type
• Descriptive Schema Name

Note: Sequence of parts can
vary according to enterprise
standards and repository/
file management system structure.

Reusable Schema Type:
 STD—Standard Structure
 CODES—Enumeration List
 of Code Values
 TYPES—Custom Data Types

File Name:
• Intuitive
• Mixed Character, “Camel Case”
• No White Space

Version File Type or Extension:
.xsd—W3C XML Schema
(depends on operating system)

v01-STD-PersonName.xsd

Figure 8.11

Example of a format for
(external) W3C XML
Schema file names.

XML8 5/2/03 8:28 PM Page 183

184 Chapter 8 W3C XML Schemas and Reuse

that can be easily transformed into different formats is requisite. An
example is when data of the same general context will be exchanged
between different systems but with variation in how those data will be
used and processed. To support the varied use and processing of these
target applications, it may be necessary to describe multiple structures
or formats for the same data. The data architect is challenged with
extending traditional data architecture skills to address this paradigm.

Consider a transaction carrying a customer’s name.
The person name data used by an order processing system
and a customer relationship management system may
need to support different structures and processes. The
order processing system may require a customer’s com-
plete name (i.e., the concatenated set of all name parts).
Typical uses of this data structure include order corre-
spondence and documentation, the “Address To” line of
the order delivery information, and use for customer
contact. Alternatively, a G-CRM or marketing application
may require a highly variable structure to utilize individ-
ual parts of the customer’s name as well as the complete
name. This type of processing can include sorting and
grouping of customer data according to a sequenced set
of name parts (Fig. 8.12).

To address both types of person name processing, a single reusable
W3C XML Schema should be engineered to incorporate two different
name structures. One structure defined to the schema is a single data
element for a complete person name. The other is a decomposed, flexi-
ble structure of individual data elements for the parts of a globally
diverse name. If both structures are defined as optional rather than
mandatory, this single schema can be used to describe and constrain dif-
ferent XML documents and transactions (Listing 8.1).

Recommendation:

When used to describe a
transaction for data exchange or
enterprise integration, a
reusable W3C XML Schema
should incorporate several
different structures and formats
to address the potential for
varied use and different
application processes.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CustomerData">
<xs:complexType>

Listing 8.1

W3C XML Schema for different forms of person name data.

XML8 5/2/03 8:28 PM Page 184

An Architectural Approach to Reuse Engineering 185

<xs:sequence>
<xs:element ref="CustomerName"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="CustomerName">
<xs:complexType>

<xs:sequence>
<xs:element ref="PersonNameComplete" minOccurs="0"
maxOccurs="1"/>
<xs:group ref="PersonNameParts" minOccurs="0"
maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="PersonNameComplete"
type="PersonNameCompleteTYPE"/>

<xs:group name="PersonNameParts">
<xs:sequence>

<xs:element name="PersonNamePrefix" type="PersonNamePartTYPE"
minOccurs="0"/>
<xs:element ref="PersonNamePart" minOccurs="1"
maxOccurs="unbounded"/>
<xs:element name="PersonNameSuffix" type="PersonNamePartTYPE"
minOccurs="0"/>

</xs:sequence>
</xs:group>

<xs:element name="PersonNamePart">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="PersonNamePartTYPE">

<xs:attribute name="sequence" use="required"
type="xs:byte"/>
<xs:attribute name="type" type="PersonNamePartTypeCODE"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

Listing 8.1 Continued

XML8 5/2/03 8:28 PM Page 185

186 Chapter 8 W3C XML Schemas and Reuse

When combined with a prototype XML document, the potential for
varied use and different types of application processing can also help to
identify applicable XML structure models and architectural container
forms. The element used to contain the complete name combined with
the set of name part elements is a good fit for a vertical structure model.
Name part elements should also include attributes for sequence (the pre-
ferred order in which name parts should occur), as well as a type for
each name part, which implies a horizontal structure model. The ability
to reuse a person name structure in different contexts (e.g., customer
order processing, employee, and customer contact) infers that this W3C
XML Schema is a good fit for a component structure model. Addition-
ally, the data types and allowable values of the name elements could also

Listing 8.1 Continued

<xs:simpleType name="PersonNameCompleteTYPE">
<xs:restriction base="xs:string">

<xs:maxLength value="80"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PersonNamePartTYPE">
<xs:restriction base="xs:string">

<xs:maxLength value="20"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PersonNamePartTypeCODE">
<xs:restriction base="xs:string">

<xs:enumeration value="Family"/>
<xs:enumeration value="Last"/>
<xs:enumeration value="Given"/>
<xs:enumeration value="First"/>
<xs:enumeration value="Surname"/>
<xs:enumeration value="Additional"/>
<xs:enumeration value="Middle"/>
<xs:enumeration value="Religious"/>
<xs:enumeration value="Other"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

XML8 5/2/03 8:28 PM Page 186

An Architectural Approach to Reuse Engineering 187

become enterprise metadata standards that are implemented as other
modular component structure models. When considered in total, the
person name schema is an excellent candidate for a hybrid structure
model, which incorporates advantageous characteristics of the other
model types.

Customer relationship management applications will often need to
sort, group, and select from customer data by customer name. Because
full names may be specified in varied form, using a complete person
name element is largely inadequate for this type of processing. Name
prefixes and suffixes are rarely used for sorting and may complicate
grouping of like names. As a result, prefixes and suffixes are a good fit
for specifically named rigid container forms. Individual name parts
present an effective use of name data for sort, group, and select
processes. Processing names of international customers, for which the
number, sequence, and type of name parts can vary widely, requires an
abstract container form that can dynamically expand and contract to fit
culturally diverse name formats (Fig. 8.13).

Customer Order
Processing System

Customer Relationship
Management

(G-CRM) System

<?xml version="1.0" encoding="UTF-8"?>
<CustomerData>
 <CustomerName>
 <PersonNameComplete>Ms. Sally M. Smith PhD.</PersonNameComplete>
 </CustomerName>
</CustomerData>

<?xml version="1.0" encoding="UTF-8"?>
<CustomerData>
 <CustomerName>
 <PersonNamePrefix>Ms.</PersonNamePrefix>
 <PersonNamePart sequence="1" type="Given">Sally</PersonNamePart>
 <PersonNamePart sequence="2" type="Additional">M.</PersonNamePart>
 <PersonNamePart sequence="3" type="Family">Smith</PersonNamePart>
 <PersonNameSuffix>PhD.</PersonNameSuffix>
 </CustomerName>
</CustomerData>

XML Instance

XML Instance

Figure 8.12

Different XML transactions containing person name data.

XML8 5/2/03 8:28 PM Page 187

188 Chapter 8 W3C XML Schemas and Reuse

Custom data types and enumerated lists of standard code values
also present the opportunity to further decompose the person name
schema. Subschemas to represent the enterprise standard person name
structure, data types specific to person name data, and applicable
standard code values (e.g., Person Name Part “types”), are all excellent
candidates for reuse (Fig. 8.14).

The <PersonNameComplete> element is defined by a string data
type with a maximum allowable length. The <PersonNamePrefix>,
<PersonNamePart>, and <PersonNameSuffix> elements are also
defined by a string data type but with a shorter maximum length. Both
types are declared as simpleTypes and are included in a subschema that
contains all data types for person name data. Similarly, the “type”
attribute of the <PersonNamePart> element is described by a set of

Horizontal Model

V
er

ti
ca

l M
o

d
el

<PersonName> data have
the potential to be used by
different systems and in
different contexts (e.g.,
customer name, employee
name, and prospect name),
which implies alignment
with a component model.

Attributes used to describe
sequence and type imply
a horizontal model for
<PersonNamePart> elements.

Data types of each element
and the attributes used to
describe type imply
a potential support for
component models.

The <PersonNamePrefix>
and <PersonNameSuffix>
elements imply the need for
a rigid container form.

When combined, the models
implied by Person Name align
well with a hybrid structure
model and a hybrid container
form.

<PersonNamePrefix>,
<PersonNameSuffix>,
and <PersonNamePart>
elements imply the
potential for a reusable
subschema group.

<?xml version="1.0" encoding="UTF-8"?>

<PersonName>
 <PersonNameComplete>Ms. Sally M. Smith PhD.</PersonNameComplete>
 <PersonNamePrefix>Ms.</PersonNamePrefix>
 <PersonNamePart sequence="1" type="Given">Sally</PersonNamePart>
 <PersonNamePart sequence="2" type="Additional">M.</PersonNamePart>
 <PersonNamePart sequence="3" type="Family">Smith</PersonNamePart>
 <PersonNameSuffix>PhD.</PersonNameSuffix>
</PersonName>

XML Instance

Figure 8.13

Structure models and container forms implied by person name data.

XML8 5/2/03 8:28 PM Page 188

An Architectural Approach to Reuse Engineering 189

standard code values. These values are declared as an enumeration list
and are defined to a subschema containing all codes and allowable
values for person name data. The result is a set of three component
schemas. The Person Name Standard Structure Schema references and
uses both the Person Name Types and Person Name Codes schemas.
Each of the schemas can be reused in whole or in part:

� Person name structure schema (Listing 8.2)

� Person name types schema (Listing 8.3)

� Person name codes schema (Listing 8.4)

Order Processing
XML Transaction

<Order>
 <Customer>
 <CustomerName>
 <PersonNameComplete>

W3C XML Schema

Order Processing Schema
(v01-OrderProcessing.xsd

<xs:include… “v01-STD-PersonName”>

<xs:element ref=“PersonNameComplete”/>

…
W3C XML Schema

Person Name Types Schema
(v01-TYPES-PersonName.xsd)

<xs:simpleType…

<xs:simpleType…

Customer Relationship
Management

XML Transaction

<CustomerAttrition>
 <Customer>
 <CustomerName>
 <PersonNameParts>
 <PersonNamePart>
 <PersonNamePart>
 <PersonNamePart>

W3C XML Schema

Customer Relationship
Management Schema

(v01-CustomerRelationship.xsd)

<xs:include… “v01-STD-PersonName”>

<xs:group ref=“PersonNameParts”/>

…
W3C XML Schema

Person Name Codes Schema
(v01-CODES-PersonName.xsd)

<xs:simpleType…

<xs:enumeration…

Human Resources
XML Transaction

<Employee>
 <EmployeeName>
 <PersonNameComplete>

W3C XML Schema

Human Resources Schema
(v01-HumanResources.xsd)

<xs:include… “v01-STD-PersonName”>

<xs:element ref=“PersonNameComplete”/>

…

W3C XML Schema

Standard Person Name Schema
(v01-STD-PersonName.xsd)

<xs:include… “v01-TYPES-PersonName”>

<xs:include… “v01-CODES-PersonName”>

…

XML Instance

XML Instance

XML Instance

Figure 8.14

Reference of component subschemas.

XML8 5/2/03 8:28 PM Page 189

190 Chapter 8 W3C XML Schemas and Reuse

Listing 8.2

W3C XML Schema for a person name structure.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="v01-TYPES-PersonName.xsd"/>
<xs:include schemaLocation="v01-CODES-PersonName.xsd"/>

<xs:element name="PersonNameComplete"
type="PersonNameCompleteTYPE"/>
<xs:element name="PersonNameParts">

<xs:complexType>
<xs:sequence>

<xs:group ref="PersonNamePartsGroup"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:group name="PersonNamePartsGroup">
<xs:sequence>

<xs:element name="PersonNamePrefix"
type="PersonNamePartTYPE" minOccurs="0"/>
<xs:element ref="PersonNamePart" minOccurs="1"
maxOccurs="unbounded"/>
<xs:element name="PersonNameSuffix"
type="PersonNamePartTYPE" minOccurs="0"/>

</xs:sequence>
</xs:group>

<xs:element name="PersonNamePart">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="PersonNamePartTYPE">

<xs:attribute name="sequence"
use="required" type="xs:byte"/>
<xs:attribute name="type" type="PersonNamePartTypeCODE"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:schema>

XML8 5/2/03 8:28 PM Page 190

An Architectural Approach to Reuse Engineering 191

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="PersonNameCompleteTYPE">
<xs:restriction base="xs:string">

<xs:maxLength value="80"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="PersonNamePartTYPE">
<xs:restriction base="xs:string">

<xs:maxLength value="20"/>
</xs:restriction>

</xs:simpleType>

</xs:schema>

Listing 8.3

W3C XML Schema for
person name types.

Listing 8.4

W3C XML Schema for
descriptive person
name codes.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs=
"http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="PersonNamePartTypeCODE">
<xs:restriction base="xs:string">

<xs:enumeration value="Family"/>
<xs:enumeration value="Last"/>
<xs:enumeration value="Given"/>
<xs:enumeration value="First"/>
<xs:enumeration value="Surname"/>
<xs:enumeration value="Additional"/>
<xs:enumeration value="Middle"/>
<xs:enumeration value="Religious"/>
<xs:enumeration value="Other"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

XML8 5/2/03 8:28 PM Page 191

Syntax for Referencing a Component W3C XML Schema

For a W3C XML Schema to be reused, it must be referenced by another
schema. As previously described, the process of referencing a schema is
conceptually similar to the COBOL Copybook include syntax. When
the primary W3C XML Schema is validated during the parsing process,
the parser will locate referenced subschemas as resources, include the
declarations of the referenced subschemas, and then resolve referenced
constructs. Subschema references are not limited to a single nesting layer
or reference. A subschema can reference another subschema, which can
reference another subschema, and so on. There is no specifically docu-
mented limit to the number of nested schema references, but caution is
advised. Significant nesting has the potential to slow the parsing process.
The W3C XML Schema syntax for referencing one schema (e.g., a sub-
schema) from within another can take on any of three syntactical forms:

� Include

� Redefine

� Import

When the primary W3C XML Schema is representative of
a single context, the preferred method of referencing a
subschema is to use the “include” syntax. In this case, the
included schema becomes part of the overall namespace
of the primary or referencing schema (e.g., the “master”
schema). When the primary W3C XML Schema is com-
posed of several contexts and the desired subschema ref-
erence must match one of those contexts, the “import”
syntax may be a better fit. The import syntax targets a spe-
cific context using a namespace to provide uniqueness. The
“redefine” syntax is similar to the include syntax (e.g., tar-

geting a single context and namespace). However, the redefine syntax
includes a referenced subschema and allows for modification of refer-
enced constructs. Regardless of the chosen syntax, references to desired
subschema constructs must be made and resolved.

The include syntax incorporates both a reference to the name and
location of the desired subschema and one or more internal references
to components declared in the subschema (Fig. 8.15). The W3C XML
Schema syntax for a schema include is simple and intuitive. The primary

192 Chapter 8 W3C XML Schemas and Reuse

Recommendation:

When the primary or referencing
W3C XML Schema is of a single
context (e.g., namespace), the
“include” syntax is the desired
form for referencing an externally
defined subschema.

XML8 5/2/03 8:28 PM Page 192

Syntax for Referencing a Component W3C XML Schema 193

XML Schema uses an “include” element in the primary or referencing
schema (e.g., <xs:include>). The “schemaLocation” attribute of the
include element is valued with the name and location of a referenced
subschema. The value of the schemaLocation attribute can be a relative
resource location or an absolute resource location. A relative resource
location requires that the referenced subschema is located in the same
place or directory as the primary or referencing schema. An absolute
resource location not only names the referenced subschema as a resource
but also identifies a specific location for the subschema (e.g., the server,
the directory, the node path, or a similar location of the referenced

W3C XML Schema

V01-STD-
PersonName.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:include schemaLocation="v01-STD-PersonName.xsd"/>

 <xs:element name="CustomerData">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="CustomerName"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="CustomerName">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="PersonNameComplete" minOccurs="0" maxOccurs="1"/>
 <xs:group ref="PersonNameParts" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

The <include> element informs
the parser of a requirement to
include another externally
defined subschema.

The schemaLocation attribute of the
<include> element names the subschema and
optionally identifies the location (the default is
a relative reference to the subschema as a
resource in the same location).

Constructs defined to the included subschema can be
referenced (e.g., elements, groups, complexTypes, attributes,
and simpleTypes). In this case, the referenced elements are
defined to the “v01-STD-PersonName.xsd” schema.

Modular XML
subschema that
includes declared
containers used by
the customer
schema.

Figure 8.15

W3C XML Schema include syntax.

XML8 5/2/03 8:28 PM Page 193

194 Chapter 8 W3C XML Schemas and Reuse

subschema). During the validation process, the parser identifies the
include element, interrogates the schemaLocation attribute, searches for
the named resource, and includes or brings in the referenced schema
content.

Although the W3C XML Schema include syntax is an effective
method for reusing other W3C XML Schemas by reference, caution is
advised. If the content and context of the referenced subschema are
unknown, there is the potential to include constructs of the referenced
schema that are not applicable. Also, a referenced W3C XML Schema
may reference and include other W3C XML Schemas and so on. This
could introduce an inefficient assembly and processing chain for the
parser.

The W3C XML Schema syntax for import and redefine are some-
what similar to include, although the resulting methods of reference are
different. The import syntax requires an import element being defined
to the primary schema (e.g., <xs:import>). Additionally, schema-
Location and namespace attributes are included. The schemaLocation
attribute identifies the location of the referenced subschema. The name-
space attribute defines the context. The redefine syntax includes a “rede-

W3C XML Schema

XML Schema “Import” Syntax

<?xml version=“1.0” encoding=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

 <xs:import schemaLocation=“schema-location-goes-here”
 namespace=“namespace-goes-here”/>

</xs:schema>

W3C XML Schema

XML Schema “Redefine” Syntax

<?xml version=“1.0” encoding=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

 <xs:redefine schemaLocation=“schema-location-goes-here”>

 ... revised complexTypes, simpleTypes, groups go here
 ...
 ...

 </xs:redefine>

</xs:schema>

Figure 8.16

W3C XML Schema
import and redefine
syntax.

XML8 5/2/03 8:28 PM Page 194

Syntax for Referencing a Component W3C XML Schema 195

fine” element (e.g., <xs:redefine>) and a schemaLocation attribute. Like
the include and import syntax, the schemaLocation attribute identifies
the location and name of the referenced subschema. Additionally, the
redefine syntax allows specific containers and constructs to be defined
differently (Fig. 8.16).

So far, the important data architecture and metadata activities
required to engineer flexible, extensible, and reusable W3C XML
Schemas have been described. Next we will identify how data architects
can leverage their roles, and how these activities will be integrated with
the application development process.

XML8 5/2/03 8:28 PM Page 195

XML8 5/2/03 8:28 PM Page 196

